_____ **2. OXIDATION AND REDUCTION** -----_____ SOLUTIONS _____ **TEACHING TASK** _____ JEE MAIN LEVEL QUESTIONS 1. The oxidation number of sulfur is not a whole number in: A) Sodium tetrathionate $(Na_2S_4O_6)$ B) Sulfur dioxide (SO $_{2}$) C) Sulfur hexafluoride (SF_6) D) Sulfite ion (SO 3^{2-}) Answer:A Solution: In $Na_2S_4O_6$, sulfur has an average oxidation state of +2.5 (fractional). Structure: Two central S atoms have 0 oxidation state (S-S bond), while the other two S atoms have +5 (bonded to O). $Na_{2}S_{4}O_{6}=2(1)+4S+6(-2)=0$ 4S=12-2 S=10/4=2.5 2. The oxidation state of nitrogen is maximum in: A) Nitrous oxide (N_2O) B) Nitric acid (HNO₂) A) Nitrous oxide (N_2O) B) Nitric acid (HNOC) Ammonium ion (NH_4^+) D) Nitric oxide (NO) Answer:B Solution:A)N₂O=2N-2=0 $2N=2 \rightarrow N=2/2=1$ B)HNO₃=1+N+3(-2)=0 \rightarrow N=+5 $C)NH_4^+ = N+4(1)=1$ N=1-4=-3 D)NO=N-2=0 \rightarrow N=2 3. The oxidation state of oxygen is minimum in: A) Potassium superoxide (KO_2) B) Ozone (O_3) C) Water (H_2O) D) Oxygen difluoride (OF_2) Answer:A Solution:A)KO₂=2(O)+1=0 \rightarrow 2(O)=-1 \rightarrow O=-1/2. In superoxides, each oxygen atom has an oxidation state of -1/2. This is the lowest oxidation state commonly seen for oxygen. $B)O_3=0$ C)H₂O=2(1)+O=0 \rightarrow O=-2. In water, each oxygen atom has an oxidation state of -2. While this is not the absolute lowest possible oxidation state for oxygen, it is the typical oxidation state in most oxygen compounds. $DOF_{2}=O+2(-1)=0 \rightarrow O=+2$ 4. The highest oxidation number of chlorine is found in: A) Sodium hypochlorite (NaOCl) B) Chlorine dioxide (ClO₂) C) Perchloric acid (HClO₄) D) Dichlorine monoxide (Cl $_{2}$ O) Answer:C

Solution:A)NaOCl=1+(-2)+Cl=0 \rightarrow Cl=2-1=0

 $B)ClO_2 = Cl + (-2) = 0 \rightarrow Cl = 2$

C)HClO₄=1+Cl+4(-2)=0 → Cl=8-1=+7

 $D)Cl_2O=2Cl-2=0 \rightarrow 2Cl=2 \rightarrow Cl=2/2=1$

5. The element that always exhibits an oxidation state of -1 in its compounds is: A) Fluorine B) Oxygen C) Bromine D) Nitrogen

Answer:A

Solution:Fluorine is the most electronegative element and always has -1 oxidation state.

6. In which of the following does phosphorus have a fractional oxidation number? A) PCl_5 B) H_3PO_3 C) P_4O_{10} D) $Na_4P_2O_7$

Answer:D

Solution:A) $PCl_5 = P+5(-1)=0 \rightarrow P=+5$

B) $H_3PO_3=3(1)+P+3(-2)=0 \rightarrow P=6-3=3$

C) $P_4O_{10} = 4P + 10(-2) = 0 \rightarrow 4P = 20 \rightarrow P = 20/4 = 5$

D) $Na_4P_2O_7=4(1)+2P+7(-2)=0 \rightarrow 2P=14-4 \rightarrow 2P=10 \rightarrow P=10/2 \rightarrow P=5$

Pyrophosphate actually has two nonequivalent P atoms in some representations, where:One P is in +5, another in +4, making the average oxidation state fractional:Average=(5+4)/2=+4.5

7. Which of the following statements is incorrect?

A) Oxygen has a -2 oxidation state in most compounds.

B) In peroxides, oxygen has an oxidation state of -1.

C) In superoxides, oxygen has an average oxidation state of $-\frac{1}{2}$.

D) In dioxygen difluoride, oxygen has a -2 oxidation state.

Answer:D

Solution: O_2F_2 : O = +1 (F is -1, total = 0).

Correct statements:

A) O is -2 in most compounds.

B) Peroxides $(O_2^{2-}): O = -1.$

C) Superoxides (O_2) : O = $-\frac{1}{2}$.

8. During the conversion of $\operatorname{Cr}_2 O_7^{2-}$ to Cr^{3+} , the oxidation state of chromium:

A) increases B) decreases C) stays the same D) becomes zero

Answer:B

Solution:
$$\operatorname{Cr}_2O_7^{2-} \rightarrow 2\operatorname{Cr}+7(-2) = -2 \rightarrow 2\operatorname{Cr} = -2+14 \rightarrow 2\operatorname{Cr}=12 \rightarrow \operatorname{Cr}=12/2=+6$$

In Cr^{3+} , Cr oxidation number=+3

9. In which of the following compounds is the oxidation number of carbon +4?A) Methane (CH_4)B) Carbon monoxide (CO)C) Carbon dioxide (CO_2)D) Ethanol (C_2H_5OH)

Answer:B

Solution: CO_2 : C = +4 (O = -2). Others: CH_4 : -4 ,CO: +2, C_2H_5OH : -2 (avg.) 10. If an element in the +2 oxidation state gains one electron, its new oxidation state is: A) +3 B) +1 C) 0 D) -1

Answer:B

Solution: Gain of 1 electron reduces oxidation state by 1: $+2 \rightarrow +1$. 11. The oxidation number and covalency of phosphorus in PCl_5 are: A) +5 and 3 B) +5 and 5 C) 0 and 3 D) +3 and 3 Answer:B Solution: PCl_5 : P = +5 (Cl = -1). Covalency = 5 (5 bonds formed by P). 12. The total oxidation number of carbon atoms in ethanoic acid (CH₃COOH) is: A) 0 B) +4 C) +2 D) -2 Answer:A Solution: $CH_2COOH=2C+4-2-2=0 \rightarrow 2C=0 \rightarrow C=0$ 13. In potassium dichromate ($K_2Cr_2O_7$), the oxidation state of chromium is: A) +2 B) +3 C) +6 D) +4 Answer:C Solution:Let Cr = x. $K_2Cr_2O_7=2(1)+2x+7(-2)=0$ $2x=14-2 \rightarrow x=12/2=+6$ 14. In the compound sodium hydride (NaH), the oxidation number of hydrogen is: B) -1 C) 0 D) +2 A) +1 Answer:B Solution:NaH=+1+H=0 H= -1 15. Which of the following reactions is a redox reaction? A) NaOH + HCl \rightarrow NaCl + H₂O B) AgNO₃ + NaCl \rightarrow AgCl + NaNO₃ C) $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$ D) $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ Answer:C Solution:Zn (0) \rightarrow Zn²⁺ (+2): Oxidation. Cu^{2+} (+2) \rightarrow Cu (0): Reduction. JEE ADVANCED LEVEL QUESTIONS Multi correct answer type: 16. The oxidation number of manganese is NOT +7 in: A) KMnO C) MnCl₂ D) $Mn_{0}O_{2}$ B) MnO₂ Answer:B,C,D Solution: A) $KMnO_4 = 1 + Mn + 4(-2) = 0$ Mn=8-1=+7

B) MnO₂ =Mn+2(-2)=0 \rightarrow Mn=4

C) $MnCl_2 = Mn+2(-1)=0 \rightarrow Mn=2$

D) $Mn_{2}O_{3}=2Mn+3(-2)=0 \rightarrow Mn=6/2=3$ 17. The reaction $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$ is NOT an example of:

B) Reduction C) Redox reaction D) Combination reaction A) Oxidation Answer:D

Solution:A) Oxidation:Zn \rightarrow Zn²⁺ + 2e⁻ (oxidation occurs).

B) Reduction: $Cu^{2+} + 2e^{-} \rightarrow Cu$ (reduction occurs).

C) Redox reaction:

Both oxidation and reduction occur (Zn is oxidized, Cu^{2+} is reduced).

D) Combination reaction:

Incorrect. This is a single displacement reaction, not a combination (where two reactants form one product).

Statement Type/Assertion and Reason Type:

 Assertion (A): Oxygen shows an oxidation state of -2 in most of its compounds. Reason (R): Oxygen is highly electronegative and can gain two electrons to achieve a stable octet.

Answer:A

Solution:Assertion (A) is true because oxygen typically has an oxidation state of -2 (e.g., H₂O, CO₂). Exceptions:-1 in peroxides (O₂²⁻).

 $-\frac{1}{2}$ in superoxides (O $_{2}$).

+1/+2 in OF_2/O_2F_2 .

Reason (R) is true and explains (A): Oxygen's high electronegativity allows it to gain 2 electrons (achieving octet), resulting in -2 oxidation state.

19.Assertion (A): The oxidation number of hydrogen is -1 in metal hydrides like LiH. Reason (R): In metal hydrides, hydrogen behaves as a more electronegative element than the metal.

Answer:A

Solution:Assertion (A) is true: In ionic hydrides (e.g., LiH, NaH), hydrogen has -1 oxidation state.

Reason (R) is true and explains (A): Hydrogen is more electronegative than alkali/ alkaline earth metals, so it gains 1 electron (forming H?), resulting in -1 oxidation state.

20.Assertion (A): The oxidation number of sulfur in H_2SO_4 is +6.

Reason (R): The total oxidation number of all atoms in a neutral compound must equal zero.

Answer:B

Solution:Assertion (A) is true: Let oxidation state of S = x2(+1)+x+4(-2)=02+x-8=0x=+6.

Reason (R) is true (neutral compounds have net oxidation number = 0), but it does not explain why S is +6. The explanation lies in S's bonding with highly electronegative O (-2).

Comprehension Type

21. In which of the following processes is sulfur oxidized?

A) $S \rightarrow SO_2$ B) $SO_2 \rightarrow S$ C) $H_2S \rightarrow S$ D) $S \rightarrow H_2S$

Answer:A

Solution:Oxidation means an increase in oxidation number (loss of electrons). Analyzing sulfur's oxidation state in each option:

A) $S \rightarrow SO2$:

S (elemental form): Oxidation state = 0. SO₂: S = +4 (O = -2) x+2(-2)=0 ? x=+4). Change: $\rightarrow +4$ (Oxidation) B) SO₂ \rightarrow S: $SO_2: S = +4 \rightarrow S: 0.$ Change: +4 \rightarrow 0 (Reduction) C) $H_2S \rightarrow S$: $H_{a}S: S = -2 (H = +1)$ 2(+1)+x=0x=-2). S: 0. Change: $-2 \rightarrow 0$ (Oxidation) \rightarrow (But not among the options where sulfur is oxidized to a higher state like in A). D) S \rightarrow H₂S: S: 0, H₂S: -2. Change: $0 \rightarrow -2$ (Reduction) 22. In the reaction: $Ca \rightarrow CaCl_{2}$, the oxidation number of calcium: A) Increases from 0 to +2B) Decreases from +2 to 0 C) Does not change D) Increases from +1 to +2**Answer:A** Solution:Calcium (Ca) in elemental form: Oxidation state = 0. Calcium in CaCl2: C1 = -1 $x+2(-1)=0 \rightarrow x=+2.$ Change: $0 \rightarrow +2$ (Oxidation). Conclusion: The oxidation number of calcium increases from 0 to +2 (loses 2 electrons). **Integer Type:** 23. The number of electrons involved in the half-reaction of: $Fe^{2+} \rightarrow Fe^{3+}$ is _____. Answer:1 Solution: The half-reaction shows the conversion of Fe^{2+} to Fe^{3+} . Oxidation state change: $+2 \rightarrow +3$ (loss of 1 electron). Half-reaction: $Fe^{2^+} \rightarrow Fe^{3^+} + 1e^-$ Thus, 1 electron is involved. 24. The oxidation state of phosphorus in Na_3PO_4 is _____. Answer:5 Solution: $Na_3PO_4 = 3(1) + P + 4(-2) = 0$ P=8-3=5 **Matrix Matching Type:** List - I 25. List - II (Oxidation no of sulphur) (Compound) A) $H_2S_2O_8$ 1) + 12) + 2B) H₂S

C) Na_2SO_3	3) + 6
D) S ₂ C ₂	4) + 4
	5) _2
	6) +7

Answer:A-3,B-5,C-4,D-1

Solution:

A) $H_2S_2O_8 = 2(1) + 2S + 6(-2) + 2(-1) = 0 \rightarrow 2S = 14 - 2 \rightarrow 2S = 12 \rightarrow S = 12/2 = +6$

- B) $H_2S=2(1)+S=0 \rightarrow S=-2$
- C) $Na_2SO_3 = 2(1)+S+3(-2)=0 \rightarrow S=6-2=4$
- D) $S_2C_2 = 2S + 2(-1) = 0 \rightarrow 2S = 2 \rightarrow S = +1$

LEARNERS TASK

CONCEPTUAL UNDERSTANDING QUESTIONS

1. The oxidation state of chlorine in KClO₃ is: A) +3 B) +5 C) +7 D) -1 **Answer:B** Solution: $KClO_3 = 1 + Cl + 3(-2) = 0$ Cl=6-1=5 2. Nitrogen exhibits its lowest oxidation state in: A) NH_3 B) N_2O C) NO_2 D) HNO_3 Answer:A Solution:A) NH $_3$ =N+3(1)=0 \rightarrow N=-3 B) N₂O =2N+1(-2)=0 \rightarrow 2N=2 \rightarrow N=2/2=1 C) NO₂=N+2(-2)=0 \rightarrow N=+4 D) HNO₃=1+N+3(-2)=0 \rightarrow N=6-1=5 3. The oxidation number of carbon in C $_{2}H_{2}$ (ethyne) is: A) +1 B) -1 C) 0 D) -2 Answer:B Solution: $C_2H_2 = 2C+2(1)=0 \rightarrow 2C=-2 \rightarrow C=-2/2=-1$ 4. The oxidation state of oxygen in KO $_{2}$ (potassium superoxide) is: A) -1 B) -1/2 C) -2 D) 0 Answer:B Solution: $KO_2 = 1 + 2x = 0$ $2x=-1 \rightarrow x=-1/2$ 5. In KMnO₄, the oxidation number of manganese is: A) +4 B) +6 C) +7 D) +2 Answer:C Solution: $KMnO_4 = 1 + Mn + 4(-2) = 0$ Mn=8-1=+7 6. Oxidation number of chromium in $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ is: A) +6 B) +3 C) +4 D) +2

Answer:A

Solution: $Cr_{2}O_{7}^{2}=2Cr+7(-2)=-2$ $2Cr=14-2 \rightarrow 2Cr=12 \rightarrow Cr=12/2=+6$ 7. In NO_3^{-} , the oxidation number of nitrogen is: A) +3 B) +2 C) +5 D) +4 Answer:C Solution: $NO_{3^{-}} = N+3(-2) = -1$ N=6-1=+5 8. In which of the following does phosphorus have an oxidation state of +3? A) PCl_3 B) H_3PO_4 C) PCl_5 D) $H_4P_2O_7$ Answer:A Solution: PC13: Cl = -1 $x+3(-1)=0 \rightarrow x=+3$ Others: H_3PO_4 : +5 $PCl_5: +5$ $H_4P_2O_7$: +5 9. The oxidation number of hydrogen is negative in: A) H_2O B) NH_3 C) CH_4 D) NaHAnswer:D Solution: In metal hydrides (e.g., NaH), H = -1. In other compounds (H_2O , NH_3 , CH_4), H = +1. 10. Which of the following elements shows variable oxidation states? A) Neon B) Iron C) Sodium D) Fluorine **Answer:B** Solution: Iron (Fe): Common states = +2, +3 (variable). Others: Neon: 0 (inert) Sodium: +1 (fixed) Fluorine: -1 (fixed)

JEE MAIN LEVEL QUESTIONS

11. The minimum oxidation state that sulphur can exhibit is:

A) -1 B) -2 C) 0 D) -3

Answer:B

Solution:Sulfur's lowest oxidation state is -2 (e.g., in H₂S or metal sulfides). Higher states: 0 (elemental S), +2, +4, +6.

12. What is the oxidation number of carbon in methane (CH $_4$)?

A) +2 B) -4 C) -2 D) 0

Answer:B

Solution: $CH_4 = C + 4(1) = 0$

C = -4

13. In which of the following compounds does oxygen have an oxidation state of -1? A) CO_2 B) H_2O C) H_2O_2 D) NaOH

Answer:C

Solution:Peroxides (O_2^{-2}) like H_2O_2 have O = -1. Others: CO_2 : O = -2 H_2O : O = -2

NaOH: O = -2

14. The oxidation numbers of nitrogen in N $_2$, NH $_3$, and HNO $_3$ are respectively: A) 0, -3, +5 B) -3, 0, +5 C) -3, +3, +5 D) 0, +3, -3

Answer:A

Solution:Oxidation number fo elementary form is Zero, N $_2$ =0 NH₃=N+3(1)=0 N=-3 HNO₃ 1+N+3(-2)=0 N=6-1=5 15. When Br₂ reacts with hot concentrated NaOH, the oxidation numbers of bromine

in the products are: A) -1 and +5 B) 0 and -1 C) -1 and +1 D) +3 and -1

Answer:A

Solution: 3**B5**<u>MaOHN</u>aBrNaBrOHO

NaBr (Br ⁻): -1

NaBrO₃ (Br⁵⁺): +5

16. The element that always shows an oxidation state of -1 in its compounds is: A) Oxygen B) Chlorine C) Fluorine D) Iodine

Answer:C

Solution:Fluorine is the most electronegative element and always -1.

17. In the conversion of MnO_4^- to Mn^{2+} , the oxidation number of manganese:

A) Increases B) Decreases C) Remains the same D) Becomes zero

Answer:B

Solution:MnO₄⁻ =Mn+4(-2)=-1 Mn= -1+8=7 Mn²⁺:Mn=+2 Change: +7 \rightarrow +2 (reduction, oxidation number decreases). 18. The oxidation number of nitrogen in NO ₂⁻ (nitrite ion) is: A) +3 B) +2 C) +4 D) +1

Answer:A

Solution: $NO_2^- = N+2(-2) = -1$

N=4-1=3 19. The oxidation number of sulphur in Na $_2S_2O_3$ (sodium thiosulphate) is: A) +2 B) +6 C) +3 D) a fractional value

Answer:A

Solution:Na₂S₂O₃ =2(1)+2S+3(-2)=0 2S=6-2 \rightarrow 2S=4 \rightarrow S=4/2=2 20. The element that shows only one oxidation state in its compounds is: A) Calcium B) Iron C) Chlorine D) Sulphur

Answer:A

Solution:Calcium always shows +2 (no variable states). Others:Iron: +2, +3 Chlorine: -1 to +7

Sulfur: -2 to +6

JEE ADVANCED LEVEL QUESTIONS

Multicorrect Answer Type

21. $3Cu+8HNO_{3}G_{2}NO+(2NO)_{4}HO$

the correct statement for the reaction

is

A) *Cu* is oxidizedC) *Cu* is reduced

B) HNO_3 is reduced

D) Cu acts as reducting agent

Answer:A,B,D

Solution:Oxidation:

Cu (0) \rightarrow Cu²⁺ (+2): Loses 2 electrons per Cu atom (Oxidation).

Reduction:

HNO₃ (N⁵⁺) \rightarrow NO (N²⁺): Gains 3 electrons per N atom (Reduction). Roles:

Cu is oxidized and acts as the reducing agent.

 HNO_3 is reduced and acts as the oxidizing agent.

Incorrect Option:

C) Cu is reduced: False (Cu is oxidized).

22. Which of the following have been arranged in order of decreasing oxidation number of Sulphur?

A) HSQNaSONaSOS

B) SOSOSOHSOD) HSOSOHSHSO

C) HSQHSOSCIHS

JACIH2

Answer:C

Solution:Compound Oxidation State of S $H_2S_2O_7$ (Disulfuric acid) $\rightarrow +6$ (each S) $Na_{2}S_{2}O_{6}$ (Sodium dithionate) $\rightarrow +5$ (each S) SO²⁺ (Sulfuryl ion) \rightarrow +6 SO_{4}^{2-} (Sulfate) SO_{3}^{2-} (Sulfite) \rightarrow +6 \rightarrow +4 HSO_{4}^{-} (Bisulfate) $\rightarrow +6$ H_2SO_5 (Peroxymonosulfuric acid) $\rightarrow +6$ (with peroxide) H_2SO_3 (Sulfurous acid) \rightarrow +4 SCI_{2} (Sulfur dichloride) $\rightarrow +2$ H_2S (Hydrogen sulfide) $\rightarrow -2$ $H_2S_2O_6$ (Dithionic acid) \rightarrow +5 (each S) Correct Option: C) HSQHSOSCIHS Order: +6 > +4 > +2 > -2

Statement Type/Assertion and Reason Type:

23. Assertion (A): The reaction between zinc and copper(II) sulphate is a redox reaction.

Reason (R): Zinc loses electrons and gets oxidized while copper ions gain electrons and get reduced.

Answer:A

Solution:Verify Assertion (A):

The reaction is: $Zn+CuSO \rightarrow ZnSO_{4}+Cu$

Zn (0) \rightarrow Zn²⁺ (+2): Oxidation (loss of 2 electrons).

 Cu^{2+} (+2) \rightarrow Cu (0): Reduction (gain of 2 electrons).

Conclusion: It is a redox reaction (both oxidation and reduction occur).

Assertion (A) is TRUE.

Verify Reason (R):

Zinc is oxidized (loses electrons). Copper ions (Cu^{2 +}) are reduced (gain electrons). Reason (R) correctly explains (A).

Comprehension Type:

24. The atom undergoing oxidation is:

A) Mg B) Ag C) N D) NO_3^{-1}

Answer:A

Solution:In the reaction: MgAg2(2)MgNgQAg

Oxidation:

Mg (0) \rightarrow Mg²⁺ (+2): Loses 2 electrons (Oxidation).

Reduction:

 Ag^+ (+1) $\rightarrow Ag$ (0): Gains 1 electron per Ag? ion (Reduction).

25. Which of the following undergoes reduction?

A) Mg B) Ag⁺ C) O_2 D) Mg(NO₃)₂

Answer:B

Soluton:Reduction involves gaining electrons.

In the reaction:

Ag ⁺ ions (from AgNO₃) gain electrons to form Ag (silver metal).

Integer Type

26. The oxidation number of phosphorus in elemental white phosphorus (P $_4$) is _____ **Answer:0**

Solution:Elemental forms of any atom (e.g., P_4 , O_2 , S_8) always have an oxidation state of 0 because they are in their pure, uncombined state.

27. What is the oxidation number of sulfur in the ion SO $_{3}^{2}$?

Answer:4

Solution:SO₃²⁻ S+3(-2)= -2 S=-2+6=4

Matrix Matching Type 28.Answer:a-2,b-1,c-4,d-3 Solution:

Column - I

Column - I

a) $CrC\#Cl_{3}$ 2) Cr is oxidised Oxidation state change: Cr (0) \rightarrow Cr³⁺ (+3). Conclusion: Cr loses electrons \rightarrow Oxidised. b) $MX^2e \rightarrow + 5$ 1) X = M³ Initial oxidation state of M = -2. After losing 5 electrons: X = M³ c) $FeF22^{-}$ 4) F is reduced Fluorine (F2) gains electrons \rightarrow Reduction. d)Pb₃O₄ 3) Good oxidising agent

29.Answer:a-3,5,b-4,c-2,d-1,5

Solution: Column - I

electron)

a) Oxidation

b) Reduction

d) Reductant

agent, readily gains electrons).

c) Oxidant

Column - II

3) $Zn \rightarrow Zn^{2+} + 2e^{-}$ (Zinc loses 2 electrons)					
5) Mg Mg 2 ^{+2e}	(Magnesium loses 2				
electrons).					
4) Ce $ \xrightarrow{-} \rightarrow$	(Chlorine gains 1				

2) F (Fluorine is the strongest oxidizing

1) Ca (Calcium readily loses 2 electrons).

5) MgMg2 ^{+2e} (Magnesium loses 2 electrons)

KEY

						TEACHING	i TASK			
						JEE MAIN	LEVEL QUE	STIONS		
	1	2	3	4	5	6	7	8	9	10
Α		В	А	С	Α	D	D	В	В	В
	11	12	13	14	15					
В		Α	С	В	С					
						JEE ADVANCED LEVEL QUESTIONS				
	16	17	18	19	20	21	22	23	24	25
B,C,D		D	Α	Α	В	Α	Α	1	5	A-3,B-5,C-
						LEARNERS TASK				D-1
	1	2	3	4	5	6	7	8	9	10
B 11		Α	В	В	С	Α	С	Α	D	В
						JEE MAIN LEVEL QUESTIONS				
	11	12	13	14	15	16	17	18	19	20
B 21		В	С	Α	Α	С	В	Α	Α	Α
						JEE ADVANCED LEVEL QUESTIONS				
	21	22	23	24	25	26	27	28		
A,B,D		С	Α	Α	В	0 4 a-2,b-1,c-4,d-3			4,d-3	
	29									
a-3,5,b	-4,0	:-2,d-1,5								