CHEMICAL BONDING

0

CHEMICAL BONDING

LEARNING OBJECTIVES:

- What is a chemical bond
- Type of bonds & their properties
- Lewis dot structure & Octet Rule
- ♦ Fazan's Rule
- ♦ VSEPR Theory
- Valence bond Theory
- Hybridisation Theory

APPLICATION IN REAL LIFE:

Chemical Bonding has several real time applications in both Living & Non-Living processes.
 For example it is used to study the structure & Functioning of DNA, and various cell
 organelles in the body.

 $|\Phi|$ In the manufacture of Various materials like resins, Biodegradable polymers etc.. In the study of various processes like Ion Exchange, Ionizing radiations, Functioning of various semi permeable membranes etc..

 Φ Mainly used in the fields of Pharmacy & Chemical Engineering.

<u>§§</u> Physical Reason :

Atoms are less stable and more energetic hence they form molecules, loosing some energy by participating in Chemical bond.

 $H + H \rightarrow H_2 + 434.72$ KJ

 $Cl + Cl \rightarrow Cl_2 + 239.1 KJ$

(Chemical bond formation is always Exothermic)

<u>§§</u> <u>Chemical Reason :</u>

All noble gases are very stable chemically due to the completely filled electronic configuration hence all other elements participate in chemical bond inorder to acquire stable configuration.

Under normal conditions most of te elements do not exist as independent atoms. They occur as Molecules, because atoms can't exist independently at ordinary conditions.

An atom or group of atoms which can exist independently at normal conditions is called molecule".

The number of atoms present per molecule depends on the combining capacity of the constituent elements. "This combining capacity is called valency"

In a Chemical bond both attractive and repulsive forces exist in equilibrium.

Sector Se

It is also called as "electronic theory of Valency" this was proposed on the basis of Bohr's Atomic theory.

According to this :

The outer most energy level in an atom is known as valence shell and the electrons present in it are called Valence electrons.

The electrons present in the inner energy levels are known as core electrons.

Elements with eight electrons in their valence shell are more stable than other elements. Hence all elements try to acquire eight electrons in their outer most orbit (octet configuration)

An atom must possess eight electrons in outermost energy level for its stability(octet rule). Eventhough 'He' has only two electrons in the valence shell, it is highly stable and chemically

inert (duplet Configuration) Atoms attain stable electronic configuration(duplet and octet configuration) either by transfer (or) by sharing of electrons. The number of electrons transfered is called Electrovalency and bond resulted is called Electrovalent bond. The number of electrons shared is called co-valency and the bond resulted is called covalent bond. Lewis introduced simple notations to represent valence electrons in an atom. They are called Lewis symbols. In these symbols valence electrons are represented by dots. Ex: Li; • Be; • B; etc No. of Lewis valence Example structure electrons 1 Hydrogen / Group IA H•/Li• 2. Helium/Group IIA Mg: 3. Group IIIA 4. Group IV A 5. Group VA 6. Group VIA <u>§§</u> Ionic bond : (Electrovalent Bond) "The strong electrostatic attraction between two oppositely charged ions which are formed due to transfer of electrons from one atom to another in called ionic bond (or) Electrovalent Bond" Generally ionic bond is formed between a Metal and a non metal. The atom which gains electrons turn inot anion, and which loses electrons turn into cation. Formation of ionic bond is a redox process because one atom undergoes oxidation other one undergoes reduction. $Mg \rightarrow Mg^{+2} + 2e^{-1}$ $2F + 2e^- \rightarrow 2F^ Mg^{+2} + 2F^{-} \rightarrow MgF_{2} (or) Mg^{+2} (F^{-})_{2}$ The maximum electrovalency in ionic bond is 3. In Mg F_2 electrovalency of Mg = 2, F = 1 In NaO₂ electrovalency of Na = 1, O = 2 Tendency of element to form ionic bonds in relation to their position in periodic table : \mathbb{PP} Factors Favourable for the formation of ionic bond Factors favourable for cation formaiton (a) Low ionization potential 1) Atom having very low ionisation potential forms the cation very easily. (Potassium (IP=495.57kj/mole) forms the cation more readily than sodium (IP=519.82kj/mole) 2) Low charge on the ion Formation of cation carrying less positive charge is easy . $(AI^{+3} < Mg^{+2} < Na^{+})$ 3) Large atomic size Atoms with large atomic size form cations easily $(K^+ > Na^+)$ (Cs⁺ ion has the biggest cation among alkali metal ions. Its compounds are more ionic than the corresponding compounds of other alkali metlas).

4)	Formation of cation with inertgas configuration
	Of the two cations Zn ⁺⁺ (2, 8, 18) and Ca ⁺⁺ (2, 8, 8), Ca ⁺⁺ is more readily formed and it is more
l stabl	e than Zn⁺⁺ and gives compounds with more ionic character.
1	Formation of cation having inert gas configuration is very easy.
1	LiCl is more covalent in nature and so dissolves in non-polar solvents like alcohol or ether.
(b)	Factors favorable for anion formation:
1)	High electronegative and Electron affinity.
	Atom having very high electron effinity / electro negativity forms anion very easily.
i	$F_2 > O_2 > N_2$
2)	Small atomic size
	Small non metal atom forms anion very easily.
	$(\overline{F} > CI - > \overline{B}r > \overline{I})$
3)	Low charge on the ion
	Formation of anion carrying less negative charge is easy.
	$(\overline{F} > \overline{O}^2 > \overline{N}^3)$
	Formation of anion having inert gas configuration is very easy.
1	No Bond is 100% ionic in nature. It has some percentage of covalent character which
is ex	plained on the basis of Fajan's rule
<u> §§</u>	Fajan's rules:
1	Based on the phenomenon of Polarisation
i	Fajan proposed following rules. They are used to know the relative ionic natures.
i	Fajan's rules are used to predict whether a chemical bond will be covalent (or) ionic.
Ì	It depends on the charge of the cation and anion, and the relative size of cation and anion.
	(a) lonic nature α size of cation
	α 1/size of anion
	(b) Ionic nature α 1/charge on cation
	α 1/charge on anion
	Cations with inert gas configurations form ionic compounds while those cations with
l psue	do inert gas configurations favour covalent bond formation.
<u>¶¶</u>	A compound is more ionic (or) less covalent if it contains.
1	1) Large cation and small anion.
1	2) Cation carrying less positive charge and anion carrying less negative charge.
i	3) Cation having inert gas configuration.
	NaCl > CuCl
<u> ¶¶</u>	A compound is less ionic (or) more covalent if it contains.
Ì	1) small cation and large anion.
	2) Cation carrying high positive charge and anion carrying high negative charge.
	3) Cation naving pseudo inertigas configuration.
	in a binary compound AB, if the electro negativity difference between the elements A and B is.
	equal to 1.7, the compound AB is 50% ionic.
	greater than 1.7, the compound AB is an ionic compound.
66	Cruetal atructure of ionic compounde
<u>88</u>	Crystal structure of ionic compounds
1	The arrangement of ions in the crystal of an ionic solid is known as its lattice arrangement.
l know	The smallest part of the crystal of an ionic compound that represents its lattice arrangement is i
	The crystal of an ionic solid is a combination of different unit calls
i	The Grystal of all follo solid is a combination of different drift Cells.

The ions packed in a crystalline substance are shown by points in a crystal lattice. These points are called lattice points. In different cubic unit cells there are mainly four kinds of lattice points. They are **Co-ordination number** <u>§§</u> The number of oppositely charged ions, that surround an ion at nearest possible distances in an ionic crystal is known as the **co-ordination number** of that ion. Example: Co-ordination number of Na^+ or Cl^- . in NaCl is six. Ratio of co-ordination numbers of cation and anion in NaCl = 6 : 6 Co-ordiantion number of C_{S^+} or C_{l^-} in CsCl = 8 : 8 The co-ordination number depends on radius ratio of the ionic crystal. <u>§§</u> **Properties of Ionic Compounds:** 1) Ionic compounds exist as solids. since electrostatic forces of attraction are extending in all directions, each ion tends to gather as many of opposite kind ions around it self. A nonbonding array of alternate positive and negative ions exist. As a result no isolated decrete molecule exist in the Crystal in lattice, gaint molecules are formed in the crystal. Ionic compounds have high melting points and high boiling points. (Melting pint of NaCl = 803°C) 4) Ionic compounds dissolve in polar solvents. 5) Ionic compounds are good electrical conductors in molten state (or) in aqueous solutions. 6) Ionic compounds undergo chemical reactions quickly in aqueous solutions. NaCl + AgNO₃ \rightarrow AgCl + NaNO₃ white ppt. 7) Ionic compounds do not exhibit space isomerism because ionic bond is a non directional bond. 8) The melting and boiling points of ionic compounds are very high. This is due to the presence of strong electrostatic forces of attraction between the ions. 9) If anion is common in the ionic compounds more ionic compond will have more melting point and less ionic compound will have less melting point. Example: Melting point of $BaCl_2$, is very high compared with $BeCl_2$. Melting point of CsF is very high compared with LiF. 10) If cation is common in the ionic compounds, compound with high lattice energy will have high m.p. and the compound with low lattice energy will have low m.p. Example: Melting point of NaF is more than that of Nal. Melting point of CaF_2 is more than that of CaI_2 . **TEACHING TASK** Single Answer type questions: Ι. | 1. The number of valency electrons and the valency with respect to hydrogen are equal for 1. Sulphur 2. Silicon 3. Phosphorus 4. Chlorine 2. The element having highest valency with respect to oxygen is 1. Sodium 2. Aluminium 3. Chlorine 4. Sulphur 3. Metal 'M' forms a peroxide of the type MO₂. Valency of the metal with respect to oxygen 1.0 2.1 3.2 4.4 4. An element A is tetravalent and another element B is divalent. The formula of the compound formed by the combination of these elements is 2. A B 1. A₂ B 3. A B 4. A₂ B₂

 5.	An atom A has 2K, 8L and 3M electrons. Another atom B has 2 K and 6 L electrons.
	The formula of the compound formed between A and B is
	1. A B 2. $A_2 B_3$ 3. $A_3 B_2$ 4. $A B_2$
6.	Two elements X and Y the have following electron configurations, $X = 1s^2, 2s^2, 2p^0$,
	$3s^2 3p^\circ$, $4s^2$ and $Y = 1s^2$, $2s^2 2p^\circ$, $3s^2 3p^\circ$. The formula of the compound formed by the
	combination of X and Y is
	$1. X Y_2 \qquad 2. X_5 Y_2 \qquad 3. X_2 Y_5 \qquad 4. X Y_5$
1.	Which of the following exhibits variable valency
	1. Na 2. H 3. Al 4. S
0. 	respect to exugen
 	1 decreases 2 remains constant
 	3 first increases and then decreases A increases
9	Electrovalency of non-metal atom is not equal to that of the metal atom in
0.	1 Sodium bromide 2 Magnesium oxide
1	3.Aluminium nitride 4. Potassium sulphide
10.	Cation is isoelectronic with anion in
	1. Sodium chloride 2. Potassium Bromide
	3.Lithium fluoride 4. Rubedium bromide
11.	Which of the following has pseudo inert gas configuration
	1. Na⁺ 2. Cu⁺ 3. K⁺ 4. <i>S</i>
12.	The Atomic numbers of three elements A. B and C are a, a + 1, and a + 2. C is an alkali
	metal. In a compound of A and C, the nature
	1. Coordinate 2. Covalent 3. Ionic 4. Metallic
13.	An atom with atomic number 20 is most likely to combine chemically with the atom whose
 	atomic number is
	1. 11 2. 16 3. 18 4. 10
¦ 14.	Duplet configuration is not found in
	1. hydride ion 2. hydrogen molecule 3. Lithium cation 4. Be ³⁺
; 15. 	If stability were attained with 6 electrons rather than with 8 electrons. What would be
	$1 E^{3+} \qquad 2 E^+ \qquad 3 E^- \qquad 1 E^2$
16	The maximum valency of an element with atomic number 7 is
	1.2 2.5 3.4 ` 4.3
17.	Valency of sulphur in sulphuric acid is
	1.2 2.4 3.6 4.8
18.	With the decrease in thermal energy of Gas molecules attaction forces and relulson
 	forces
1	1. both increases2. both decreases
	3. increases, decreases, respectively 4. decreases, increases, respectively
¦ 19.	The maximum valency of sulphur is
	1.4 2.6 3.8 4.7
20.	vvnen Naul is dissolved in water the sodium ion is
21	The electronegativities of two elements are 0.7 and 2.0, the band formed between them
∠ 1.	would be
	1 Ionic 2 Covalent 3 Co-ordinate covalent 4 Metallic
22	Which of the following is a favourable factor for cation formation?
	1. Low ionisation potential 2. High electron affinity
	,

	3. High electronegativity 4.	Small	atomic size			
II.	Multi correct answer type questions:					
i 🔸 🗌	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which $(A, B) = (A, B)$					
	ONE or MORE is correct. Choose the correct options					
23.	It was found that atoms having atomic numbe	rs of 2	, 10, 18, 36, 54, 86	6 are very stable and do		
' 	not show any chemical reactivity, these elem-	ents w	ere found to be ga	ases and are called:		
24.	Which of the following element(s) do not form	n mole	cules?	4. NUDIE gases		
	1. Helium 2. Oxygen	3. Ni	trogen	4. Argon		
25.	Which of the following will try to achieve heliu	m con	figuration?	5		
	1. Hydrogen 2. Lithium	3. B	erylium	4 None of these		
26.	The common or group valency is equal to:					
	1. No. of valence electrons till group number	4.				
	2. 8 - no. of valence electrons after group nul	mber 4	k.			
 	4 None of the above	e shei				
111.	Assertion & Reasoning type:		40			
İ 🎍	This section contains certain number of questions.	Each a	uestion contains Stat	tement -1 (Assertion) and		
State	ment – 2 (Reason). Each question has 4 choices (A), (B	R), (C) a	nd (D) out of which	ONLY ONE is correct		
Choo	se the correct option.	UĽ				
	1. Statement-I, Statement-II both are true	and St	atement-II is the c	orrect explanation of		
İ	Statement-I.	11				
	2. Statement-I, Statement-II both are true I	but Sta	tement-II is not th	e correct explanation of		
	Statement-I.					
	3. Statement-I is true, Statement-II is false.					
' 	4. Statement-I is false, Statement-II is true					
27.	Statement I : Elements which lose electrons are called electropositive elements.					
	Statement II: Elements which gain electrons are called electronegative elements.					
28.	Statement I : Ionic compounds tend to be non-volatile					
	Statement II : Inter ionic forces in ionic compounds are weak					
29.	Statement I: Among Ca^{2+} and Zn^{2+} lons, Ca^{2+}	is mo	re stable than Zn ²	<u>-</u> +		
	Statement II: Both Ca ²⁺ and Zh ²⁺ lons are dia	magne	RIC			
IV. ▲	Matching type:	Each	augation contains at	rtomonta ciuca in tuo		
▼ 	columns which have to be matched. Statements (A.	. <i>Eacn</i> В. С. D) in Column–I have t	to be matched with		
İ	statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as					
	illustrated in the following example.					
	If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q a be as follows:	na D-s,	inen ine correci dudi	neu 4 · 4 mairix snouia		
 30.	Column-l	Colu	umn-ll			
	a) Sodium	1)	2, 8, 8			
I	b) Duplet configuration	2)	Stable (or) inact	ive		
	c) Xe	3)	Makes an eleme	ent inactive		
	d) Ar	4)	Unstable (or) ac	tive		
ı 		5)	2, 8,8,18,18			

CHEMICAL BONDING

31.	Column-l	Column-II			
1	A) Incomplete octet	1) Acetic acid			
i	B) Expansion of octet	2) BC/2			
i	C) Octahedral Geometry	3) IF_			
	D) Dimerisation	4) SF			
v .	Comprehension type:	.,			
	This section contains paragraph. Based upon ed	ich paragraph multiple choice	questions have to be		
	answered. Each question has 4 choices (A) , (B) ,	(C) and (D) out of which ONI	LY ONE is correct. Choose		
1	the correct option.				
1	The Chemical bond formed due to electron	transfer is called ionic bor	nd or electro valent bond.		
i	lonic bond will be formed more easily betw	een the elements with lov	v ionization potential and		
i	high electron affinity. Energy changes involved	ved during the formation c	f ionic compound can be		
	calculated by Born – Haber cycle. Lattice	enthalpy changes are dir	rectly proportional to the		
	stability of ionic compound.				
32.					
33	Which of the following is more ionic?	3. CH ₄	4. Deol ₂		
•••	1. KF 2. NaF	3. MgF	4. CaF		
34.	Most stable ionic compound among the foll	owing is	2		
Ì	1. Li ₂ O 2. MgO	3. Cs ₂ O	4. KI		
35.	.Born- Haber cycle is based on	04			
	1. Faradays law2. Gay-Lumar's law	3. Emetons law	4. Hess's law		
	LEARNE	R'S TASK			
1					
İ.	◆ 1 + BEGINNER	<u>S(Level-I)</u> ◆₩★			
I .	Single Answer type questions:				
11.	I he electrons generally involved in bonding				
	2 are those for which the ionization energy	es are small			
1	3 belongs to inner shells	are free electrons			
2.	Chemical bond formation takes place wher	1			
i	1. energy is absorbed 2	2. forces of attration overc	ome forces of repulsion		
i	3. forces of repulsion overcome forces of a	ttraction			
	4. forces of attraction are equal to forces of	repulsion.			
3.	During bond formation potential energy of t	he system			
	1. Increases	2. decreases			
	The maximum number of valence electrons	Realified be predicted	second period of the		
- .	neriodic table is				
1	1.2 2.8	3. 18 4. 32			
5.	Which of the following covalent molecule is	an exception to octet rule	?		
Ì	1. BeCl 2. CO 3	3. H O 4. CH			
6.	The mofecule that deviates ² from octet rule	is ² ⁴			
۱_	1. NaCl 2. BeCl ₂ 3	B. MgO 4. NH ₃			
7.	Which of the following bond is non polar?		I		
	и. С-Н 2. U-Н 3	9. IN-FI 4. F-F			
0. IV			10		
IX -	ULA33		48		

1

 9. Potassium forms a highly ionic compound when it combines with Chlorine Fluorine Bromine Iodine 9. Potassium forms a highly ionic compound when it combines with Chlorine Fluorine Bromine Iodine 9. Potassium forms a highly ionic compound when it combines with Chlorine Sodium Sodium fluoride Sodium fluoride Sodium fluoride Sodium bromide Sodium bromide Sodium bromide Sodium bromide Sodium hydride Carborundum Potassium oxide Carborundum Potassium oxide Carborundum NaCl KCl Cosl Lil 13. Which of the following is not an ionic compound
 Chlorine 2. Fluorine 3. Bromine 4. lodine Most ionic compound among the following is Sodium fluoride 2. Sodium Chloride Sodium bromide 4.Sodium iodide Which of the following is not an ionic compound Sodium hydride 2. Carborundum Potassium oxide 4.Calcium carbide Least ionic compound among the following is NaCl 2. KCl 3. Csl 4. Lil Which of the following is not an ionic compound
 Most ionic compound among the following is Sodium fluoride Sodium bromide Sodium bromide Which of the following is not an ionic compound Sodium hydride Carborundum Potassium oxide Least ionic compound among the following is NaCl KCl Casl Lil
 Sodium fluoride Sodium bromide Sodium bromide Sodium bromide Which of the following is not an ionic compound Sodium hydride Carborundum Potassium oxide Calcium carbide Least ionic compound among the following is NaCl KCl Csl Lil Which of the following is not an ionic compound
 3. Sodium bromide 4. Sodium iodide 11. Which of the following is not an ionic compound Sodium hydride 2. Carborundum Potassium oxide 4.Calcium carbide 12. Least ionic compound among the following is NaCl 2. KCl 3. Csl 4. Lil 13. Which of the following is not an ionic compound
 Which of the following is not an ionic compound Sodium hydride Carborundum Potassium oxide Least ionic compound among the following is
 Sodium nydride Carborundum Potassium oxide Least ionic compound among the following is NaCI KCI CsI Lil Which of the following is not an ionic compound
 12. Least ionic compound among the following is 1. NaCl 2. KCl 3. Csl 4. Lil 13. Which of the following is not an ionic compound
12. Least onic compound among the following is 1. NaCl 2. KCl 3. Csl 4. Lil 13. Which of the following is not an ionic compound
13. Which of the following is not an ionic compound
1. DaO_2 2. Ai_2O_3 3. Oai_2 4. $AiOi_3$
1 KCl 2 NaCl 3 Cel 4 CeF
15 The co-ordination number of sodium in sodium chloride is
16. Stability of ionic compound is influenced by
1. Electronegativity 2. Lattice energy
3. Sublimation energy 4. Electron affinity
17. Which of the following is not a property of ionic compounds
1. They are solids 2. They have high melting points
3. They are conductors in molten state 4. They exhibit space isomerism
18. Which of the following conducts electricity
1. Crystalline NaCl 2. Fused NaCl 3. Molten sulphur 4. Diamond
19. Which of the following is not a correct statement about an ionic compound
1. The higher the temperature, the more the solubility
2. The higher the dielectric constant of the solvent, the more the solubility
3. The higher the dipole moment of the solvent, the more the solubility
4. The higher the lattice energy, the more the solubility
20. In a crystal cations and anions are neid together by
1. Electronis 2. Electrostatic forces 5. Nuclear forces 4.Covalent bonds
1 are insulators 2 are used as semi-conductors
3 conduct electricity 4 do not conduct electricity
22. Compared with covalent compounds electro-valent compounds generally have
1. Low melting points and low boiling points
2. Low melting points and high boiling points
3. High melting points and low boiling points
4. High melting points and high boiling points
23. An electrovalent compound is made up of
1. Electrically charged particles 2. Neutral molecules
3. Neutral atoms 4. Electrically charged atom or group of atoms
24. Ionic reactions are
1. Fast 2. Slow 3. Very slow 4. medium
◆ ∎-∎ ◆ <u>ACHIEVERS (Level - II)</u> ◆ ∎-∎ ◆
Descriptive type questions
25. Identify the atoms in each of the following compounds which do not obey octet rule.

1	SO ₂ , BF ₂ , OF ₂ , PCI ₂ , SiF ₂ , PCI ₂						
26.	Show the formation of an ionic compound lithium sulphide.						
27.	Assuming the following elements combine to form ionic compounds, Write the						
İ	formulae of the compounds. a) Sr and Cl b) Rb and S c) Al and S d) Ca and N						
28.	Discuss two conditions that are essential for two atoms to form an ionic bond.						
29.	Draw the lewis electron-dot structure for the following						
ļ	a) hydrogen b) fluorine c) neon d) nitrogen e) calcium						
1							
	Image: All and All an						
¦∎. 	<u>Multi correct answer type questions:</u> This section contains multiple choice questions. Each question has A choices (A) (B) (C) (D) out of						
•	which ONE or MORE is correct. Choose the correct options						
30.	Atoms can lose or gain number of electrons.						
	1.1 2.2 3.3 4.4						
31.	Which of the following true for ionic compounds?						
	1. They are hard solids						
	2. They can be broken down into pieces very easily						
İ	3. They are soluble in non-polar solvents						
	4. None of the above						
32.	Which of the following are true?						
	1. Ionic compounds exists as solid.						
	Ionic compounds have high melting point and high boiling point.						
 	Ionic compounds undergo chemical reactions quickly in aqueous solutions.						
 	4. None of these.						
¦33.	Among the following which is correct information about the formation of cation?						
l	1. Formation of cation is exothermic.2. In this energy releases.						
۱	3. It is an endothermic process. 4. It is an energy absorbing process						
III.							
	• This section contains certain number of questions. Each question contains Statement -1 (Assertion) and						
Statement -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct							
Choo 	se the correct option.						
 	1. Statement-I, Statement-II both are true and Statement-II is the correct explanation of Statement-I						
' 	 Statement-I, Statement-II both are true but Statement-II is not the correct explanation of Statement-I 						
İ	3. Statement-I is true. Statement-II is false.						
I	4. Statement-I is false, Statement-II is true						
34.	Statement I : KF is more ionic than NaC/.						
	Statement II: Compounds having large cation and small anion is more ionic than compound						
	having small cation and large anion.						
35.	Statement I: Graphite is a good electrical conductor.						
	Statement II : The free electrons in graphite conducts electricity.						
36.	Statement I : NaCl is bad conductor in the solid state						
	Statement II : Na ⁺ and CI ⁻ ions are not free in the solid state						
IX -	CLASS 50						

37.	Statement I : Ionic compounds exhibits isomerism					
 	Statement II : Ionic bond is non directional bond					
38.	Statement I: The lewis symbol for aluminiur	m is $\bullet Al \bullet$				
 	Statement II : The outermost shell electronic	c configuration of AI is 3s ² 3p ¹				
¦ IV.	Matching type:					
📍	This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example.					
1	If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q a	and D-s, then the correct bubbled 4*4 matrix should be				
20	as jollows:	Column-II				
33.	a) lonic compounds in ageous	1) Good conductor of electricity				
ļ	b) lonic compounds in solid state	2) Bad conductor of electricity				
1	c) $ZnSO_4$. $7H_2O$ and $FeSO_4$. $7H_2O$	3) Isomorphs				
1	d) Best polar solvent	4) Water				
		5) CHCl ₃				
<mark> </mark> 40.	Column-l	Column-II				
ļ	a) C_2H_6	1) Ionic bond				
	c) H O	3) Coordinate, covalent bonds				
1	d) H_2O^+	4) Covalent bond				
41.	Column I	Column II				
	a) Electron deficent	1) CIF.				
1	b) odd electron molecule	2) BeCl				
1	c) Expansion of octet	3) BF.				
İ	d) T shaped molecule	4) NO				
42.	Column-l	Column-II				
	a) Neon	1) : N•				
		·				
	b) Nitrogen	2) : Ne :				
ļ						
	c) Boran	3) <i>Be</i> :				
	d) Berylium	4) • B •				
V .	Comprehension type:					
! ∳ 	This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A) , (B) , (C) and (D) out of which ONLY ONE is correct. Choose the correct option.					
	When anions and cations approach each oth cation, nucleus and thus, shape of anion is d	er, the valence shell of anions are pulled towards eformed. The phenomenon of deformation of				

I

	called as polarizing	power of cation. Due	to polarization, sha	aring of e	lectrons occurs		
1	between two ions to	o some extent and the	e bond shows some	e covalan	t character.		
1	The magnitude of polarization depends upon a number of factors. These factors were						
İ	suggested by Fajan and are known as Fajan's rules.						
!	1) Greater is the polarization in a molecule, more is covalent character.						
	2) As the charge m_{i}		ineases, its tendend	y to polar			
1	3) As the size of the	19 electrone in the el	Ize of the anion incr	eases, in	e polarization increases.		
	than those with in	ert das configuration	even both the cat	ions hav	e same size and same		
i	charge.	crt gas configuration					
43.	In which of the halic	les, there is maximum	n polarization?		l		
	1. AIF	2. AICI	3. AlBr		4. A/I		
 44.	Which is most cova	llent in nature?	3		3		
	1. NaCl	2. MgCl	3. AICI		4. CaCl ₂		
45.	Which has the mini	mum melting point?	3		2		
1	1. CaF _a	2. CaCl	3. CaBr ₂	101	4. Cal ₂		
VI.	Higher Order Thir	<u>nking Questions.</u>	1 al	U	2		
46 .	Among the following	g the stable electronic	configuration is				
۱	1.singlet	2.triplet	3.octet	4.quarte	et		
47.	Among the following	g the elements withou	t stable electronic c	onfigurat	ion are		
1	1. Krypton	2.Chiorine	3.Xenon	4.Alumii	nium I		
48.	Lewis dot symbol of	f an element X is : \ddot{X}	 and X contains fit 	ve shells	then X is		
			,and / comaine n				
	1.Te	2.In	3.Sn	4.1			
49 . 	Which of the followi	ng statements are co	rrect about ionic bo	nd forma	tion?		
1	of high electron affinity						
i	2 Jonic bond is formed by the transfer of one or more electrons from one atom to the other						
l	3 Generally oxides Halides and Sulphides of alkali and alkaline earth metals are ionic						
	4. None of the abov	e.					
50.	Most favourable co	onditions for electrova	alency are				
1	1. Low charge on ic	ons, large cation and s	small anion				
Ì	2. High charge on	ions, small cation an	d large anion		ĺ		
ļ	3. High charge on i	ions, large cation and	d small anion				
 51.	The co-ordination	number of the cation	in the face centre	d cubic l	attice is		
	1.4	2.8	3. 3	4.6			
52.	The number of opp	ositely charged near	rest neighbours to	a Caesi	um ion in Caesium		
	Chloride lattice are)			l		
	1.8	2.6	3.4	4.2			
33. 	$1 \text{ Mn } \Omega$	2 OsO	3 Mn	4 CrO			
	······································	2.0004	5. mile ₂	4. UU ₃			
İ					Ì		
					I		

CHEMICAL BONDING

	KEY									
ΦΦ TEACHING TASK :										
	1.2	2.3	3.2	4.3	5.2	6. 1	7.4	8.3	9.4	
	10.4	11. 2	12. 3	13.2	14.4	15.2	16.2	17.3	18.3	
	19.2	20.2	21.4	22.1	23.1,3,4	24.1,4		25.1,2,	3	26.1,2
	27.2	28.3	29.2	30. a-4,b-	2,c-5,d-1		31. a-2	,b-3,4,d	c-4,d-1	
	32.2	33. 1	34.3	35.4						
$\Phi\Phi$	LEARNER	<u>'STASK</u> :								
	BEGINNERS	6:								
	1.2	2.2	3.2	4.2	5. 1	6.2	7.4	8.3	9.2	
	10. 1	11. 2	12.4	13.2	14.4	15. 1	16.2	17.4	18.2	
	19.3	20.2	21.3	22.4	23. 1	24.4				
	EXPLORER	S :								
	30.1,2,3,4		31.1,2	32.1,2,3	33.1,2,3	34.1	35. 1	36. 1	37.4	38.2
	39. a-1,b-2	2,c-3,d-4		40. a-4,b-	2,c-4,d-3		41. a-2	,3,b-1,3	3,4,c-1,	d-1
	42.a-2,b-1	,c-4,d-3		43.1	44.3	45.4	46.3	47.2,4		48.4
	49.1,2,3		50.1	51.4	52.1	53.2				
22	Covalon	thond				10				
88		<u>i builu</u>	aranaaad b		ie-111					
	Covalent bond was proposed by G.N. Lewis.									

Covalent bond <u>§§</u>

Covalent bond was proposed by G.N. Lewis.

The bond formed between two atoms by the mutual sharing of their valency electrons is known as covalent bond.

Only unpaired electrons present in the atom involve in covalent bonds.

One unpaired electron involves in one covalent bond only.

The number of covalent bonds in which an atom involves is equal to the number unpaired electrons present in it.

The atom forms less number of covalent bonds in its ground state.

The atom forms more number of covalent bonds in its excited state.

Phosphorus atom has three unpaired electron in its group state. So it can form only three covalent bonds in its ground state,

Phosphorus atom has five unpaired electrons in its excited state. So it can form five covalent bonds in its excited state.

Single bond is formed by the mutual sharing of one pair of electrons between two atoms. Single bond is represented as '_

Double bond is formed by the mutual sharing of two pairs of electrons between two atoms. Double bond is represented as '_____'

Triple bond is formed by the mutual sharing of three pairs of electrons between two atoms. It is represented as '

Double and triple bonds are called multiple bonds.

Pure covalent bond is formed by the sharing of electron pairs between two like atoms. The word like atoms stands for atoms of the same element (or) atoms having same electro negativity value.

Pure covalent bond is present in $H_2, Cl_2, O_2, N_2, P_4, S_8$ etc.

Polar covalent bond is formed by the mutual sharing of electron pairs between two dissimilar atoms.

The word dissimilar atoms stands for atoms of different elements (or) atoms having different electro - negativity values.

Polar covalent bond is present in	$HF, HCl, ICl, H_2O, CO_2, SO_2, BeCl_2, SO_3$
$BCl_2, NH_2, CH_4, PCl_5, SF_c$ etc.	

The unpaired electrons present in the valency shell of an atom involve in covalent bonds, the remaining electron pairs present in its valency shell are called lone pairs of electrons (or) non bonded pairs of electrons.

June			
	The lone pairs of elect Molecule	trons present in the Central	atom involve in co-ordinate covalent bonds. Total no. of valence
		Atom	electrons in thecentral atom
	CH4	С	8 (Octet)
	NH ₃	Ν	8 (Octet)
	H ₂ O	0	8 (Octet)
	CO ₂	С	8 (Octet)
	C_2H_6	C (each)	8 (Octet)
	C_2H_4	C (each)	8 (Octet)
	C_2H_2	C (each)	8 (octet)
	BeCl ₂	Be	4 (Contracted Octet)
	BCI ₃	В	6 (Contracted Octet)
	PCI ₅	Р	10 (Contracted Octet)
	SF ₆	S	12 (Expanded octer)
	IF_	ALKE	14 (Expanded Octet)

§§ Properties of Covalent Compounds:

Covalent substances exist as solids, liquids and gases.

Covalent substances have low melting and boiling points.

Covalent substances dissolve in non-polar solvents.

Covalent substances are not electrical conductors either in molten state or in aqueous solutions.

Covalent substances involve in chemical reactions very slowly.

Covalent compounds exhibit space isomerism because covalent bond is a directional bond. Covalent substances contain individual molecules.

The force of attraction between the molecules is known as vanderwaal's force of attraction. Vanderwaal's forces of attractions are of the order of 1K.cal/mole.

Vanderwaal's force of attraction is maximum in solids and minimum in gases.

Vanderwaal's force of attraction is proportional to the molecular weight of the substance.

The melting and boiling points of covalent compounds are proportional to their molecular weights. The melting and boiling points of covalent polymers are very high.

Examples for covalent polymers are Diamond, Graphite, Boron, Silicon, Silica, Boron nitride, Boron Carbide and Silicon carbide.

Covalent subtances do not contain free electrons or free ions. So they are not electrical conductors.

Graphite contains free electrons. So it is a good conductor of electricity.

 HCl, HBr, HI, HNO_3 and H_2SO_4 etc are covalent compounds. The aqueous solutions of these substances are good electrical conductors because they contain free ions.

Covalent substances involve in chemical reactions slowly because molecules take part in the

CHEMICAL BONDING

react	ions.							
	CCl_4 , $CHCl_3$, CH_2Cl_2 etc cannot give white precipitate with $AgNO_3$ in aqueous solutions be-							
l , caus	e they do not contain chloride ions as they are covalent compounds. The solubility of a covalent							
l i subs	ubstance is more in a solvent having high dielectric constant and less in a solvent having low							
ı ı diele	lectric constant							
	The dielectric constant of a solvent is a measure of its capacity to break the covalent							
l I mole	cules into ions							
	Polar solvents have high dielectric constants							
1	Non polar solvents have low dielectric constants.							
 	Dielectric constant is high for solvents like water, ammonia, hydrofluoric acid etc.							
1	Dielectric constant is high for solvents like Benzene Cerben disulphide eerben tetreebleride							
l I ata	Dielectric constant is low for solvents like benzene, Carbon disciplide, carbon tetrachionde							
i etc.								
1								
	TEACHING TASK							
l.	Single Answer type questions:							
1.	Which of the following is highly covalent							
	1. AIF 2. AICI 3. AIBr 4.CCI							
2.	The compound having more covalent nature is							
	1. BaCl 2.MgCl 3. SrCl 4. BeCl							
3.	Which of the following has a tendency to form covalent compounds							
	1. Ba 2. Be 3. Na 4. Ca							
4.	Triple bond is not present in							
	1. Cyanogen 2. propyne 3. Nitrous Oxide 4. Nitrogen dioxide							
5.	Number of bonded electrons in ethane molecule are							
ļ	1.7 2.12 3.10 4.14							
6.	Molecule which contains only bonded pairs of electrons on the central atom is							
1	1. H ₂ O 2. NH ₂ 3. BeCl ₂ 4. BrF ₂							
7.	The number of electron pairs involved in the formation of hydrogen cyanide molecule are							
	1. two 2. eight 3. three 4. four							
8.	Compound having maximum number of bonded pairs of electrons in its molecule is							
	1. Ethane 2. Ammonia 3. Sulphur hexafluoride 4. Bromine Pentafluoride							
9.	The number of electron pairs present in the valency shell of central atom in SF _e molecule							
	are							
	1.4 2.6 3.8 4.7							
10.	Molecule having maximum number of lone pairs of electrons on central atom is							
	1. PH_{2} 2. $H_{3}S$ 3. CH_{4} 4. BrF_{5}							
11.	Number of bonded pairs and lone pairs of electrons present in the central atom of ammonia							
	molecule are							
	1. 3,1 2. 2,2 3. 1,3 4. 4,0							
¦∥.	Multi correct answer type questions:							
•	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of							
which	ONE or MORE is correct. Choose the correct options							
12.	Which of the following are correct about covalent bond?							
ļ	1. It is formed by sharing of the electrons							
	2. It is stronger than ionic bond							
	3. Its study was done by Kossel							
İ	4. When two non-metals are combined, then a covalent bond is formed							
Ĺ								
IX - (CLASS 55							

CHEMISTRY CHEMICAL BONDING 13. Which of the following are correct? 1. The bond formed between two non-metallic elements is covalent bond. 2. The bond formed between two inert gas elements is van der Wall's bond. 3. The bond formed between a metal and a non-metal is electrovalent bond. 4. The bond formed between two metallic elements is an ionic bond. III. Assertion & Reasoning type: This section contains certain number of questions. Each question contains Statement -1 (Assertion) and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option. 1. Statement-I, Statement-II both are true and Statement-II is the correct explanation of Statement-I. 2. Statement-I, Statement-II both are true but Statement-II is not the correct explanation of Statement-I. Statement-I is true, Statement-II is false. 3. 4. Statement-I is false, Statement-II is true 14. Statement I: The covalent bond between a pair of two atoms is represented by a small line (-). Statement II : G.N.Lewis explained covalent bond foundation by the electron dot structure. Statement-I : BeF₂ is predominantly a covalent compound. 15. Statement-II: Electronegativity difference between Be and F is too small 16. Statement-I : In H₂ molecule one electron pair is shared between two H- atoms Statement-II :Hydrogen atom requires one electron to acquire the stable electronic cofiguration of helium IV. Matching Type: This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column-I have to be matched with statements (p, q, r, s) in Column-II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows: 17. List-I List-II 1) 25% s-character A) Electro valency B) Sigma bond 2) Transfer of electrons C) Dipole moment 3) Structure of molecule 4) Coulombo-metre D) SP³ hybdridisation 5) Lewis 18. List-II List-I A) NO⁻₃ion 1) Molecular solids B) Isosters 2) Planner structure C) Ionic bonds 3) CO₂,N₂O 4) Non direction bonds D) Ice and S_8 Isostrucural with CH₄ V. **Comprehension type:** This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option. When half-filled valence orbital of one atom overlaps with half-filled valence orbital of other atom, a covalent bond is formed. Head on or axial overlap leads to the formation of sigma bond.

CHEMICAL BONDING

CHE	MISTRY CHEMICAL BONDING
	◆ ₽-ℤ → <u>ACHIEVERS (Level - II)</u> ◆ ₽-ℤ →
<u>Deso</u> 12. 13. 14. 	riptive type questionsWrite down the electron-dot structure of nitrogen molecule.Write the difference between ionic and covalent bond.Which type of bond is formed when the atoms havei) Zero difference in electronegativityii) Little difference in electronegativity.
<u>Mult</u>	correct answer type questions:
◆ 	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which ONE or MORE is correct. Choose the correct options
15.	In which of the following molecule(s), multiple bond is present:
16	1. CO_2 2. O_2 3. N_2 4. HCN Which is/are characteristics of Pi bond 2
10. 	 a Pi –bond is formed when a sigma bond is already formed. Pi-bonds are formed by un hybrid orbitals. Pi-bonds may be formed by the overlapping of P-Orbitals. Pi-bonds results form lateral overlap of atomic orbitals. Which statement is /are correct sigma bond is stronger than pi bond. sigma bond is formed by the axial overlaping of orbitals. sigma bond is weaker than pi bond. pi bond can exist independently.
A <u>sse</u>	rtion & Reasoning type:
¦ ♦ 	This section contains certain number of questions. Each question contains Statement – 1 (Assertion) and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option.
 	 Statement-I, Statement-II both are true and Statement-II is the correct explanation of Statement-I. Statement-I, Statement-II both are true but Statement-II is not the correct explanation of Statement-I.
	3. Statement-I is true, Statement-II is false.
 18	4. Statement-I is false, Statement-II is true Statement I: In a sigma bond end to end overlap of orbitals takes place
	Statement II : A sigma bond is weaker than Pi bond
∣ 19 . ∣	Statement I: SiF ₄ has octet configuration, but acts as an electron pair acceptor
Mate	Statement II: Central atom of Si has vacant d-orbitals is its valence shel hing type:
	This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows:
20.	List-I List-II
	A) lonic bond 1) Eight electrons in the outermost orbit

CHEMICAL BONDING

	B) Covlant bond	2) NaCl				
1	C) Valency	3) Numb	er of electr	onsin the	outern	nost orbit
1	D) Octet rule	4) H_2O				
		5) Lone	pair of elec	trons		
¦21.		List-II				
İ	A) Mettalic bond	1) Drudg	je			
i	B) Covlant bond	2) Sidwi	CK			
i	C) Dative bond	3) Lewis				
İ	D) Ionic bond	4) Kosse	el			
<u> Con</u>	prehension type:					
j 🔶 🗌	This section contains paragra	ph. Based upo	n each parag	graph mult	iple choi	ce questions have to be
	answered. Each question has	4 choices (A) , (B) ,(C) and (D) out of w	hich ON	LY ONE is correct. Choose the
	correct option.					
	I he attractive forces hold	ng various c	onstituents	together	In diffe	erent chemical species is
	a chemical bond. The bond	belween lwo	aloms is i		genera	al to complete the octet of
	t of voloppo aboll of bonding	etamo io pot o		s ale eve bo moin t	hooriog	oveloping the reasons of
	formation are octet rule vale	nce bond the	ompiete. I	ne main i nolecular	orbital	beony The main questions
whic	h have to be answered by the	nce bond theories	are	noieculai	Orbital	meory. The main questions
	(i) What is the need of atom	me to combin	a with each	other?		
	(ii) What is the need of ator	nd the atoms	in a malaci			
					المتعمل أنع	a fixed ratio
	(III) Why a molecule contai	ns definite nu			bined ir	
22.	In which compounds octet	of all the ator	ns in their	valence s	snell is i	
	1. CH ₄ 2. C	20 ₂	3. B	۳ ₃		4. OF ₂
23.	In which compounds expa	ansion of oct	et of valence	ce shell h	as occ	urred of the central atom
 	1. PCl ₃ 2. I	Cl ₅	3. S	50 ₃		4. H ₂ S
¦24.	The covalent bond exists	in the compo	bund			
1	1. NaCl 2. M	ИgO	3. B	aF ₂		4. SF ₂
<u> High</u>	<u>ner Order Thinking Questi</u>	<u>ons.</u>				
25.	Among the following the no	on polar mole	cule is			
İ	1.BCl ₃ 2.NCl	3	3.KF		4.H ₂ O	
26.	Among the following the m	olecules havii	ng polar co	valent bo	nd is	
Ì	1.H ₂ 2.F ₂		$3.N_2$		4.HF	
27.	The molecules which does	not obey oc	tet rule are			
	1.PF ₅ 2.SF ₆		3.SO ₂		4.CO ₂	
28.	Among the following, non-	olar covalent	compound	ls are sol	uble in	
	1.Water 2.Ber	izene	3.Ether		4.Acet	tone
29.	If the shared electron pair of	does not lie in	central pos	sition of ty	<i>w</i> o ator	ms X and Y, then the
bond	d formed between X and Y is					
	1.lonic bond 2. No	npolar bond	3.Dative	bond	4.pola	re bond
30.	Among the following, molec	ules which ha	ave non-dir	ectional b	onds is	5
l	1.NCl 2.Rb0	CI	3.Becl		4.BCl	
	3		2			5
		K	(EY			
ΦΦ	TEACHING TASK :					
<u> </u>	1.4 2.4 3.2	4.4	5.4	6.3	7.4	8.1 9.2 10.4
1	11. 1 12.1.4 13.1.2	2,3 14.2	15.3	16.2		17. a-2,b-5,c-4,d-1
<u> </u>	,	, –	'			, -, ,

CHEMICAL BONDING

	18. a-2,b-3,c-4,d-1	19. 3	20. 1	21.3				
<u>ΦΦ Ι</u>	LEARNER'STASK :							
¦D B	EGINNERS :							
1	1.1 2.4 3.1	4.4 5.3	6.3	7.3	8.2	9.3	10. 3	11.2
¦Π Ε	XPLORERS :							
1	15.1,2,3,4 16.2	1,2,3,4	17. 1,2	18.3	19. 1	2	0. a-2,b	-4,c-3,d-1
I	21. a-1,b-3,c-2,d-4	22.3	23.2	24.4	25.1	26.4	27.1,2	2
	28.2,3,4 29.1	I 30.2						
<u>§§</u>	Co-ordinate covalent b	ond (or) Dativ	<u>e bond</u>					
	Co-ordinate covalent bor	nd is also knowr	n as dative k	ond or s	semi po	lar bon	d.	
	Co-ordinate covalent bor	id was propose	d by Sidgew	ick. The	name	dative l	oond wa	s proposed
by La	ngmuir.							
1	The bond formed betwee	en two atoms by	/ the sharing	g of an e	lectron	pair of	one ato	m between
¦two a	toms is known as the co-	ordinate covale	nt bond.					
1	Co-ordinate covalent bor	nd is represente	ed by an arr	ow (\rightarrow)	the he	ad of w	hich is (close to the
atom	which accepts the electro	on pair.		4	101			
1	For all practical purposes	s, the co-ordinat	te covalent	bond is t	reated	as a sir	ngle cov	a lent bond.
	The formation of co-ordir	nate covalent bo	ond occurs of	only after	the fo	rmation	of cova	lent bonds.
' 	Co-ordinate covalent bor	nd is present in	10					
İ	n Molecules like: N_2O, O	D_3, H_2O_2, BF_3, N	V_2O_4, N_2O_5, C	$O, F_3B -$	NH_3, B_3	${}_{3}N_{3}H_{6}, I$	$4l_2Cl_6$	
ĺ	n lons like: H_3^+O, NH_4^+, N	$NO_{3}^{-}, BF_{4}^{-}, N_{2}H$	$^{+}_{5}, C_{6}H_{5}NH_{5}$	+ 3				
	In a hydrated cation the b	oond between v	vater molec	ule and o	cation i	s dative	bond. E	Every water
moleo	cule involves in one dative	bond only.	$\eta =$					
	Example: $\left[Al(H,O)\right]^{++}$	tion contains f	3 dative bon	de				
88				u				
<u>xx</u>	Hydrogen bond is a weak	electrostatic bo	nd present l	hetween	nositive	elvchar	aed hvd	rogen atom
l Iofar	olar covalent bond and	a highly electro	negative at	om carr	vina ne	native	charge	The highly
l electr	conegative atom may be p	present in the sa	ame molecu	ile (or) in	a diffe	rent ma	olecule	ine nginy
01001	Hydrogen bond was pror	osed by Latime	er and Rode	bush				
1	Hydrogen bond is repres	ented by a dotte	ed line ()					
	The length of the hydroge	en bond depend	ds on the su	,. bstance	under i	nvestia	ation. It	varies from
$1 1 76^{\circ}$	4 to 2.75° 4			botanoo	anden	inteelig		
	The energy of hydrogen	bond varies from	m 2 to 10 K.	cals/mol	e.			
	Hvdrogen bond is weake	r than covalent	bond and s	stronaer	than va	anderwa	aals ford	e of attrac-
l tion.								
	Most electronegative ator	ms like Fluorine	. Oxvaen. N	itroaen c	onlv car	n involve	e in hvdr	oaen bond.
Chlor	ine atom verv rarely involv	/es in hvdroaen	, bond.		,, <u>,</u>		,, ,	-9
	Hvdrogen bond present i	n the same mo	lecule is kno	own as i i	ntra m	olecula	r hvdro	aen bond.
ļ	The intra molecular hydro	oaen bond is pr	esent in sub	ostances	like		,	J
	O- Chlorophenol, O- Nitro	phenol. O- Nit	ro aniline.					
	O-Hydroxy benzaldehyd	e (Salicvlaldehv	/de)					
l	O- Hydroxy benzoic acid	(Salicvclic aci	d)					
1	Substances having intrar	nolecular hvdro	, ogen bonds.					
1	are less water soluble		0					
 	are steam volatile.							
1								
	~ . ~ ~							(0)

have low boiling points.

no molecular association occurs.

Hydrogen bond present between different molecules is known as **inter molecular hydrogen bond**.

The inter molecular hydrogen bonds are present in substances like water, ammonia, hydrofluoric acid, ortho phosphoric acid, ortho boric acid, p- nitro phenol,

p-chloro phenol, p- hydroxy benzaldehyde, p- hydroxy benzoic acid, Primary alcohols (CH_3OH, C_2H_5OH) , fatty acids $(HCOOH, CH_3COOH)$ and primary amines.

Substances having inter molecular hydrogen bonds. are water soluble. are not steam volatile. have high boiling points. molecular association occurs. **<u>TEACHING TASK</u>** I. <u>Single Answer type questions:</u> 1. A species which has co-ordinate covalency is 1. H₂O 2.BF₃ 3. NH₃ 4. NH₄⁺

- Co-ordinate bond is not present in 1. NH₄⁺
 2. HNO₃
 3. H₂O
 4. CO
 3. Dative bond is present in
- 1. SO₃ 2. BF₃ 3.NH₃ The bands approximate product $\begin{bmatrix} 4I(H_0) \end{bmatrix}^{+++}$
- **4.** The bonds present in the molecule $\lfloor Al(H_2O)_6 \rfloor$ 1. ionic 2. covalent 3. co-ordinate co-valer
- 1. ionic 2. covalent 3. co-ordinate co-valent 4. Ionic and covalent **5.** NH₄Cl contains
 - 1. covalent bond 2. coordinate covalent bond 3. ionic bond 4. all the three
- 6. An element 'Y' has gaseous state configuration is 2,8,8. The type of bond that exist between the atoms of y is

4. HF

- 1. Ionic2. Covalent3. Metalic4. Vander waal's7. The type of bond present in K_3 [Fe (CN),] is
- 1. lonic 2. covalent 3. co-ordinate 4. all the above **8.** The type of bonds present in $CuSO_4$. 5H₂ O are only
 - 1. Electrovalent and covalent 2. electrovalent and coordinate covalent
 - 3. electrovalent, covalent and coordinate colavent
- 4. covalent and coordinate colavent
- **9.** BF_3 forms an adduct with NH_3 because
 - 1. Nitrogen has high electronegativity
 - 2. boron has high electronegativity
 - 3. boron has an empty P-orbital and nitrogen has lone pair of electrons
 - 4. boron has electro positive character.
- **10.** Which if the following does not contain coordinate bond $1. BH_{2}^{-}$ $2.NH_{2}^{-}$ $3.CO_{2}^{-2}$
- 1. BH_4^- 2. NH_2^- 3. CO_3^{-2} 4. H_3O^+ 11. Which of the following has no coordinate bond1. HNO_3 2.CO3. CH_3NC 4. CH_3CN 12. Pairs of molecules which from strongest inter molecular hydrogen bond is
- 12. Fails of molecules which from strongest inter molecular hydrogen bond $1.SiH_4$ and SiF_4 2. CH_3COCH_3 and $CHCl_3$

-	
1	3.CH ₃ COOH and HCOOH 4. H_2 S and H_2 Se
¦13.	Which of the following are soluble in water
1	1. CS_2 2. C_2H_5OH 3. CCI_4 4. $CHCI_3$
¦14.	The boiling point of p -Nitro phenol is higher than that of O-Nitro phenol because
1	1. Nitro group in the p-position behaves in a different way from that O-position
1	2. no intramolecular hydrogen bonding exists in the case of O-Nitro phenol
1	3. there is inter molecular hydrogen bonding in O-Nitro phenol
1 .	4. there is inter molecular bonding in p-nitro phenol
¦15.	Water has a boilong point of 100°C while H ₂ S has a boiling point of only 42°C. This can be
1	explained by
	1. Vander waals forces 2. Covalent bonding 3. Ionic bonding 4. hydrogen bonding
¦16.	The normal boiling point of CS_2 , H_2O and CCI_4 are 41.3°C, 100°C and 77°C respectively. The
l	liquid in which the inter molecular forces are the weakest is
	1. H_2O 2. COI_4 3. both H_2O and CS_2 4. CS_2
¦1/.	Among H_2O , H_2S , H_2Se AND H_2Ie which is expected to have high boiling point? and for what
i	reason?
i	1.H2O because of H-bonding 2. H2Te because of high molecular weight
10	2. H2S, because of H-bonding 5. H2Se, because of high molecular weight
10.	1 HE molecules associate with each other due to intermolecular hydrogen bonds
	2 HE is highly reactive
	3 HF is the weakes acid
	4. F atom is smaller in size than bonding is found in
19	Acetic acid exists as dimer in benzene due to
	1 condensation reaction 2 hydrogen bonding
	3 presence of carboxyl group 4 presence of hydrogen atom at a-carbon
20.	The pairs of bases in DNA are held together by
	1. hvdrogen bonds 2. ionic bonds
1	3. phosphate groups 4. deoxy ribose groups
21.	The maximum posibble number of hydrogen bonds in which a water molecular can participate
1	1.4 2.3 3.2 4.6
¦ II.	Multi correct answer type questions:
•	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which
i	ONE or MORE is correct. Choose the correct options
วว	Which of the following gasses are not readily soluble in water
	1 NO 2 CO 3 H O 4 CO
23	Which among the following does have the hydrogen bonding
	1 phenol 2 Liquid NH 3 water 4 Liquid HCl
24	Coordinate linkage is not formed
	1. by transfer of one electron from one atom to the other
	2. by the loss of one electron of each from both the atom
ļ	3. by sharing of one electron from each atom 4. All the above
III.	Assertion & Reasoning type:
	This section contains cartain number of questions. Each question contains Statement _ 1 (Assertion) and
•	Statement – 2 (Reason) Fach question has 4 choices (A) (B) (C) and (D) out of which ONI Y ONE is correct
1	Choose the correct option.
1	
1 	1. Statement-I, Statement-II both are true and Statement-II is the correct explanation of
1	Statement-I.

CHE	CMISTRY	CHEMICAL BONDING						
	2. Statement-I, Statement-II be	oth are true but Statement-II is not the correct explanation of						
	Statement-I.							
	3. Statement-I is true, Stateme	ent-II is false.						
1	4. Statement-I is false, Statem	ent-II is true						
25.	Statement-I: Glycerol is more	e viscous than C_2H_5OH .						
1	Statement-II: Hygrogen bond	ing does not occur in ethanol						
¦26.	Statement-I: Liquids that are	hydrogen bonded have higher boiling points than non-hydrogen						
i	ponded liquids of similar molecular size and shape							
	Statement-II: Because hydro	gen bonds are muchstronger than vander waal's forces						
IV.	Matching type:							
i 📍	This section contains Matrix-Ma	tch Type questions. Each question contains statements given in two						
	columns which have to be matched statements $(\mathbf{p}, \mathbf{a}, \mathbf{r}, \mathbf{s})$ in Column	2d. Statements (A, B, C, D) in Column–1 have to be matched with II. The answers to these questions have to be appropriately hubbled as						
	illustrated in the following exam	n. The answers to these questions have to be appropriately bubbled as nle.						
	If the correct matches are A-p,A-	s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be						
1	as follows:							
27.	List-I	List-II						
	A) O-chlorophenol	1) Coodrinate colvent bond						
	B) Inter molecular H-bond	2) Intra molecular H-bond						
1	C) $B_3N_3H_6$	3) Hydrated Cation						
Ì	D) Dative bond	4) High boiling point						
ί ν .	Comprehension type:	FOU						
İ ●	This section contains paragraph.	Based upon each paragraph multiple choice questions have to be						
	answered. Each question has 4 cl	toices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose						
	the correct option.							
ļ	I he length of the hydrogen bo	nd depends on the substance under investigation. It varies from						
	$1.76^{\circ}A$ to $2.75^{\circ}A$.							
1	The energy of hydrogen bond	varies from 2 to 10 K.cals/mole.						
i	Hydrogen bond is weaker than	i covalent bond and stronger than vanderwaals force of						
i	attraction.	a Elucrina, Oxygon, Nitrogon only can involve in hydrogon bond						
	Chlorine atom very rarely invo	lves in hydrogen bond						
	Hydrogen bond present in the	same molecule is known as intra molecular hydrogen bond.						
ļ	The intra molecular hydrogen	bond is present in substances like O- Chlorophenol. O- Nitro						
ļ	phenol. O- Nitro aniline.							
28.	Intramolecular hydrogen bond	is present in						
1	1. orthohydroxy benzaldehyde	2. parahydroxy benzaldehyde						
1	3. ethyl alcohol	4. hydrogen fluoride						
29.	Hydrogen bond is							
i	1. A weak covalent bond	2. A weak electrostatic force						
i	3. A weak metallic force	4. It is not a bond						
30.	Intramolecular hydrogen bond	ing is present in						
ļ	1. meta nitrophenol 2. Sali	cylic acid 3. hydrogen chloride 4. benzophenone						
	•							
1								
ļ								
i								
÷								

CHEMICAL BONDING

18.	Dative bond is not present in the molecul	e	
	1. SO ₃ 2. BF ₃	3. NH ₃	4HF
19.	Which of the following does not contains	a coordinate coval	ent bond
20	I. $N_2 \Pi_5$ 2. $Ba C I_2$	э. пы s not the strongest	4. H ₂ O
-0.	1.HF 2. C ₂ H ₂ OH	3.NH	4.H ₂ O
<u>Asse</u>	ertion & Reasoning type:	3	2
↓ Stater Choo	This section contains certain number of questinn -2 (Reason). Each question has 4 choices (A se the correct option.	ions. Each question cc 1), (B), (C) and (D) ou	ontains Statement – 1 (Assertion) and t of which ONLY ONE is correct
 	 Statement-I, Statement-II both are true Statement-I. Statement-I, Statement-II both are true Statement-I. Statement-I. Statement-I is true, Statement-II is fals 	and Statement-II is but Statement-II is e.	s the correct explanation of s not the correct explanation of
21	4. Statement-I is false, Statement-II is tru Statement-I: water is one of the best sol	e vent	101
~ 1. 	Statement-II: Hydrogen bonding is prese	ent in water molecu	ule
22.	Statement-I: H_2O is liquid while H_2S is a	gas	J P
	Statement-II: Hydrogen bonding is prese	enting both the cas	es
	<u>cning type:</u>		,.,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
 23.	columns which have to be matched. Statements statements (p, q, r, s) in Column-II. The answe illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C as follows: List-I	(A, B, C, D) in Columers to these questions for the control of the	nn–I have to be matched with have to be appropriately bubbled as orrect bubbled 4*4 matrix should be
	A) Inter molecular hydrogen bonding	1) Ne	
Ì	B) Intra molecular hydrogen bonding	2) NaCl	
!	C) Vander wall's forces	, 3) H ₂ O	
	D) Strongest bonding	4)Salicyaldehyde	
1	,	5) Iron	
<u>Com</u>	prehension type:	,	
∳ 	This section contains paragraph. Based upon answered. Each question has 4 choices (A) , (B) correct option.	each paragraph mult) ,(C) and (D) out of w	iple choice questions have to be which ONLY ONE is correct. Choose the
1	Co-ordinate covalent bond is represented	d by an arrow $(ightarrow)$	the head of which is close to the
 	atom which accepts the electron pair. The formation of co-ordinate covalent bon Co-ordinate covalent bond is present in	nd occurs only afte	r the formation of covalent bonds.
	Molecules like: N_2O, O_3, H_2O_2, BF_3 ,		
 	In a hydrated cation the bond between wa Every water molecule involves in one dat	ater molecule and o ive bond only.	cation is dative bond.
	Example: $\left[Al(H_2O)_6\right]^{+++}$ ion contains 6	dative bonds.	
IX -	CLASS		65

24.	. The type of bonds present in ammonium chloride are									
1	1. Only io	onic and da	tive		2. Or	nly coval	ent and	lelectro	valent	
	3. Only covalent and coordinate 4. Ionic, covalent and coordinate									
25.	PH_3 and $1 \wedge a = 1$	br ₃ form a		eadily beca	ause they fo	orm	and 4			
26	1. A COOR	anate pond	ı ∠.ACO\ ontintho∽		u 3.An :		ли 4	. A nyaro	ogen bo	ли
20.		nu is prese			2 (1	h	/			
27	The hone	ls nresent i	2. 00 ₂ in N ೧ ara	2	5.00		4	. i Ol ₅		
	1. Ionic	2 2	Covalent		lonic and	covalent	. 4	. Coval	ent and	dative
High	er Order		Questions	5.		ooraioni		· ooran	oneana	
28.	Among th	ne following	, the speci	es that co	ntains dativ	e bond i	s			
	1.N ₂ H ₅ +	e e	2.BaCl		3.HCI		4.H ₂ C)		
29.	Which of	the following	ng molecul	es contain	dative bon	d ?	2			
1	$1.N_{2}O_{5}$		2.CO		3.O ₃		4.S			
30.	Among th	ne following	, molecule	s which co	ntain both p	oolar an	d non-p	olar bor	nds are	
i	1.NH ₄ Cl		2.HCN		$3.H_2O_2$		4.CH4			
31.	The com	mon featur	re among t	he species	s O _{3,} SO ₄ ^{2-,} I	H ₃ O⁺ is t	hat			
	1.they co	ntain only i	onic bonds	5	2.they co	ntain onl	y coval	ent bon	ds	
	3.they co	ntain dative	e bond		4.they co	ntain cov	/alent a	nd ionic	bonds	
32.	In which	of the follo	wing pairs	the two sp	ecies are n	ot isostr	uctural	?	05	
	$1.CO_3^{2^-}, A$		2.PCl₄⁺an	a SiCl ₄		IBrF ₃	4.A	l⊢ ₆ ° and	SF ₆	
33. 	Silicon na				3 It shore	ning the	DONAS,	1 Non	0	
	r.n gains	elections	\angle . It ioses	elections	5.it share	s electro	112	4.INON	e	
i				KE	Y					
		0 7401	NL			IJ				
<u>ΨΨ</u>		<u>0 IASK</u> :	3 1	13	5 /	64	7 /	8 2	0.3	
	1.4	2.3	3. T 12.3	4.0	5.4 14.4	0.4 154	16.4	0.3	9.3 18.1	
1	19.2	20.1	21.1	22.1.2.4	23.1.2.3	24.1.2	2.3	25.3	26.1	
1	27. a-2,b	-4,c-1,d-3		28.1	29.2	30. 2 [′]	, -		-	
<u>ΦΦ</u>	LEARNER	<u>R'STASK</u> :								
🗆 🛛 🗉	BEGINNER	S :								
	1. 1	2.4	3.4	4.3	5. 1	6.3	7.1	8.4	9.2	10. 1
	11. 3	12.4	13.2							
		RS:	00 C C .	04.0	<u> </u>		<i>.</i>			05 <i>(</i>
1	18.1,3,4	19.2,3,4	20.2,3,4	21.2	223	23. a-3	3,b-4,c-	-1,d-2	24.2	25.1
1	20.3	27.4	28.1	29.1,2	30.1	31.3	32.2	33.3		
	-		.							
88		shell elect	tron pair r	epulsion 1	tneory (VS	EPR the	eory)			
		heory was	proposed t	by Gillespie	e and Nyno	im. of mole		nd ione		
!	The orbit	al which co	proposed t	bonded na	air of electro	on mole ons is kn	own ac	the loc	alised o	rbital
1	The atom	n common	in all bonds	s is known	as the cen	tral aton	n.			
	i) The lon	e pairs of e	lectrons an	d bonded	pairs of elec	ctrons or	n centra	l atom a	are orier	ited in such
¦a wa	y, that ther	re is least r	epulsion be	etween the	em.					
	ii) The re	pulsion bet	ween elect	ron pairs o	on central a	tom follo	ows the	order.		
i	l.p – l.p	> I.P _	b.p >b.p	– b.p						
Ĺ										
1 1 1 1 7	OT A CC									((

CHEMICAL BONDING

iii) In VSEPR theory the number of electron pairs in single bond (or) double bond (or) triple bond (or) dative bond is counted as only one pair because all the electron pairs in the same bond are oriented in the same direction.

iv) The number of lone pairs of electrons (l.p) and bond pairs of electrons (b.p) on central atom determines the shape of molecule or ion.

Shape of molecule having only bond pairs

No. of bond paires	Shape	Molecule
2	Linear	BeF ₂ , BeCl ₂ , CO ₂ etc
3	Triangular	BF ₃ , BCl ₃ , SO ₃ , CO ₃ ²⁻ etc
4	Tetrahedral	CH ₄ , CCl ₄ etc
5	Trigonal bipyramidal	PF ₅ , PCl ₅ etc
6	Octahedral	SF ₆ , SiF ₆ ⁻²
7	Pentagonal bipyramidal	IF ₇

- 42

Shape of molecule having bond pairs as well as lone pair electrons.

No. of	No. of	Total	Shape of I	Molecule	
bond pairs	lone pairs	No.	basic shape	actual shape	Example
2	1	3	Triangular	Angular	SnCl ₂ , SO ₂
3	1	4	Tetrahedral	Pyramidal	NH ₃ , H ₃ O ⁺
2	2	4	Tetrahedral	Angular	H ₂ O
4	1	5	Folded square	See Saw	SF ₄
3	2	5	Trigonal bipyramidal	T-shaped	CIF ₃
2	3	5	Trigonal bipyramidal	Linear	XeF ₂
5	1	6	Octahedral	Square pyramidal	IF ₅ , BrF ₅
4	2	6	Octahedral	Square planar	XeF ₄
6	1	7	Pentagonal bipyramidal	Distored octahedral	XeF ₆

<u>§§</u> Valency Bond Theory (V.B.T)

V.B.T was proposed by Heitler and London to explain the shapes of covalent molecules, their bond angles and bond lengths.

V.B.T was extended by pauling and slater to explain the directional nature.

i) Covalent bond is formed by the overlapping of two orbitals having unpaired electrons.

ii) The two orbitals involving in overlapping must belong to two different atoms and the electrons present in them must have opposite spins.

iii) Dative bond is formed by the overlapping of an orbital having a pair of electrons and a vacant orbital.

CHEMISTRY CHEMICAL BONDIN								
 iv) The greater the extent of overlapping, the stronger is the bond formed. v) The overlapping of atomic orbitals follows the order. p-p >s-p > s-s vi) A covalent bond formed with its electron cloud concentrated along the inter nuclear axis ar 								
having a cylindrical symmetry is known as sigma bond $(\sigma).$								
Linear overlapping of atomic orbitals results in the formation of sigma bond $(\sigma).$								
A covalent bond formed by the side wise overlap of atomic orbitals of atoms already bonded through a ' σ ' bond and in which the electron cloud is present on either side of the inter nuclear ax								
is known as a pi bond (π) .								
Lateral overlapping of atomic orbitals results in the formation of pi bond (π) .								
π' bond is formed only after the formation of σ' bond. Any type of orbitals can involve in σ' bond formation. Only 'p' or 'd' - orbitals can involve in ' π ' bond information. Single bond is equal to one ' σ' bond.								
Double bond is a combination of one ' σ ' bond and one ' π ' bond. Triple bond is a combination of one ' σ ' bond and two ' π ' bonds.								
Strength of the bonds follows the order								
$\begin{array}{c c} & \sigma_{p-p} > \sigma_{s-p} > \sigma_{s-s} > \pi \\ \hline \\ & \text{Strength of the bonds follows the order} \\ & \text{triple bond > double bond > single bond} \end{array}$								
<u>§§</u> <u>Bond angles:</u>								
The internal angle between the lines joining the centre of the nucleus of one atom to the centre								
The bond angles are measured with methods like X-ray diffraction electron diffraction								
The bond angle is 180° in $BeF_2, BeCl_2, CO_2, CS_2, XeF_2, ZnCl_2, HgCl_2, HCN,$								
N_2O, C_2H_2, I_3 ion.								
The bond angle is 120° in BF_3 , BCl_3 , SO_3 , CH_2O , C_2H_4 The bond angle is $100^{\circ}00^{\circ}$ in $CH_2OCL_2SH_4$								
The bond angle is 90° ZeF., BrF., SF.								
Bond angles are 90° and 180° in ClF_3, BrF_3, ICl_3								
Bond angles are 90° and 120° in PCl_5 , $AsCl_5$, $SbCl_5$								
The bond angles in $NH_3, H_3^+O = 107^0$								
$H_2O - 104^030^1$								
$NF_3 - 102^{\circ}30^{\circ}$								
$\frac{1}{1}$ $\frac{OF_2}{CLO} = \frac{102^{\circ}}{111^{\circ}}$								
$\begin{bmatrix} & C_2 & - & \Pi \\ \end{bmatrix}$								
TEACHING TASK								
I. Single Answer type questions:								
1. Linear molecule among the following is								
1. H_2S 2. CI_2O 3. XeF_2 4. CIO_2								
$\frac{1}{2}$ in the central atom in H_7 has seven pairs of valency electrons. The shape of the molecul								
1. Trigonal bipyramid 2. hexagonal pyramid `								
IX - CLASS 65								

	3 pentagonal hinvramid A Square hinvramid
3	The shape of formaldehyde molecule as per the VSEPR theory is
	1 Linear 2 Planar triangle 3 Pyramid 4 Tetrahedron
4	Shape of hydronium ion is
1	1 Tetrahedron 2 Square planar 3 Planar triangle 4 Pyramid
5.	Which of the following molecule does not have a linear arrangement of atoms
	1 H S 2 C H 3 BeH 4 CO
6.	CO is not iso-structural with
	$1 \text{ HaCl} \rightarrow 2 \text{ SnCl} \qquad 3 \text{ CH} \qquad 4 \text{ ZnCl}$
7.	Shape of phosphorus pentachloride molecule is
	1 Octabedron 2 Square pyramid 3 Trigonal bipyramid 4 Pyramid
8	Which of the following has distorted tetrahedron shape
0.	
	The charge of Asymptotic is is
9.	The shape of Ammonium ion is
	1. Tetranedron 2. Pyramid 3. Square planar 4. Square pyramid
10.	vvnich of the following is not a pyramidal species
	1. NH_3 2. H_3 0 3. PH_3 4. NH_4
111.	A NULT
	1. NH_4^+ 2. BF_4^- 3. XeF_4^- 4. COI_4^-
11.	Multi correct answer type questions:
♦	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which
1	ONE or MORE is correct. Choose the correct options
12	AB type molecule contained one lone pair of electron. It dosen't have a structre as per VESPR
	theory
	1 pyramidal 2 tetrahedral 3 V-shaped 4 Linear
13	In a molecule, central atom has 7 bonded pairs the true about the molecule is
1.0.	1 pentagonal bipyramidal $2 \text{ sp}^3 \text{d}^3$
1	3. two unequal bond angles 4. octahedral
14.	Incorrect order of repulsive interactions among the following are
1	1. .p- .p> .p-b.p>b.p-b.p 2. b.p-b.p> .p-l.p> .p-b.p
1	3. l.p-b.p> b.p-b.p>b.p-l.p 4.b.p-l.p> l.p-b.p>l.p-l.p
15.	Which of the following molecule does have a linear arrangement of atoms
1	1. C.H. 2.H.O 3. BeCl 4. CO.
	Assertion & Reasoning type:
	This section contains certain number of questions. Each question contains Statement – 1 (Assertion) and $(2 \sqrt{D}) = (2 \sqrt$
Staten	tent – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct
Choos	e the correct option.
Ì	1. Statement-I, Statement-II are true but Statement-II doesn't explain Statement-I.
Ì	2. Statement-I, Statement-II both are true but Statement-II is not the correct explanation of
i	Statement-I.
i	3. Statement-I is true, Statement-II is false.
i	4. Statement-I is false, Statement-II is true
i 16.	Statement I: A multiple bond can be treated as one bond.
İ	Statement II : Between 2 atoms, not more than three bonds present.
i 17.	Statement I: The bond angle in PBr, is greater than PH, but the bond angle in NBr, is less than
Ì	that of NH ₃
i	Statement II: Size of bromine is less than hydrogen
18.	Statement I: In NH ₃ , the H-N-H bond angle is 107°18' instead expected value109°28'
IX - (CLASS 69

	Statement II: The I.p-b.p repulsion is greater than the b.p-b.p repulsion						
¦IV.	Matching type:						
¦ ◆ 	This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be						
	as follows:	WS:					
19.	Column-l	Column-II					
1	a) NH ₃	1) 4 bond pairs a	and no lone pairs on the	central atom			
	b) H ₂ O	2) 2 bond pairs a	and 2 lone pairs				
İ	c) O_2	3) 3 bond pairs a	and 1 lone pair				
	d) CCl ₄	4) 2 bond pairs a	and 4 lone pairs				
^{20.}	Column-l						
	a) Pyramidal	1) SO ₃					
	b) Octanedral	2) BeH ₂					
	d) Triangular	$\frac{3}{4} CC$	dia 1				
1		4) COI ₄ 5) SE					
 21	Column-l	Column-II					
	a) BF. ⁻	1) Central atom	s is SP ³ d hvbridised				
i	b) Resonance energy	2) HCI	U				
	c) $\mu > o$	3) Stability of mo	lecule				
	d) I ₂	4) Isostructure w	vith CH,				
		5) Plannar struct	ture				
V.	Comprehension type:	NE QUE					
¦ ♦	This section contains para	graph. Based upon each	paragraph multiple choice	questions have to be			
1	answered. Each question h	has 4 choices (A) , (B) , (C)) and (D) out of which ONLY	ONE is correct. Choose the			
	correct option.						
	During chemical bond for	ormation the potential	energy of the bonding a	toms decreases.			
	ording to VB1 bond streng	overlained by VSEPP	of over lapping .Snapes	and bond			
mole	cules based on the repul	sions among the valar	ace shell electron pairs	As number of lone pairs			
incre	ases repulsions increase	es and the shape is al	tered accordingly.				
22.	Molecule, which involve	s p-p overlapping, is	5,5				
1	a) H_2	b) HCI	c) Cl ₂	d)NH ₃			
23.	Which of the following is	s correct with respect	to SO, molecule				
	1. AB ₂ E ₂ type, trigonal p	laner shape	2. AB E type , Bent sha	аре			
	3. AB_3^2 type, bent shape	-	4. AB ₃ E type, square p	lanar			
24.	AB, E, type of molecule	with square planar sh	ape is				
	1. ČIF ₃	2. SF, ' '	3. Н ₂ О	4 XeF,			
 25	Which of the following s	hows maximum hond	angle	۲ 			
	1. CH,	2. NH	3. H_O	4. BeF			
26	A Orientation of cloatron r	onire in CIE molecule i	∠ is like	2			
· 20.	1 T - Shaped		2 Trigonal hi nyramida	1			
I	3. Tetrahedral		4. Octahedral				
l							

LEARNER'S TASK						
1	★ ■ ★ BEGINNERS (Level - 1) ★ ■ ★ ★					
¦I.	Single Answer type questions:					
j1.	The orbital overlapping is maximum in					
ĺ_	1. Cl_2 2. H_2 3. HCl 4. HBr					
2 .	The molecule having maximum number of sigma bonds in it is					
	1. Ethane 2. Ethene 3. Ethyne 4. Sulphur hexafluoride					
3.	The number of sigma and Pi bonds in a molecule of cyanogen are					
	1. 4,5 2. 5,4 5. 5,2 4. 5,5 Linear combination of two hybridised orbitals belonging to two atoms and each having one					
4 .	electron leads to a					
	1 Sigma bond 2 Double bond 3 Co-ordinate covalent bond 4 ni bond					
5.	s - p overlapping is present in					
	1. Br_{a} 2. H_{a} 3. O_{a} 4. HF					
6 .	Molecule which contains only sigma bonds in it is					
1	1. Pentene 2. Pentane 3. Pentadiene 4. Pentyne					
7.	Which one of the following is an incorrect statement					
İ	1. A pi bond is formed when a sigma already exists					
	2. A pi bond may be formed by the overlapping of 'p' or 'd' orbitals					
	3. A pi bond is formed by the overlapping of hybrid orbitals					
	4. A pi bond is formed by the lateral overlapping of atomic orbitals					
0.	1 n - n orbitals along their axis					
	2. s - p orbitals along the axis of p - orbital					
1	3. p - p orbitals perpendicular to their axis					
1	4. s - s orbitals					
¦9.	Which of the following is not correct					
	1. A sigma bond is weaker than pi bond					
i	2. A sigma bond is stronger than pi bond					
Ì	3. A double bond is stronger than a single bond					
	4. A double bond between two atoms is shorter than a single bond between same atoms.					
ļ	▲ III → ACHIEVERS (Level - II) ◆ III →					
Desc	criptive type questions					
10.	Arrange the following according to the increasing bond angles in them NH H O&CH					
11.	What are the approximate bond angles in the following: NO_{-3}^{-1} , SiF., PH ₂ .					
12.	Explain why is BeF, a linear while SF, an angular molecule?					
13.	Do NH, and BF, have the same shape?Give reason					
14.	Why is the shape of H2O molecule angular (bent) or V-shaped?					
i 15.	Write the diffrences between sigma and pi bond.					
	LEVEL-II					
<u>Mult</u>	i correct answer type questions:					
🔶	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which					
	ONE or MORE is correct. Choose the correct options					
16.	A molecule with four bonded electron pairs on the central atom & no lone pair is likely to have					
1	1. sp³2. tetrahedral3. 109º28¹4. triangular planar					
17.	Three lone pairs of electrons are absent in					
IX - (CLASS 71					

	1. H ₂ O 2. HF 3.	NH ₃	4.CH ₄						
' 18. 	Which of the following does have lonepair of	electrons							
	1. HCI 2. HOH 3.	NH ₃	4. NH_4^+						
' 19. 	Which of the following will have same shape	пц							
	1. POI_3 2. NH_3 3.	Ph ₃	4. BF ₃						
	ertion & Reasoning type.								
♥ Stater Choo	• This section contains certain number of questions. Each question contains Statement -1 (Assertion) and Statement -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option.								
i I	1.Statement-I, Statement-II both are true and	Statement-II is	the correct explanation of						
 	2. Statement-I, Statement-II both are true but Statement-I.	Statement-II is	not the correct explanation of						
ļ	3. Statement-I is true, Statement-II is false.								
	4. Statement-I is faise, Statement-I is true	0.40 \Box and not 40							
' 20 .	Statement I: $H-O-H$ bond angle in H_2O is T	04° 5 and not 1	09°28 .						
i	Statement II : L.P – L. P and L.P – B.P. repu	lisions are respo	onsible for the distortion in bond						
24	Statement I in NH. N is $an3$ hybridized but	anala is found t	a = 1070						
 2 1.	Statement II. In $N\Pi_3$, N is sp ^o hybridised, but	angle is found i	n between the lone neir en						
	Statement II: The decrease in bond angle is		n between the lone pair on						
	Statement I: Dand angle of U.S. is greater th								
22.	Statement II. Electropogethilty of control of	$\operatorname{Ian}_{2} \mathbf{O}$.	and angle decreases						
	Statement II. Electronegativity of central at	with SE but its							
23 .	Statement I. CIF ₃ molecule is isoelectronic	with SF_4 but its	geometry is 1-snaped						
	Statement I: 5 electron pairs present in Cir		or 2 ionepairs & 3 bondpairs						
	This section contains Matrin Match Time question	- Each avortion of	autaina atatamanta ainan in tua						
♥ colun	This section contains Matrix-Match Type questions which have to be matched Statements $(A \ B \ C \ D)$	s. Each question co in Column–I have	to be matched with statements (n a r						
s) in	Column–II. The answers to these questions have to be	appropriately bub	bled as illustrated in the following						
exam	ple.								
Ι, ,	If the correct matches are A - p , A - s , B - r , B - r , C - p , C - q c	and D-s,then the co	prrect bubbled 4*4 matrix						
shoul	d be as follows:	Column II							
24 .		<u>Column-n</u> 1) 120°							
1	b) NH	2) 104 5°							
1	c) H O	3) 107°							
i	d) BE	4) 109°28'							
25.	Column-l	Column-II							
	a) NH. ⁺	1) Tetrahedra	1						
l	b) H_0	2) Angular							
	c) SeF	3) Linear							
1	d) BeCl	4) Octahedra	1						
26.	<u>Column-I</u>	<u>.</u> <u>Column-II</u>							
Ì	a) $P\overline{Cl_5}$	1) Linear							
Ì	b) NH ₃	2) Triangular							
<u> </u>									

c) BCl₂ 3) Pyramidal d) CO₂ 4) Trigonal bipyramidal Comprehension type: This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option. Valence shell electron pair repulsion theory (VSEPR) is used to predict the shapes of simple molecules. The shape of a molecule will depend on the repulsions between the valence shell electron pairs around the central atom of a molecule. The molecule will adjust in such a way that the repulsions between these electron pairs is minimum. The repulsion order between the electron pairs will be bp - bp < bp - lp < lp - lp. The magnitude of repulsions between the electron pairs also depends on the difference in electronegativity of the central atom and other atom. 27. The expected bond angle in H_2O and F_2O are respectively. $2.104^{\circ}30^{\circ} \& 120^{\circ}$ 1. $104^{\circ}30^{\circ} \& 103^{\circ}$ **3.** 120° & $104^{\circ}30^{1}$ **4.** $104^{\circ}30^{1}$ & 107° Among the following the correct representation of ClF_3 . 28. 2. 4.All the above 1. 29. Identify the set with zero dipole moment 1. $AlCl_3, PCl_3$ 2. Orthodichloro benzene, para dichloro benzene **3**. BF_{4}^{-}, NH_{4}^{+} 4. CS_2, CSO Higher Order Thinking Questions. Among the following, the molecules formed by s-p overlaping is 30. 1.HF 2.N₂ 3.F₂ 4.Cl₂ 31. The molecule formed by p-p overlaping are 1.Br 2.H 4.l 3.N₂ 32. Which of the following type of bonds are present in HCN molecules 1.Sigma and pi 3. σ sp-p 2. σ sp-s 4. *π* p-p 33. The angle between two covlent bonds is minimum in 1.H₂O 2.CO₂ 3.NH₂ 4.CH_₄ 34. The shape of AB₃E is 1.pyramidal 2.Tetrahedral 3.Angular 4.Liner The pair having similar geometry is 35. 1.BF₃, NH₃ 2.H₂O,C₂H₂ 3.CO₂,SO₂ 4.NH₃,PH₃ **KEY** $\Phi\Phi$ <u>TEACHING TASK</u> : 1.3 2.3 4.4 5.1 6.2 7.3 8.3 9.1 10.4 3.2 12.2.3.4 14.2.3.4 15.1,3,4 16.2 17.3 18.2 11.3 13.1,2,3, 19. a-3,b-2,c-4,d-1 20. a-3,b-5,c-2,d-1 21. a-4,b-3,c-2,d-1

IX - CLASS

22.3

23.2

24.4

25.4

26.1

CHEMISTRY

CHEMICAL BONDING

	LEARNER'STASK : BEGINNERS :								
 [] []	1. 1 2. 1 EXPLORERS :	3.2	4. 1	5.4	6.2	7.3	8.3	9.1	
 	16.1,2,3, 17.1,3,4 25. a-1,b-2,c-4,d-3 32.1 33.1	18.1,2,3 26. a-4 34.1	3 19.1,2, ,b-3,c-2,d- 35.4	3 20.1 2 27.1	21.1 28. 3	22.4 29. 4	23.1 30.1	24.a-4,b-3,c-2,d-1 31.1,3,4 	
 <u>§§</u> 	<u>S</u> <u>Hybridisation:</u> The concept of hybridisation was introduced by pauling. The inter mixing of atomic orbitals of almost same energy and their redistribution into								
an ed i) ii) iii) iii) iii) iii) vi) vii) vii) 	 The inter mixing of atomic orbitals of almost same energy and their redistribution into an equal number of identical orbitals is known as hybridisation. i) The orbitals of one and the same atom only involve in hybridisation. ii) The orbitals involving in the hybridisation have different shapes but almost same energy. iii) The orbitals formed in hybridisation process are called hybrid orbitals and they have same shape and same energy. iv) The angle between any two hybrid orbitals in an atom is generally same. v) Electron filling in hybrid orbitals obeys Hunds rule & Pauli's rule vi) The hybrid orbitals involve only in 'σ' bond formation. vii) The concept of hybridisation was introduced to explain the shapes of molecules. 								
 <u>&&</u> 	<u>SP - hybridisation:</u> This is also known as One s-orbital combin	s digonal h nes with or	nybridisatio ne P- orbita	n (or) linear al and gives	hybridi two ide	sation. ntical o	rbitals	 	
 	hybrid orbitals. The angle between the two SP-hybrid orbitals in an atom is 180° sp-hybrid orbital will have 1/2 s-character (or) 50% S- character. 1/2 n-character (or) 50% P- character.								
 <u>88</u> 	The hybridisation of <u>SP² - hybridisation:</u> This is also known as One S- orbital combi	central atc s trigonal l nes with t	om in a line nybridisatic wo-P-orbita	ar molecule on. als and give	s three	erally sp identica). al orbit	als called	
$ SP^2$	- hybrid orbitals.			whitele in en	atam i				
 	The angle between a SP^2 hybrid orbital wi 1/3 rd S- character (2/3 rd P- character (The hybridisation of	any two <i>SI</i> Il have or) 33.3% or) 66.7% central ate	P ² -hybrid c S-characte P-characte om in a mo	orbitals in ar er. er. lecule havir	n atom is	s 120º. ar trianc	le sha	pe is <i>SP</i> ² .	
§§	SP ³ - hybridisation: This is also known as One s-orbital combir hybrid orbitals. The angle between a	s tetrahed nes with th	ral hybridis ree P-orbit ^{p3} -hybrid o	ation (or) te als and give rbitals in an	tragona es four i	ll hybrid dentica	lisatior l orbita	n. Ils called 	

i	<i>SP</i> ³ - nybrid orbital will have
i	1/4 th S- character (or) 25% S- character.
i	3/4 th P- character (or) 75% P- character.
	The hybridisation of central atom in a molecule having tetrahedral shape is SP^3 .
1 <u>88</u>	<u>SP</u> ³ d <u>- hybridisation:</u>
Ι	One S-orbital, three P-orbitals and one d-orbital combines and gives five identical
orbit	als called $SP^{3}d$ -hybrid orbitals.
	I he angle between two $SP^{3}d$ hybrid orbitals in an atom is 90° or 120° .
	hybrid orbital will have
ļ	1/5 th S-character (or) 20% S-character.
	3/5 th P-character (or) 60% P-character.
	1/5 th d-character (or) 20% S-character.
	I he hybridisation of central atom in a molecule having trigonal bipyramid shape is $SP^{3}d$.
1 <u>88</u>	<u>SP</u> ³ d ² - hybridisation:
 	One S-orbital, three P-orbitals and two d- orbitals combines and gives six identical
orbit	als called SP^3d^2 hybrid orbitals.
i	I he angle between any two SP^3d^2 hybrid orbitals in an atom is 90° .
i	$SP^{3}d^{2}$ hybrid orbital will have
	1/6th s-character (or) 16.7% S- character.
<u> ¶¶</u>	Assigning the type of hybridisation:
	1) Iotal molecular valency method
	Step 1: lotoal number of valence electron in the molecule is calculated adding the
	Individual valency of all constituent atoms.
	Step 2: If that electrons are greater than eight then divided by eight and quotient is
ļ	equal to hubridised orbitals. E.g: PCI_5
ļ	Intal valence electrons = $5 + (5 \times 7) = 40$
	$40/8 = 5 = n0.$ of hybridised orbitals $->sp^3d$
 	If remainder comes, that remainder should be divided by 2, still remainder is equal to
Inum	ber of hybridised orbitals. E.g. $XeOF_2$
1	Iotal valence electrons = $8 + 6 + (2 \times 7) = 28$
i	28/8 Quotient = 3
i	Remainder is divided by 2
i	Remainder is divided by 2
Ì	4/2 quotient = 2 + 2 = 5 = no. of hybridized orbitals. Sen ³ d
	Reflece, suff of Quotient $-3 + 2 - 3 - 10$. Of hybridised of bidds $-25p^{\circ}d$
	Step 5. If total valence electrons is either eight of less, dividing by 2, what quotient
labbe	Total valence electrons = $2 \pm 6 = 9$
88	$\frac{1}{10} \frac$
88	The earbon stom in earbon compounds is tetravalent (i.e., earbon stome forme four
	slent honds)
	The $g_{\rm D}^3$ each on a term involves in four single hands $-C^-$
	The gp^2 carbon atom involves in a double bond and two single bonds C
1	The SP carbon atom involves in two double bonds (or) one triple bond and one single
lhong	The of carbon atom involves in two double bolids (or) one triple bolid and one single $d = C$
	$\mathbf{x} = \mathbf{U} = \mathbf{U} \mathbf{v} \equiv \mathbf{U} - \mathbf{U}$
i	
i	

	<u>TEACHING TASK</u>
' .	Single Answer type questions:
1 .	The acetylene molecule has total of
ļ	1. Two sigma bonds and two pi bonds 2. Three sigma bonds and three pi bonds
 .	3. Three sigma bonds and two pi bonds 4. four sigma bonds and one pi bond
2 .	Which among the following has a pyramidal shape
	1. H_2O 2. SF_6 3. CH_4 4. NH_3
'3. 	I ne total number of Sp2 hybridised orbitals in ethylene molecule is
1	1. Z Z. 4 J. 0 4. 0 An example of a non linear molecule
.	1 HS $2 CO$ $3 CH$ $4 N$
5.	The species in which the central atom uses sp^2 hybrid orbital in its bonding is
	1. PH, 2.NH, 3. CH, 4.SbH,
6.	The compound in which C used its sp ³ hybrid orbitals for bond formation is
	1. HCOOH 2. $(NH_2)_2CO$ 3. $(CH_3)_3COH$ 4. CH_3CHO
 7.	H-C-H bond angle in methane is
	1. 120° 2. 180° 3. $107^{\circ}18$ 4. $109^{\circ}28$
'ð. 	I ne type of hybridisation of orbitals employed in the formation of SF ₆ molecule is $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$
ام	Which of the following has gratest angle between the two covalent bonds
3.	1 CO 2 CH 3 NH 4 H O
10.	The type of hybride orbitals used by chlorine atom in CIO_{-}
	1. sp $2.sp^2$ $3.sp^3$ $4. dsp^2$
11.	Which of the following molecules has a tetrahedral shape
	1. $HgCl_2$ 2CO ₂ 3. NH_4^+ 4. $Ni(CN)_4^{-2}$
12.	Hybridizations of carbon atoms participated in the C-C single bond of the molecule
1	$CH \equiv C-CH = CH_2$ is
1	1. sp ³ , sp ³ 2. sp ² , sp ² 3. sp-sp ² 4.sp ² -sp ³
13.	1 BeCL lipear 2 NH triangular 3 CO angular 4 BE pyramidal
İ n	Multi correct answer type questions:
_ ا	This section contains multiple choice questions. Each question has 4 choices (A) (B) (C) (D) out of which
ONE	or MORE is correct. Choose the correct options
 11	Which of the following is true for sn^3 hybridication?
14.	1. One 's' orbital merges with three 'p' orbitals to form one sp^3 hybridised orbital
i	2. It is also called tetrahedral hybridisation.
I	3) After hybridisation, sp ³ hybridised orbitals orient tetrahedrally in the space.
	4) CH ₄ , H ₂ O, NH ₂ and diamond are the examples of the molecule containing sp ³
15.	Which among the following molecule is planar
	1. C_6H_6 2. C_2H_4 3. SO_3 4. C_2H_6
16.	Which is not correct statement about N & B atoms in a 1:1 complex of BF ₃ & NH ₃
1	1. N : tetrahedral,sp ³ ;B :tetrahedral,sp ³ 2. N : pyramidal,sp ³ ; B : pyramidal,sp ³
Ì	3. N : pyramidal,sp ³ ;B :planar,sp ² 4. N: pyramidal,sp ³ ; B :tetrahedral,sp ³
17.	Which is correct statement about Xe in XeF ₄
Ì	1. Involves sp ³ d ² hybridisation2. Its geometry is octahedral

r

¦ V .	Comprehension type:							
1	The characteristic geometrical shapes of poly atomic molecule can be explained by the concept							
¦ of hy	of hybridization of atomic orbitals. Diagonal hybridization involves one S and one P Orbitals. Name of							
hybri	ybrid orbital is assigned based on the pure. Orbitals involved is hybridization . The shape of the							
mole	ecule is determined by the so called sigma frame w	ork and the Pi bond only modify the dime	ensions					
of the	e molecules.							
25.	Trigonal planar hybridization is observed in							
1	1. C,H, 2. CO,	3. C ₂ H ₄ 4. H ₂ O						
126	The band angle of the molecules which shows t	otrabodral hybridization						
20. 	The bond angle of the molecules which shows							
1	1. 120° 2. 180°	3. $109^{\circ}28'$ 4. 90°						
27.	The Orientation of valance shell electron pairs a	and shape of the NH, molecule is						
	1. Trigonal Planar, Linear	2. Pvramidal. Linear						
1	3 Tetrahedral Pyramidal	4 Linear Tetrahedral						
1								
	LEARNER'S	STASK						
İ	LEANNEN	S TASK						
i	BEGINNERS							
İ	Single Answer type questions:							
1	The sucharacter in the hybrid orbital of the c	entral atom, present in a moleculeba	ving					
I.	the shape of an established ran is	entral atom, present in a moleculena	ving					
İ		0/ 16 66%						
2	The hybridisation of Nitrogon in Nitrate ion is	4. 10.00 %						
∠ .	1 en 2 en^2 3 en^2	3 $1 \text{ en}^{3}\text{d}$						
3	Hybridisation of jodine in jodine benta fluoride	a molecule is						
.	$1 \text{ sn}^3 \text{d}^3$ $2 \text{ sn}^3 \text{d}$ 3 sn^3	$^{3}d^{2}$ $4 dsn^{2}$						
ا	The molecule which contains sn^3d^2 and n orb	itals overlapping in it is						
.	1 PCI 2 BrE 3 CI							
5	In which of the following molecule, the centra	l atom is not sp ³ d hybridised						
.	1. PCI 2. CIF. 3.Se	F 4.XeF						
6.	The type of hybrid orbitals used by the oxyge	en atom in CLO molecule is						
	1. sp^3 2. sp^2 3. sp	4. None						
7.	Bond angle between two hybrid orbitals is 10	7º. s - orbital character of hybrid orbit	al is I					
	nearly	,						
	1. 50 % 2.33.33% 3. 16	.6 % 4. 25 %						
8.	Molecule obtained by sp ³ d ² hybridisation has	bond angle of						
	1. 90° 2. 109°28 ¹ 3. 12	.0° 4. 180°						
9.	Hybridisation of oxygen in hydronium ion is							
	1. sp $2.sp^2$ $3.sp^3$	4. None						
10.	The hybrid orbital with maximum s - characte	er is						
	1. sp^2 2. sp 3. sp	³ 4. sp ³ d						
11.	The hybrid orbital having equal amounts of s	and p - characters is						
ļ	1. sp $2. sp^3$ $3. sp$	2 4. sp ³ d						
12.	Hybrid orbital with least s - character is	·· - F -						
	1. $sp^{3}d$ 2. sp^{2} 3. $sp^{3}d$	³ 4. sp						
13.	Hybrid orbital having maximum p - character	is						
	1. sp ³ d 2. sp ³ 3. sp	4. sp ³ d ²						
14.	The hybridisation of Bromine in BrF_ molecule	e is						
Ļ	,							

	1. sp ³ d 2. sp ³ d ³	3. sp ³	4. sp ³ d ²
15.	The hybridisation of carbon in carbon d	lioxide molecule is	•
	1. sp ² 2. sp	3. sp ³	4. None
16.	The hybridisation of central atom is not	t sp³d in	
	1. PCL 2.BrF.	3. XeF	4. BrF_
17	Molecule having sp^2 hybrid atom in it is	3	
	1 BeCl 2 CO	, 3 HCHO	4 NH
18	A sp ³ hybrid orbital contains	0.110110	- . III ₃
10.	$1 \frac{1}{4}$ the character	$2 \frac{1}{2}$ the char	racter
i	1. $1/4$ (11 S - Character	2. $1/2 \ln 5 - 6 \ln 6$	
ألمم	3. 2/3 ln S - character	4. 3/4 th S - chara	acter
19.	Beryilium atom in beryilium fluoride is		
	1. sp ³ hybridised 2. sp ² hybridised	3. sp hybridised	4. Unhybridised
20 .	Hybridisation in SO ₂ molecule is		
1	1. sp 2. sp ²	3. sp³	4. sp³d
1	0		
1	◆ ⊪∎ → <u>ACHIEVE</u>	<u>:RS (Level - II)</u>	♦ 1 -1 >
Des	criptive type questions		
21.	What is the percentage of "s" character i	n sp,sp ² ,sp ³ hybrid	orbitals?
22.	What type of hybridisation is shown by th	e central atomin ea	ch of the following?
	a) NO^{-} b) HO^{-} c) PCI		in or the renorming i
22	Explain hybridication in SE molecule?	nu	
23.	Write the state of bubridisation of Dird		8E 3
24.	while the state of hybridisation of P in 1	PF_5 , & that of S in \cdot	SF ₄ ?
ļ			
	<pre> EXPLORE</pre>	<u> :RS (Level - III)</u>	< ₽ - ₽ ₽
Mult	i correct answer type questions:	7155	
	This section contains multiple choice questions	Each question has A c	choices (A) (B) (C) (D) out of which
	an MORE is compact. Change the connect antions.	Euch question has + e	noices (II), (D), (C),(D),out of which
	or MORE is correct. Choose the correct options		
25.	sp ³ d hybridization having		
	1.1/5 s-character 2.1/5 d-character	3.d-character	r 4. s-character
26.	Which of the following molecules is/are n	ot linear?	
	1. CO ₂ 2. NO ₂	3. SO ₂	4. CIO ₂
27.	The type of hybridisation absent with two	unequal bond angle	es
İ	1. sp ³ 2. sp ²	3. sp ³ d ²	4. sp³d
28.	Which molecule is not T- shaped		
	1. BeF_2 2. BCI_3	$3. \mathrm{NH}_{3}$	4. CIF_3
29.			4 60 3
20	1. $D\Gamma_4^{-1}$ 2. $N\Pi_4^{-1}$	3.50_4^{-2}	4. UO_3^{-2}
130.	1 propene 2 acetylene		A ter butyl alcohol
 31	Pick out the isoelectronic structures from	the following	4. ter. butyr alconol
1	1 CH $+$ 2 H O $+$	3 NH	4 CH -
32.	Which of the following statements is not	true for ammonium	ion
	1. all bonds are ionic 2. all l	bonds are covalent	
l	3. H- atoms are situated at the corners of	f a square	
l	4. H- atoms are situated at the corners of	f a tetrahedron	
Asse	ertion & Reasoning type:		
		diana E 1 di	
	Inis section contains certain number of ques	tions. Each question c	contains Statement – $I(Assertion)$ and
Stater	nent – 2 (Reason). Each question has 4 choices (A)), (B), (C) and (D) out	of which ONLY ONE is correct Choose
the co	prrect option.		

1. Statement-I, Statement-II both are true and Statement-II is the correct explanation of Statement-I.

2. Statement-I, Statement-II both are true but Statement-II is not the correct explanation of Statement-I.

3. Statement-l is true, Statement-ll is false.

- 4. Statement-I is false, Statement-II is true.
- **33. Statement-I** : Shape of NH₃ molecule is terahedral.
- **Statement-II :** In NH₃ nitrogen is sp³ hybridised.
- **34. Statement-I** : Geometry of SF₄ molecule can be termed as distorted terahedron, or see saw

Statement-II : Four fluorine atoms surround or form bond with sulphur molecule

Statement-I : CIF₃ molecule is isoelectronic with SF₄ but its geometry is T-shaped.
 Statement-II : Five electron pairs present in CIF₃ in total consist of two lone pairs and three bond pairs

Matching type:

• This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example.

*If the correct matches are A-p,A-s,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows:*

Isnoui	a de as jouows.	
36.	Column-I	Column-II
	a) Trigonal bi pyramidal	1) 105°
	b) Linear	2) 180°
ļ	c) V shape	3) 72°
ļ	d) Octahedral	4) 90°
1		5) 120°
37.	Column-I	Column-II
1	a) BeCl ₂	1) sp²
1	b) BCl ₃	2) sp³d
1	c) SF	3) sp³d²
1	d) PCI ₅	4) sp ³
i		5) SP
38.	Column-I	Column-II
i	a) Pyramidal	1) SO ₃
Ì	b) Octahedral	2) BeH ₂
	c) Linear	3) SF ₆
	d) Triangular	4) CIÕ ₃ -
		5) CCI

Comprehension type:

◆ This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B),(C) and (D) out of which ONLY ONE is correct. Choose the correct option.

Total number of electron pairs = $\frac{1}{2}$ (number of valence electrons ± electrons (for ionic charge) 2.Number of bond electron pairs = number of atoms – 1 3.Number of electron pairs around central atom = total number of electron pairs – 3 [number atoms (except H)]

	4.Number lone pair = (number of central electron pairs – number bond pairs)								
39.	Pair of species with same shape and sam	e state of hybridis	ation of the ce	ntral atom is:					
1	1. PCl_5 , ICl_4^- 2. NH_3 , H_2O	3. NH_3 , ClO_3	$\frac{1}{3}$ 4. ICl ⁻ ₄ , ClO	D_3^-					
40.	Square planar shape is predicted for:								
	1. ICl_{4}^{-}, ClO_{2}^{-} 2. PCl_{4}^{+}, PCl_{6}^{-}	3. ICl_{4}^{-} , PCl_{4}^{+}	4. ICl_{4}^{-} , Xe	EF]					
41.	Based on above method, structure of the	some of the molec	ules have bee	n matched. Which					
1	is the incorrect matching?								
1	1. PCI, - trigonal bipyramidal	2. C10, - sau	uare planar						
i	···· ••5 ••9•••••••••••••••			İ					
ļ	3. ICl_4^- - square planar	4. PCl_4^+ - tetr	ahedral	l					
High	er Order Thinking Questions.								
42.	Hybridisation of chromium in the complex	[Cr(NH ₃) ₄ Cl ₂] Br is							
42	1.sp ³ 2. sp ² The hybrid state of P in PE - in	3.dsp ³	4.d ² sp ³	' 					
43.	1 sp 2 sp^2	3 sp ³	4 sp ³ d						
44.	Hybridisation state of iodine in ICl ⁺ is	о. ор . (1. op u	l					
	1. dsp ² 2. sp	3. sp²	4. sp ³						
45 .	Which one of the following is a correct se	et?							
1	1.H ₂ O,sp ³ ,angular	$2.H_2O,SP^2$, liner							
İ.	$3.NH_4+,dsp^2,squre planar$	4.CH ₄ ,dsp ^{2,} tetrah	edral	ĺ					
46 .	Which one of the following has a pyramid	lal shape		I					
	$1.Xer_4$ $2.XeO_3$	3.XeF ₂	4.XeF ₆	n of cn ³ d and					
4/.	n-orbitals are absent	gina bonus iorne	u by the overla	poispru anu j					
	1.PCl _s 2.ClF ₂	3.SbCl₅	4.HCIO						
ļ			-						
	◆∦∦ ↓ ★ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	ERS (Level - IV	<u>/)</u>						
¦1.	The molecule that deviated from octet rule	eis		(EAMCET 95M)					
1	1. NaCl 2. BeCl ₂	3. MgO	4. NH ₃						
2 .	The number of sigma bonds in ethane for	med by the overla	p of sp³ and s o	orbitals is					
ļ	1 5 2 6	2 7	1 1	(EAMCEI 99M)					
	1.5 2.0 The hydrogen bond is strongest in	3.7	4.4	(IIT 2004)					
•.	1. O-HO 2. S-HS	3.F-HF	4. F-HO	(11 2004)					
4.	The structure of ICl_{2}			(Pb set 98)					
İ	1. trigonal 2. trigonal by pyramidal	3. linear	4. square plar	nnar /					
5.	The compound which has maximum numl	per of lone pairs o	n central atom	(IIT2005)					
	1.[CIO ₃] ⁻ 2. XeF ₄	3. SF ₄	4.I ₃ -						
6 .	Bond angle of 109° 28' is found in			(AIEEE 2002)					
 -	1. NH_3 2. H_2O	$3.CH_3^+$	4. NH ₄ ⁺						
' <i>1</i> .	and BCL is	itral atom in the fol	llowing species	$SNH_3[P(C _4]^2, PC _5]$					
I	$\frac{1}{1} dsn^2 dsn^3 sn^2 sn^3$	2 sp³ den² den³ er	\mathbf{v}^2						
ļ	3. $dsp^{3}.sp^{2}.sp^{3}.dsp^{2}$	4. sp.dsp ³ .sp ² .sn ³	<i>,</i>	l					
8.	Using VSEPR theory, draw the shapes of	PCI ₅ and BrF ₅		(IIT 2003)					
9.	Based on VSEPR theory the number of 90)∘ F-́Br-F angĺes ir	n BrF₅ is	(IIT 2010)					

CHEMICAL BONDING

10.	What is the angle between two sp, sp2 & sp3 hydridorbitals							(IIT	2008)	
¦∎. ∣₁	Auditional practice Sheet. The charge on a cation M is t^2 and an A is t^3 . The compound formed has the formula								ormula	
ļ " .	1.MA		2.M.A.	is - anu ai	3.M.A.	The com	4.M.A	onneu i	las lie it	Jiniula
2.	Two	elements 'X' a	nd 'Y' hav	e the follow	ving config	uration	2			
1	X=1:	s² 2s² 2p ⁶ 3s² 3	p ⁶ 4s² & ነ	′=1s ² 2s ² 2	p ⁶ 3s ² 3p ⁵	The comp	ound fo	rmed b	y the con	nbination
i	of 'X	' and Y will be								
	1.XY	2	$2.X_5Y_2$		$3.X_{2}Y_{5}$		4.XY ₅			
3.	An e	lement X is a s	strogly ele	ctropositiv	e and an el	ement Y s	trongly	electro	negative	and both
	are t 1 X+		2 X-V+	u ionneu w			1 X \	v		
4 .	The	type of hybridi	sation pre	esent on S	in SO and	SO mole	$-7.7 \rightarrow$	espectiv	velv	
i	1.sp	,sp ²	2.sp ² ,s	D ²	3.sp.sp	3 3	4.sp ² ,	sp ³	oly	
5.	The	molecule with	maximum	number o	of lone pairs	s on centra	al atom	is		
ļ	1.Xe	O ₃	$2.SF_4$		3.PCl ₃		4.ICI			
6.	The	shape of PO ₄ ³	ion is				4			
¦	1.sq	are planar	2. tetra	hedral	3.Trigor	nal bipyran	nidal	4. Hex	agonal	
¦7.	State	ement I: In SF ₄	molecule	S does no	t obey octe	et rule.	μv.			
۱ <u>م</u> ا	State	ement I: In CH	molecule	e P Obey O carbon at	tom follows	octet rule				
0.	State	ement II : Four	bond pair	s are prese	ent in meth	ane molec	ule.			
 9.		Column-I		F	Column-I	\mathcal{O}				
	a)	Benzene		1) (Good condu	ictor				
	а) b)	water		2) N		lvont				
	D)	water	/NK		ion polar so	Divent				
1	c)	Solid NaCl		3) p	olar solven	t				
ļ	d)	Aqueous Na	CI	4) B	ad conduc	tor				
10.		Column-I			Column-I	I				
1	a)	Argon		1) 2	2s2 2p6					
i	b)	Helium		2) 4	1s2 4p6					
ļ	c)	Neon		3) 2	ls2					
	d)	Krypton		4) 3	s2 3p6					
Ì	,	51		, D						
Ì				ŀ	KEY					
י שע		HING TASK								
	1.3	2.4	3.3	4. 1	5.3	6.3	7.4	8.4	9. 1	10.3
ļ	11.3	12.3	13. 1	14.1,2,3	3,4 15.	1,2,3,	16.1,2	2,4	17. 1,3	18.1
1	19.4	20.3	21.2	22.a-4,b-3	,c-2,d-1	23.a-3,b-7	1,c-2,d-	5 24	.a-1,b-2,	c-3,5,d-4
י שע	25.3	3 26.3	27.3							
Ì	<u>ELEAR</u> BEGIN	NERS ·	•							
!	1 4	2.2	31	4 2	53	61	74	81	93	
	10.2	2 11.1	12.1	13.3	14.4	15.2	16.4	17.3	18.1	
1	19.3	3 20.2								
IX -	CLAS	S								82

82 |

¦ 🗆	EXPLORER	S :							
 	25.1,2	26.2,3,4		27.1, 2,3	28. 1,2	2,3	29. 1,2	.,3	30. 1,2,3
i	31.2,3,4	$2 \circ 1 d 4$	32. 1, 2,3	27 o 5 h	33.4	34. 1	29 ~ /	35.1	2 d 1
	30. a-5,b- 39. 3	40. 4	41.2	37. a-5,0- 42.4	1,0-3,0-∠ 43.3	44.4	зо. а-4 45.1	46.2	∠,u-1 47.1
	RESEARCH	ERS :							
¦ I.	1. 2	2.2	3.3	4.3	5.4	6.4	7.2		
∣ II.	1.2	2.1	3.2	4.2	5.4	6.2	7.2	8.1	
	9.a-2,b-3,	-4,d-1	10.a-4,b-3	3,-1,d-2					
Ì									
Ì						. 1	af		
							1 0''		
 						125			
ļ									
					04.0)			
 					27	' 1			
İ			ALE		11-1-				
			NE	- <u>1</u> 04					
			P	F					
İ									
i									
ļ									
İ									
l									
İ									
	- CLASS								83
									00