

LINES AND ANGLES

3) Only one line can be drawn through two different points in a plane. The line wholly lies in the plane containing the two points. But we can drawn infinite curved lines through two points in a plane.

4) Two different lines in a plane having a common point are called intersecting lines.Two intersecting lines in a plane have only one common point and the common point of intersecting lines is also called as point of intersection.

5) An unlimited number of lines can be drawn through a given point in a plane and they are called as concurrent lines and the point through which they pass is called as point of concurrence (or) Simply if three or more lines intersects at only one point, then such lines are called concurrent lines

Ψ Space:

The portion enclosed by an infinitly large ball is called space. It is a set of infinite points.

Note: 1. Two straight lines can not enclose a space

- 2. A space contains an infinite numbr of planes
- 3. Points, lines and planes are subsets of space.
- 4. A space has infinte length, breadth and also thickness.

Ψ Eulars Formula:

If the number of vertices are V, the number of faces are F and the number of	edges are E
then the relation between them is given by V+F = E+2	

I. MCQ's with single correct answers

VI -	CLASS			4	
	C)Assertion is true, R	eason is false.	D) Assertion is false,	Reason is true.	
	A) Both Assertion and	Reason are true.	B) Both Assertion and	Reason are false.	
♦ Staten the co 	This section contains certain number of questions. Each question contains Statement – 1 (Assertion) and atement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose e correct option.				
Asse	ertion Reasoning Type	<u>9:</u>			
 _	C) PR – RQ = PQ		D) PQ – QR = PR		
	A) PR + RQ = PQ		B) PQ + QR = PR		
	P	Q R			
12.	If P,Q,R are collinear	points and Q lies betwe	en P & R , then which c	f the following is true?	
 	D) Has only one end p	point			
	C) Extends in both the	directions infinitely			
	B) Has no end points				
	A) Has two end points	;			
 11.	A line				
$ \bullet $	<i>inis section contains multi</i> or MORE is correct. Choos	ple choice questions. Each se the correct options	question has 4 choices (A),	$(\mathcal{B}), (\mathcal{C}), (\mathcal{D}), out of which$	
<u>MCQ</u> │	<u>I's with more than one</u>	e correct answers	munition have disting the	(\mathbf{P}) (\mathbf{C}) (\mathbf{P}) , \mathbf{e}^{f} 1 · 1	
 	A) only I & III	B) only I,II, & III C) o	only I,III & IV D) only	I,II & IV	
 	then which of the follo	wing are true ?	ju		
		A	Ada		
		r	C to	1	
 			EH		
 		G			
	(1) AC, AB, BD	(Ⅲ) GB, ĎB, ĦÉ (Ⅲ ▶ ↑) DF, CG, CB (IV) \overline{H}	B, GF, CA	
10. 	From the adjacent figure	re,the lines whose point	of intersection B are give $\longrightarrow \longrightarrow \longrightarrow $	en below.	
 	A)12	B)10	C)14	D)8	
	edges are				
9.	If the number of vertic	es of a solid are 8, and	number of faces are 6,	then number of	
	A) $\frac{n(n+1)}{2}$	B) $\frac{n(n-1)}{2}$	C) $\frac{n}{2}$	$D)\frac{n(n+3)}{2}$	
 8.	The maximum numbe	r of points of intersection	on of "n" different lines i	n a plane is	
7.		B)3			
	A)10	B)5	C)15	D)20	
6. 	number of line segme	nts possible with 5 non	collinear points is	D)00	
6	number of line cogmo	nte possible with 5 pop	collinear points is		

2.	From the figure find the length of AC				
	A 3 cm B 4 cm C				
3.	Using Eulers formula find number of edges if no. of faces are 6 and vertices are 10				
4.	Using 5 non collinea	r points , how many line	s can we draw?		
5.	From the figure ,find	the values of a, b, c			
	\ 110	• 7			
	c)a			
	b	×_			
		L L			
 		LEARNER	S TASK		
	◆ }	BEGINNERS	<u>(Level-I)</u> ◆ ■ I ◆		
I .	MCQ's with single	<u>correct answers</u>			
1.	A point has a		latio"		
	A)No length	B)breadth	C)thickness	D)height	
2.	Number of end point	s of a line is			
į	A)0	B)1	C)2	D)5	
3.	A line contains	.Number of points	1-6		
ļ	A)Finite	B)Infinite	C)0	D)2	
4.	Two different lines in	a plane having a comm	on point are called		
	A)Intersection	B)Parallel	C)coplanar	D)concurrent	
5.	The common point o	f concurrent lines is call	ed		
 	A)point of Intersectio C)Intersection point	n	B)point of concurrent D)concurrent point	су	
6.	In a solid , the number relation between the	er of vertices V, number m is	of faces are F, and nun	nber of edges E,then the	
ļ	A)V+F=E+2	B)V+E=F+2	C)V+F=E-2	D)V+2=E+F	
7.	Three or more lines	passing through the san	ne point are called		
ļ	A)Parallel lines	B) coincident lines	C)concurrent lines	D)Non coplanar	
8.	Points , lines and pla	nes are subsets of			
İ	A)Line	B)Space	C)Quadrilateral	D)Circle	
9.	Three or more points	in a plane are said to b	e collinear if they lie on	the	
	A) Same Plane	B) Same line	C) Different Lines	D) None	
10 .	Three or more lines a	are said to be concurrer	nt if they pass through the	ne	
	A) Same Line	B) Same Plane	C) Same Point	D) None	
I I					

LINES AND ANGLES

-				
11.	The lines belongir	ng to the same plane ar	e calledLines	
	A) Collinear	B) Co-planar	C) Both 1 and 2	D) None
12.	The line AB is den	oted by		
1	A) \overline{AB}	B) \overrightarrow{AB}	C) \overrightarrow{AB}	D)AB
13.	Which of the follow	wing is example for pla	ne	
	A)Surface of the b	lack board	B)Edge of wall	
İ	C)Edge of a black	board	D)Edge of pencil	
14.	A ray AB is denote	d by		
1	A) \overline{AB}	B) \overrightarrow{AB}	C) \overrightarrow{AB}	D)AB
15.	Points which dong	ot lie on the same line a	re calledpoints.	
	A)Collinear		B)Non-intersecting	J
Ì	C)Non- coplanar		D)Non-Collinear	
 <u>Solv</u>	e the following			
16.	If PR = 10 cm and	PQ = 3 cm then find (QR ?	
1		P Q	- noa	
17.	If $\angle A$ and $\angle B$ a	The Linear pair and $\angle B =$	-130° then find $\angle A$	
 18.	If $\angle A$ and $\angle B$ a	e supplementary angle	es and $\angle A = 90^{\circ}$ then find	$ \angle B $
 19.	From figure find n	umbe 1 –		
	-	c b		
1			\rightarrow	
Ì	 ↓ 	EXPLORER	S (Level - III)	•1+1 •
 I.	MCQ's with more	e than one correct an	swers	
≁	This section contains	multiple choice questions.	Each question has 4 choices	(A), (B), (C),(D),out of which
	or MORE is correct. (Choose the correct options		
20.	If two lines are pas	ssing through one poin	t , then they are called as	S
l	A)Collinear	B)Pai	allel Lines	
 	C)Intersecting line	es D)No	n parallel lines	
 21 .	Which of the follow	wing is / are plane figur	es	
	A) Triangle	B) Cube	C)Rectangle	D) Circle
<i> .</i> 	Assertion and Re	easoning type questic	ons:	
♦ Stater	This section contain nent – 2 (Reason). Each priest option	s certain number of quest h question has 4 choices (A)	ions. Each question contain.), (B), (C) and (D) out of whic	s Statement – 1 (Assertion) and ch ONLY ONE is correct Choose
	a) Dath A and D -	re correct and D is sam	root overlap of A	
	a) Both A and R a	re correct and R is cori	ect explanation of A.	
	b) Both A and R a	re correct and R is not	correct explanation of A.	

VI - CLASS

I

	c) A is correct and R is incorrect. d) A is incorrect and R is correct.				
22.	2. A: Number of lines that can be drawn through "10" non collinear points is 45				
	R :Number of lines that can be drawn through "n" non collinear points is $\frac{n(n-1)}{2}$				
III.	Comprehension :				
•	This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B),(C) and (D) out of which ONLY ONE is correct. Choose the correct option.				
	Using the following figure, answer the following questions:				
	A B B B I I I I I I I I I I I I I I I I				
23.	One pair of non intersecting lines is				
24.	A) $\overrightarrow{AB}, \overrightarrow{GH}$ B) $\overrightarrow{EF}, \overrightarrow{GH}$ C) $\overrightarrow{EF}, \overrightarrow{DC}$ D) both A & B Three concurrent lines are				
	A) $\overrightarrow{AB}, \overrightarrow{GH}, \overrightarrow{EF}$ B) $\overrightarrow{AB}, \overrightarrow{GH}, \overrightarrow{CD}$ C) $\overrightarrow{EF}, \overrightarrow{CD}, \overrightarrow{AB}$ D) both B&C				
25.	The lines whose point of intersection 'R' are				
	A) $\overrightarrow{AB}, \overrightarrow{CD}$ B) $\angle PQR$ C) $\overrightarrow{AB}, \overrightarrow{FE}$ D) all of these				
	KEY				
$\Phi\Phi$	TEACHING TASK :				
1)B	2) C 3) B 4) A 5) C 6) A 7) D 8) B 9) A 10) D				
11) E	B,C 12) B , C, 13) D , 14) D 15) C 16) A 17) 3, 4, 1, 1				
<u> </u>	$\frac{\text{LEARNER'STASK}}{\text{REGINNERS}(1)} = \frac{1}{2} + \frac{1}{$				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	EXPLORERS :20) C, D 21) A,C,D, 22) A 23) C 24) A 25) C				
<u>§§</u>	LI <u>NE SEGMENT</u>				
Ψ LINE SEGMENT: A part of a line with two end points is called a line segment. A line segment (
whose end points are A and B is denoted by \overline{AB} or \overline{BA} .					
A B					
	i. e it has only length but no direction.				
A line segment is also a set of infinite points and all the points are in between the end points of the line .					
W Number of line Segments: If A, B, C, D, E are on a line segment \overline{PQ} , then the number of					
line	segments determained by the 'n' points lying on \overline{PQ} is $\frac{n(n-1)}{2}$.				
VI -	CLASS 8				

 Ψ Length of a line Segment: The length or measure of a line segment AB is denoted by \overline{AB} and it is a positive number showing the distance between A and B.

 Ψ **Comparision of line Segments:** Two or more line segments can be compared by the virtue of their length. The instruments like ruler, divider, compass can be used to compare, the line segments.

 Ψ **Congruent line Segments:** If the lengths of two line segments is same, then they are called as 'congruent segments'.

i.e. if length of \overline{AB} = length of \overline{CD} , then it is denoted by $\overline{AB} \cong \overline{CD}$ where " \cong " is the symbol of congruency and read as \overline{AB} is congruent to \overline{CD}

 Ψ **Measurement of a line Segment :** A line segment can be measured by comparing it with a standard segment called a unit segment. The number of times a unit segment is contained in a given segment is called its measure or length.

Example: A line segment \overline{PQ} is measured by another line segment \overline{MN} of unit measured

i.e $_{\rm P} \Rightarrow \overline{\rm PQ} = 4 \,\overline{\rm MN} = 4 \,\rm units.$

The basic unit of length in the international system of units (SI) is meter. The other units of length are derived from it as the following :

Unit	Symbol	Relation with meter	
Millimeter	mm	$1 \text{ mm} = \frac{1}{1000} \text{ mts}$	
Centimeter	cm	$1 \text{ cm} = \frac{1}{100} \text{ mts}$	
Decimeter	dm	$1 \mathrm{dm} = \frac{1}{10} \mathrm{mts}$	
Decameter	dem	1 dem = 10mts	
Hectameter hm		1 hm = 100mts	
Kilometer	km	1 km = 1000mts	

From the above relation it is noted that

1 cm = 10 mm

1 dm = 10 cm

The instruments like ruler, divider, etc can be used to determine the length of line segments.

The greater lengths like length of claas room, badminton court... etc can be measured by a tape

 Ψ **Betweenness:** If A, B and C are any three collinear points and if AB + BC = AC, then we say that B is between A and C. Also if AB = BC then B is called mid point of AC. Here B is said to be bisector of AC

VI - CLASS

 	TEACHING TASK				
¦I. 	MCQ's with single c	orrect answers			
 1 .	If A,B,C are collinear a	and also AB = BC then E	3 is		
	A)Point between A and	dC	B)Mid Point of AC		
	C) Bisector of AC		D) All the above		
2.	if AB=6cm,CD=4cm t	hen AB+2CD is			
	A)2cm	B)10cm	C)24 cm	D)14 cm	
3.	If B is mid point of AC	then AB =			
	A)AC	B) BC	C) 2AB	D) 2CB	
4.	If $AB = 6 \text{ cm}$,	CD = 3cm the relation	n between AB and CD	is	
	A) $AB = CD$	$B) \ AB > CD$	C) $AB < CD$	D) 2AB = CD	
5.	If AC = 8 cm, and B is	the mid point of AC the	n which of the following	is true	
	A) AB = 4 cm AB	B) BC = 5 cm	C) AB = 8 cm	D) BC= 8 cm	
6.	AB = 10 cm then $\frac{AB}{2}$	=	naa		
	A) 5 cm	B)20 cm	C) 100 cm	D) 25 cm	
7.	One hectameter is eq	ual to 100 times x mete	rs then x =		
	A) 1	B) 10	C) 100	D) 1000	
8.	Line segment AB is co	ongruent to line segmen	it CD is written as		
	A) $AB = CD$	B) AB≠CD	C) $AB \cong CD$	D) None	
9.	If AB = 6 cm and CD =	= 4.5 cm then 4 CD - 2	AB =		
ļ	A) 0 cm	B) 2 cm	C) 4 cm	D) 6 cm	
10.	If AB + BC = AC and	A,B,C are collinear the	en		
	A) B lies between A &	κ C	B) A lies between B &	C	
	C) C lies between A &	В	D) None		
11.		der	notesline se	gments.	
	A)5 B C	B) 12 ^{D E}	C) 15	D) 10	
12.	Which of the following	is symbol for congrue	ncy		
İ	A) = 7	B) ~	C) ≅	D) None	
13.	If $\frac{2}{2}AB = \frac{7}{2}BC = 42$ cr	n then			
	A) $\overrightarrow{AB} = \overrightarrow{BCB}$ AB < B(CC) AB > BCD) $AB \le B$	BC		
14.	If the line segment AB whose length is equal	s = 4.6 cm and CD = 3.8 to the difference of AB	cm , then the measure and CD is	of the line segment	
	A) 1.8 cm	B) 2.8 cm	C) 0.8 cm	D) 8.4 cm	
15.	The number of linese	gments determined by 5	points on PQ	<i>.</i>	
 VI -	CLASS	- •	-	10	

МАТ	THEMATICS				LINES AND ANGLES		
	A) 3.8 cm	B) 3.6 cm		C) 3.9 cm	D) 3.7 cm		
23.	$\frac{CD}{2} = $	_					
ļ	A) 2 cm	B) 3.1 cm		C) 3.2 cm	D) 3.3 cm		
IV.	Matrix Match Type	<u>e:</u>					
$ \bullet$	This section contains	Matrix-Match T	ype questions. Tements (A R	. Each question contains sta C D) in Column–I have to	itements given he matched with		
state	ments (p, q, r, s) in Colum	nn–II. The answe	ers to these qu	<i>lestions have to be appropri</i>	ately bubbled as		
illust	rated in the following ex If the correct matches	ample. s are A-n.A-s.B-r.	B-r:C-n.C-a ai	nd D-s.then the correct bubb	led 4*4 matrix		
shou	ld be as follows:	F , F , F , F , F , F , F , F ,) - <u>r</u>) - <u>1</u>				
24.	Column-l			Column-II			
ļ	a) 1 mm = m	ts	[] 1) 104			
1	b) 1 dm = m	nts	[] 2) 10			
	c) 1 dem = ı	mts [] 3) 1/10				
	d) 1 km = n	nts	[] 4) 1/1000			
1				5) 1000			
Solv	<u>ve the following</u>						
¦ 1.	If $\frac{5}{2}AB = 35 cm$ then find value of AB						
2.	Find the value of 2 BC - CD , If BC = 4.9 cm and CD = 4 cm						
3.	Convert 2 Km into decametre						
4.	Convert 35 cm into Metres						
 			EARNER'S	TASK			
	• 1	∎ → <u>BEGI</u>	NNERS (L	.evel-l) • • • • •			
і I.	MCQ's with single	e correct ans	<u>wers</u>				
1 .	A part of line with tw	vo end points i	s called a				
1	A) Line	B) Line se	gment	C) Ray	D) Plane		
2.	A Line segment wh	nose end point	s A and B is	denoted by			
1	A) \overline{AB}	B) \overrightarrow{AB}		C) All B	D) \overrightarrow{BA}		
3.	1 m = m.m						
	A) 10	B) 100		C) 1000	D) 10,000		
4 .	1 km =m						
ļ	A) 1000	B) 10		C) 100	D) 10,000		
5.	Two line segments	having same l	ength are s	aid to be			
į	A) Congruent segment	nents		B) Unequal segments			
	C) Non congruent	segments		D) None			
	CLASS				10		
VI -	ULASS				12		

6.	The number of er	nd points of a line segn	nent are			
İ	A) 3	B) 4	C) 2	D) 1		
7.	The number of er	nd points of a line are .				
	A) 3	B) 2	C) 1	D) 0		
8.	The instrument us	sed to compare two lir	ne segments is			
1	A) Compass	B) Divider	C) Set square	D) Protractor		
9. 	The number of lin	e segments in the give	en figure isM			
ļ	A) 8	B) 9	C) 10	D) 12		
10.	If AD = (5x + 20)	cm, AB = (x + 10) cm	, CD = (2x + 5) cm = 13 c	m, then AB + CD + DA =		
	A) 67 cm	B) 42 cm	C) 57 cm	D) 63 cm		
			RS (Level - IL)			
Solv	e the following	<u></u>	COV			
 11	If $AB = 6 \text{ cm}$ and	CD = 4.5 cm then find	1 3 AB - CD			
12	Find the length of	$\frac{BC}{E}$ If BC = 20 cm				
 13.	Find AC if B is th	e midpoint of A and C	and AB = 3 cm			
	9					
	MCO's with mor	■ # # + → <u>EXPLOR</u> e than one correct a	<u>EKS (Level - III)</u> nswers	<₽₩ & >		
♦	This section contains	multiple choice questions.	Each question has 4 choices ((A), (B), (C),(D),out of which		
ONE	or MORE is correct.	Choose the correct options	1	//////////		
 14.	AB = 5 cm and C	D = 3 cm then 5 AB - 3	3 CD =			
İ	A) 16 cm	B)4 ² cm	C) 4 X 4 cm	D) 4+4 cm		
15.	If $AB = x + 10 = 5$	5 cm , BC = X + 5 cm t	then AB + BC =			
į	A) 5cm	B) 25 cm	C) $\sqrt{25}$ cm	D) 10 cm		
<i>II.</i>	<u>Assertion and R</u>	<u>easoning type quest</u>	<u>ions:</u>			
♦ Stater the co	• This section contains certain number of questions. Each question contains Statement – 1 (Assertion) and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option.					
	a) Both A and R a	are correct and R is co	rrect explanation of A.			
į	b) Both A and R a	are correct and R is no	t correct explanation of A.			
	c) A is correct an	d R is incorrect.	d) A is incorrect ar	nd R is correct.		
<u>16.</u>	A: Number of line	esegment that can be	drawn through "4" non col	linear points is 16		
VI -	ULASS			13		

 	R :Number of line that can be drawn through "n" non collinear points is $\frac{n(n-1)}{2}$					
III.	Comprehension Type:					
 ◆ 	This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option.					
 I then	If $\frac{-1}{7}$ AB = 19.6 cm & BC + 12.4 cm = 37.9 cm, CD - 4.6 cm = 30.1 cm & DE \div 8 = 2.7 cm,					
17.	AD + BC = B AB + CD = C CD + BC = D and					
	A) $DE + BC$ B) $AB + CD$ C) $CD + BC$ D) none					
18. 	AB + BC + CD - x = DE, then $x =$					
	A) 72.9cm B) 63.9cm C) 64.9 cm D) 62.9 cm					
19.	I he descending order of the lengths of line segments is					
1	A) DE,AB,BC,CD B) CD,DE,AB,BC					
ĺ	C) CD, AB,BC,DE D) CD,BC,AB,DE					
IV.	Match the following					
	This section contains Matrix-Match Type questions. Each question contains statements given in two unique to be matched statements (A, B, C, D) in Column L being to be matched with statements (B, C, D) in Column .					
s in	Column–II . The answers to these questions have to be appropriately bubbled as illustrated in the following					
exam	ple. B the connect matches are $A = A = B = B = C = C = C = D = then the connect highlad 4*4 matrix$					
shoul	If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s, then the correct bubbled 4 *4 matrix					
l						
 	From the given figure the length between every two points is same and $\overline{AE} = 4 cm$					
20.	Cloumn - I Cloumn - II					
	i) \overline{AC} = a) 3 cm					
	ii) $\overline{\mathbf{AD}} =$ b) 2 cm					
l	iii) $\overline{AE} =$ c) 4 cm					
 	iv) $\overline{\mathbf{CD}} + \overline{\mathbf{AD}} =$ d) 1 cm					
	e) 5 cm					
 	KEY					
Φ <u>Φ</u>	TEACHING TASK :					
	1)B 2) D 3) B 4) B 5)A 6) A 7)A 8) C 9) D 10) A					
 	11)D 12) C 13) C 14) C 15)A 16) D 17)A,C,D 18) D 19)C,D 20)A					
	21)D 22)A 23)B 24)4,3,2,5					
$\Phi\Phi$	LEARNER'STASK :					
	BEGINNERS :1)B 2)A 3)C 4)A 5)A 6)C 7)D 8)B 9)C 10)A					
ים	EXPLORERS :14) A,B,C 15) A,C 16) D 17) A 18) A 19) C 20) B,A,C,C					
VI -	CLASS 14					

VI - CLASS

		TEACHING	S TASK	
_				
I.	MCQ's with single	correct answers		
1.	If angle is equal to its	s complement then the a	angle is	
	A) 45º	B)60º	C) 75°	D) 30°
2.	lf a+25 = b+ 65 = 90	0 then a, b are		
	A)65°, 25°	B) 25°, 65°	C) 30°, 60°	D) 45º,45º
3.	The pair of adjacent	angles whose non com	mon arms are opposite	rays is called
	A) Complementary	B) Not possible	C)Linear pair	D) pair
4.	If ratio of two comple	ementary angles is 7:8, t	hen the angles are	
	A) 48°, 52°	B) 42°, 58°	C) 42°, 48°	D) 48°, 32°
5.	If $\angle ABC + 68^\circ = 156^\circ$	⁾ Then $\angle ABC = \dots$		
	A) an acute angle	B) An obtuse angle	C) A reflex angle	D) None
6.	If the ratio of two sup	plementary angles 4:5	then the angles are	
	A) 108º. 62º	B) 102 ⁰ . 78 ⁰	C)80°. 100°	D)95°. 85°
7.	If $r^0 r + 20^0$ complete	ementary angles then th	e angles are	_) ~ ~ , ~ ~ ~
••	$(A) 45^{\circ} 45^{\circ}$	B) 65º 25º	C) 35º 45º	D) 35º 55º
8	Two adjacent angles	on a straight line arev ⁰	and $(2x - 21)^0$ then $x =$	D) 00 ,00
0.			and $(2x - 21)^{n}$ then x	 97 0
•	A) 57°	\mathbf{b} 0		D) 87°
9.	In the figure $X : Y = 2$	F, II, then a, b are	7	
			a.	
	A) 48°, 112°	B) 132 ⁰ , 60 ⁰	C)48º , 132º	D) 45°, 135°
10.	$x = \frac{y}{4} = \frac{z}{3} = 35^{\circ}$ then	x + y + z =		
	A) 135°	B)200 ⁰	C) 240°	D)280 ⁰
MCC	Q's with more than o	<u>ne correct answers</u>		
*	This section contains mu	ltiple choice questions. Eac	h question has 4 choices (A),	(B), (C) , (D) , out of which
ONE	c or MORE is correct. Cho	ose the correct options		
11.	A complete rotation	of a ray OA about O ma	akes an angle of	
	A) Two straight Angl	es B) Four	right angles C) 180	^o D) 90 ^o
12.	lf 6∠ABC = 360°, 4	$4\angle PQR = 360^0$, then		
	A) $\angle B = 60^{\circ}$, $\angle O =$	100 ⁰	B) $\angle B = 60^{\circ}$, $\angle O = 90^{\circ}$	0 ⁰
	$C)/B + /O = 30^{0}$	D) $/B$, is complement	ent of 30 ^o & $\angle O$ is supp	lement of 90°
	, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
VI -	CLASS			18
• •				10

	LEARNER'S TASK					
1						
	MCQ's with single	e correct answers				
 1.	The symbol of an a	ingle is				
1	A) =	B) ~	C)	D) <		
2.	The Unit of measu	re of an angle is				
1	A) cm	B) km	C) Degree	D) Grams		
3.	The terminal ray ar	nd initial ray becomes	opposite then the angle	e is		
	A) Right Angle		B) Straight angle			
1	C) Reflex angle		D)Complete ang	le		
4.	The measure of an	gle is Greater than 0º	and lessthan 90° then	the angle is		
1	A) Acute	B) Straight angle	C) Reflex	D) Obtuse		
5.	The measure of an	angle is Greater than	90° and lessthan 180	⁰ then the angle is		
	A) Acute	B) Obtuse	C) Straight angle	D) Reflex		
6.	The instrument use	ed to measure the ang	le is			
ļ	A)Compass	B) Divider	C) Set square	D) Protractor		
¦7.	The sum of measu	re of any two angle is	180° then they are said	d to be		
i	A) Complementary angle B) Supplementary angle					
	C) Straight angle	1NF 00	D)Right angle			
8.	The Sum of measu	ire of any two angles i	s $90^{ m o}$ then they are said	d to be		
	A) Complementary	angle	B) Supplementar	y angle		
1	C) Straight angle		D) Right angle			
9.	If the terminal ray o	coincident with initial ra	y after one rotation the	n the angle formed is		
	A) Straight angle	B) Complement a	ngle C) Right angle	e D) None		
10.	If the measure of a	n angle is 304º then it	is called			
	A) Acute Angle		B) Obtuse angle			
1	C) Straight angle		D)Reflex angle			
11.	The complement a	ngle of 41º is				
1	A) 73 ⁰	B)35°	C) 49º	D) 62º		
12.	The suplement ang	gle of 72^0 is				
	A) 108º	B) 89º	C) 18º	D) 9º		
13.	The complement a	ngle of 2^0 is				
Ì	A)178º	B) 88°	C) 58º	D) 78º		
14. 	The suplement and	gle of 178° is	\mathbf{C}			
	A)1 ^v	B) 2º	C) 3º	U) 4 ⁰		
VI -	VI - CLASS 20					

Τ

15.	Which of the following pair is complement a	angles?	
16	A) 23°, 67° B)53°, 67° Which of the following pair is supplement a	C) 63º, 37º	D) 43º, 67º
	A) 108°, 52° B) 108°, 82°C) 102°,	58° D) 108°, 1	72 ⁰
17. 	Which of the following is reflex angle?	C) Poth 1 and 2	D)1700
 18.	Each angle in a pair of complementry angle	es is	D)179°
	A) Obtuse 2 B) Reflex	C) complete	D) Acute
19. 	If $- \angle A = 72^\circ$, then $- \angle A + 132^\circ$ is less that $3^\circ B + 132^\circ$	an 360° bydegre C) 167º	es D) 168º
20.	If two complementary angles are differ by 1	0° , then the angles are	2)100
 21	A) 30° , 60° B) 70° , 20°	C) $50^{\circ},40^{\circ}$	D) 45º, 55º
2 1. 	A) 50° B) 60°	C) 40°	– D) 20º
			-
	★ I+I → <u>ACHIEVERS</u>	<u>(Level - II)</u> ◆ ¥ -¥ ◆	
Solv	$\frac{1}{2} \frac{1}{2}		
1. a	If $x = \frac{3}{4} = \frac{23}{4}$ then find the value of x + y	+ Z	
2.	If $x + 10$ and $x + 40$ are complementary angles	s then find the value of a	ngles
3.	Find the Supplementary angles of the follow	ving (i) 135° (ii) 120°	(III) 170 [°]
4 . 	Convert 3 [°] into minutes		
ļ	EXPLORER	S (Level - III)	* 1 + 1 +
¦ I.	MCQ's with more than one correct answe	<u>ers</u>	
	This section contains multiple choice questions. Eac or MORE is correct. Choose the correct options	h question has 4 choices (A)	, (B), (C),(D) out of which
22.	If supplement of 123º is added to complemen	t of 52°, then their sum is	
	A)>90° B)<180°	C) <360°	D) <30°
23.	If $\angle BAD$ = (5x–30) $^{\circ} \angle CAD$ =2x $^{\circ}$, AB and AC	are opposite rays the va	lue of xº is
1	A) 2 X 15° B) 40°	C) 30°	D) 50°
24.	In the linear pair, the sum of angles is	() 1900	
 II.	Assertion Reasoning Type:	C) 100°	D) 270°
	This section contains certain number of questions	s. Each question contains S	tatement – 1 (Assertion) and
Stater	ment -2 (Reason). Each question has 4 choices (A), (E	B), (C) and (D) out of which 0	ONLY ONE is correct Choose
the co	orrect option. A) Both Assertion and Reason are true	B) Both Assertion and	l Reason are false
	C) Assertion is true, Reason is false.	D) Assertion is false,	Reason is true.
25.	A: If x +20°=70°, y+30°=180°, z –25=135°, t M	then $(\angle x + \angle y + \angle z)^0$ is o	complete angle
	7		
	K		
ļ	X V V R		
	Z		
VI -	CLASS		21

22

¦Ψ	Angle between parallel lines:					
 lines 	For any two lines having a common point, we can find the angle between them. But parallel never intersect, so we can consider the angle between them as 0°.					
Ψ	Distance between parallel lines:					
 There	Any two parallel lines never intersect and the distance between them is same any where. Therefore the distance between the parallel lines is a constant.					
ĮΨ	Transversal:					
 	A straight line which intersect two (or) more given lines at different points is called a transversal $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$					
<u>§§</u>	CLASSIFICATION OF ANGLES FORMED BY A TRANSVERSAL:					
Ψ	Alternate angles: Two angles are said to be a pair of Alternate angles if					
	a) They are on either side of the transversal.					
ĺ	b) Both are interior angles or exterior angles.					
	c) They are not adjacent angles.					
İ	Note: If alternate angles are equal, then the lines are parallel.					
Ψ 	Alternate interior angles:					
	The pair of alternate angles inside the two parallel lines are called alternate interior angles.					
Ψ	Alternate exterior angles:					
	The pair of alternate angles exterior to the two parallel lines are called Alternate exterior angles.					
ĮΨ	Pairs of alternate interior angles: $(\angle 3, \angle 6)$ and $(\angle 4, \angle 5)$					
IΨ	Pairs of alternate exterior angles: $(\angle 1, \angle 8)$ and $(\angle 2, \angle 7)$					
Ϋ́	Corresponding angles: Two angles are said to be a pair of corresponding angles if					
	a) They are on the same side of the transversal					
 	b) One is an interior angle and the other is an exterior angle					
	c) They are not adjacent angles.					
	Note: If corresponding angles are equal, then the lines are parallel.					
	1 3 4 l					
	56 m 78					
Ψ 	Pairs of corresponding angles: $(\angle 1, \angle 5), (\angle 3, \angle 7), (\angle 2, \angle 6), (\angle 4, \angle 8)$					
ĮΨ	Cointerior (or) Allied angles :					
 calleo	The pair of angles which are interior and on the same side of the transversal are alled allied angles.					
	The sum of co-interior angles = 180° (where lines must be parallel)					
Ψ	Allied angles: $(\angle 4, \angle 6), (\angle 3, \angle 5)$					
	LectureTask					
	CLASS 24					
, , , ,						

		TEACHING TAS	<u>эк</u>					
 .	MCQ's with sing	le correct answers	A					
1.	If angle CDE = 80° AB CD, BC DE, then the value of x is $$							
	×° B							
	A) 110º	B) 100°						
	C) 120°	D)130º	E					
2.	PF BE CD if ang	le ABC=100°, angle of BCD =	=110°, then the value of x is \int_{a}^{b}					
			P /x F					
	A)30°	B) 40°	B					
	C) 50°	D) 20°						
3.	The sides QP and	d SR of Quadrilateral PQRS	are produce. If PQ SR,then					
			$S \rightarrow R \rightarrow /y \rightarrow$					
	A) x+a=y+b	B) x+y=a+b						
	C) x+b=y+a	D) Both (A) (B)						
		20	A					
4.	If AB CD and CD	EF , then the value of x is	35° B					
		E A	$E \rightarrow F$					
	A) 90º	B) 89º	x					
	C) 92º	D) 91º	$C \rightarrow D$					
5.	In the adjoining fi	gure, ∠EFB =66⁰, ∠BFO=4	3° , $\angle OGF=23^{\circ}$, $\angle OGD=y^{\circ}$, then y =					
			66°					
	A) 42 ⁰	B) 43 ⁰	G O					
	C) 44 ⁰	D) 41º						
		,						
6.	If AB CD and P	is any point as shown in the fi	gure, then $\angle ABP + \angle BPD + \angle CDP$ is					
	A) 72°	B) 180°						
	C) 540°	D) 360°	P					
7.	If $l \parallel m$ and plin a	nd \neq 1 = 75°, then	C D					
	A) $2 = 1 + 1/2$	3 of a right angle	p n 1 1					
	B) ∠2 = ∠1 + 2	/3 of a right angle						
	C) ∠2 = ∠1 + 1/	2 of a right angle	17 37					
	D) $\angle 2 = \angle 1 + 1/2$	6 of a right angle	m2					
	·		l l					
X7F	CLASS		* *					
VI -	CLASS		25					

4.	In the adjoining figure AOB is straight line. If x:y:z= 6:5:4 find the values of x,y,z.						
 5. 	In the adjoining figu	$\overrightarrow{DOE} \text{ and } \angle EO$	$B \xrightarrow{112^{\circ}}_{C} \xrightarrow{B}_{90^{\circ}}_{X3x}$				
 		LEARNER	R'S TASK				
		• II • BEGINNER	<u>S (Level - I)</u> ◆ ∎ ∎ ×				
<u>MCC</u>	<u>Q's with single corre</u>	ect answers					
 1.	Two lines which nev	ver meet , even when the	y are extended infinitely	are known as			
	A) Intersecting lines	;	B) perpendicular lines				
	C) parallel lines		D)concurrent lines				
2 .	Angle between two	parallel lines are	dal				
	A) 0 ⁰	B)90º	C)180º	D)360°			
3.	Distance between t	wo parallel lines are	0				
	A) Constant	B) Changes	C) 0	D) None			
4.	a straight line which	n intersect two (or) more	given lines at different p	oints is called is			
ļ	A) Transversals	B)Interse	ecting lines				
 	C) concurrent line	s D)Perper	ndicular lines				
5.	Two angles are said	to be pair to be of altern	ate angles if				
 	A) They are on eithe	er side of the transversal					
	B)Both are interior a	angles or exterior angles					
	C)They are not adja	icent angles	D)All the above				
' 6. 	If the lines are paral	lel then the correspondin	ig angles are				
	A) Equal	B) Supplementary	C) Complementary	D) None			
<i>1</i> . 	If the lines are paral	B) Supplementate ang					
	A) NOT Equal	B) Supplementary	C)Complementary	D) Equal			
0 . 	In the given ligure, 7	$AB = (2)(\pm 10)^{\circ}$ then $\sqrt{5}$	$(2x+30)^\circ,$	1			
ļ		$6 - (3y + 10)^{\circ}$, then 25	15	$2 \int_{1}$			
 	A) 60°	B) 70°	A	3 4 B			
İ	C) 50°	D) 80°					
	0,00		1	-			
X 7 T	CLASS			20			
VI -	ULASS			28			

II .	Multi Correct Answer						
 ◆	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which						
ONE	or MORE is correct. Choose the correct options $\xrightarrow{A} l$						
4 . 	If m EF AB, I DE BC and D is the midpoint of AB, then						
 	A) E is the midpoint of AC B) F is the Midpoint of BC $B = F + C = F$						
1	C) E is not the midpoint of AC D) F is not the mid point of BC						
111.	Reasoning Type:						
Stater	This section contains certain number of questions. Each question contains Statement -1 (Assertion) and ment -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose orrect option.						
İ	A) Both Assertion and Reason are true. B) Both Assertion and Reason are false.						
 	C) Assertion is true, Reason is false. D) Assertion is false, Reason is true						
5.	A: AD EF BC if EB=2AE and DF = 1.5cm the,						
	length of FC is 4cm						
	<i>R:</i> Three or more parallel lines intersecting any						
İ	two transverals make intercepts on them in the same proportion,						
IV.	Comprehension Type:						
◆ 	This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option. If $AD PQ RS BC. CD=30cm$, then						
6.	The length of DP + PR is						
	A) 50/3cm B) 15(2/3)cm C) $16\frac{2}{3}$ cm D) (A) & (C)						
7.	The length of DC – PR is A $6 \text{ cm } Q 9 \text{ cm } S 12 \text{ cm } B$						
	A) 20cm B) 15cm C) 25cm D) 10cm						
8.	The length of DP + RC is						
 	A)15cm B) 20cm C) 10cm D) 5cm						
v.	Matrix Match Type:						
 colun s) in exam]	This section contains Matrix-Match Type questions. Each question contains statements given in two nns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, Column–II . The answers to these questions have to be appropriately bubbled as illustrated in the following ple. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix						
shoul	ld be as follows:						
9 . 	Column-I Column-II						
	1) If a transversal 't' intersects two lines / and m a) on all transversals						
	in distinct points A and B then perpendicular to						
	them the lines / and m are said to make						
VI -	CLASS 32						

2) Two parallel lines make equal intercepts b) Equal intersepts on any other transvarsal as well 3) If three parallel lines make equal c) in the same proportion intercepts on one transversal, then they make 4) Three or more parallel lines intersecting d) An intercept AB on 't' any two transvelsals make intersepts on them Solve the following From the given diagram 1. $DE \parallel BC$, AD = 4x - 3, AE = 8x - 7, BD = 3x - 1and CE = 5x - 3 then find the value of x If $l \parallel DE \parallel BC$, $\frac{AD}{DB} = \frac{5}{8}$, AC = 3.9 cm then find AE 2. R LEARNER'S TASK BEGINNERS MCQ's with single correct answers Ι. From the given diagram if parallel lines, EF, GH, IJ are intercepted by transversals 1. I and m. Where EG = 2 cm, GI = 4 cm, FH = 3 cm, then HJ is 2 cm 3 cm G4 cm H A) 8 cm B) 9 cm D) 6 cm C) 12 cm 2. I || m || n and transversals a and b through A intersects them at A, M, K, N, L. If AN = 7 cm, NL = 21 cm, KM = 24 cm, then the length of intercept \overline{AM} is 24 cm A) 8 cm B) 9 cm M C) 10 cm D) 12 cm 3. If / || ED || CB, where AB = 12 cm, AC = 16 cm, and EC = 4 cm, then the length of AD is..... 1 A) 6 cm B) 9 cm C) 10 cm D) 8 cm DA, CB, OM are each perpendicular to line segment AB where O is the point of intersection of 4. AC and DB. If OA = 2.4 cm, OC = 3.6 cm, then AM : BM is A) 2:1 B) 2:5 C) 2:3 D) 2:4 Μ R VI - CLASS 33

LINES AND ANGLES

VIA'	THEMATICS			LINES AND ANGLES	
5.	If BD CE and A	D : DE = 4 : 7, AB = 20 c	m, then the length of	BC is	
			_	<u>ک</u>	
	A) 25 cm	B) 30 cm	D		
	C) 40 cm	D) 35 cm	A B C		
6.	From the given diagram, If CD LA and DE AC, then the length of EC is \bigwedge^{A}				
				D	
	A) 8 cm	B) 6 cm			
	C) 4 cm	D) 2 cm		B 8 cm E C 6 cm L	
II.	(→ MCQ'S with mo	EXPL ■ ■ ■ ► EXPL re than one correct ans	ORERS		
•	This section contains	multiple choice questions. E	ach question has 4 choic	ces (A), (B), (C),(D),out of which	
ONE	E or MORE is correct.	Choose the correct options			
7.	Given AD EF I	-IG BC. If CD = 60 cm, th	hen the length of DF,	FH and HC respectively are	
			F	T H	
	A) 10 cm	B) 20 cm	D		
	C) 30 cm	D) 45 cm	inde		
			A 5 cm E	2 10cmG 15 cm B	
8.	In the Figure $l \parallel :$ A) $\angle 1 = \angle 5$	m and n is a transversal B) $\angle 3 = \angle 5$	then	l m	
	C) ∠5 = ∠7	D) $\angle 2 = \angle 6$	8 7		
III.	Assertion & rea	soning	n		
♦ State the c	This section contai ement – 2 (Reason). Eac correct option.	ins certain number of question ch question has 4 choices (A),	ons. Each question cont (B), (C) and (D) out of w	tains Statement – 1(Assertion) and which ONLY ONE is correct Choose	
	A). Both Assertion	n & reason are true, reasc	on is the correct explai	nation of Assertion.	
		n & reason are true, reasc	on is not correct expla	nation of Assertion	
	B). Both Assertion				
	B). Both Assertion C). Assertion is tr	⁻ ue, reason is false.	D). Assertion is	false, reason is true.	
9.	B). Both Assertion C). Assertion is the ASSERTION : A	rue, reason is false. BC is an isosceles triang	D). Assertion is le with AB=AC.	false, reason is true.	
9.	B). Both Assertion C). Assertion is the ASSERTION : A Further DE / BC	rue, reason is false. BC is an isosceles triang and D is the midpoint of	D). Assertion is le with AB=AC. AB. Therefore	false, reason is true.	
9.	B). Both Assertion C). Assertion is the ASSERTION : A Further DE / BC triangle ADE is is	rue, reason is false. BC is an isosceles triang and D is the midpoint of osceles	D). Assertion is le with AB=AC. AB. Therefore	false, reason is true.	
9.	B). Both Assertion C). Assertion is the ASSERTION : A Further DE / BC triangle ADE is is REASON If three	rue, reason is false. BC is an isosceles triang and D is the midpoint of osceles e parallel lines make equ	D). Assertion is le with AB=AC. AB. Therefore al intercepts on	false, reason is true.	
9.	 B). Both Assertion C). Assertion is the ASSERTION ASSERTION ASSERTION AND ASSERTION ASSERTION Further DE / BC triangle ADE is is REASON If three one transversal, 	rue, reason is false. BC is an isosceles triang and D is the midpoint of osceles e parallel lines make equ then they make equal int	D). Assertion is le with AB=AC. AB. Therefore al intercepts on ercepts on any	false, reason is true. $l \xrightarrow{A} \xrightarrow{D} \xrightarrow{B} \xrightarrow{C} \xrightarrow{C}$	
9.	 B). Both Assertion C). Assertion is the ASSERTION ASSERTION ASSERTION AND ASSERTION AND ASSERTION Further DE / BC triangle ADE is is REASON If three one transversal, other transversal 	rue, reason is false. BC is an isosceles triang and D is the midpoint of osceles e parallel lines make equ then they make equal int I as well.	D). Assertion is le with AB=AC. AB. Therefore al intercepts on ercepts on any	false, reason is true. $I \xrightarrow{A} \\ D \xrightarrow{E} \\ B \xrightarrow{C} $	
9.	 B). Both Assertion C). Assertion is the ASSERTION ASSERTION AND ASSERTION AND ASSERTION IS TREASON IF three one transversal, other transversal ASSERTION: If the ASSERTION: If ASSERTION: If ASSERTION: If ASSERTION: ADD ASSERTION ADD ASSERTUPADOADD ADD ASSERTUPADOADD ADD ASSERTUPA	rue, reason is false. BC is an isosceles triang and D is the midpoint of osceles e parallel lines make equ then they make equal int I as well. $\overline{XY} = 228000$ cm, ther	D). Assertion is le with AB=AC. AB. Therefore al intercepts on cercepts on any n its length in kilomet	false, reason is true. $I \longrightarrow B$ C tres is 228km.	

IV.	<u>Comprehens</u>	Comprehension Type:								
¦ ◆ 	This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option									
	From the adic	From the adjoining figure								
	$/COD = (3x + 20)^{\circ} /COB = (2x - 5)^{\circ} /AOB - (x - 5)^{\circ}$									
	and $\angle A \cap D = 4x^{\circ}$ (3x + 20), $\angle C \circ D = (2x^{\circ} \circ), \angle H \circ D = (x^{\circ} \circ)$ (3x + 20)° (3x + 20)°								-	
 11.	x ^o =	- 14						4x°	A	
	A) 35°	- E	3) 36°		C) 37	0		D) 38°		
12.	∠AOC =									
	A) 94°	E	3) 95°		C) 91	0		D) 96°		
13.	Reflex angle	of ∠COD	is							
ļ	A) 235°	E	3) 225°		C) 22	4°		D) 205°		ĺ
V .	MATCH THE	FOLLOW	<u>/ING</u>							
colui s) in exan shou	mns which have to Column–II. The d aple. If the correct n ld be as follows:	<i>be matched.</i> Inswers to th natches are A	statements ese questio 1-p,A-s,B-r,	(A, B, C, I) ons have to B-r,C-p,C-	be appropr g and D-s,th	n–I have iately but ten the co	to be mate bbled as ill rrect bubb	vnea with s lustrated in led 4*4 ma	the follov the follov trix	(p, q, r, ving
14.	Using the giv	en figure,			- 1	4		^	50°	→
	Column – I	đ	NE E		Colui	mn – II	G X	ŝ	ſ	י ו
	a) xº =			204	1) 120)o				
	b) yº =	_ / '	~		2) 300)	E 🛹	y°	120°	F
	c) (xº + t)º = _				3) 50 ^o)		t t		>
ļ	d) (z – y) =				4) 17()o			U	
					5) 10 ^o)	_			
				P	KEY	ſ				
 ΦΦ	TEACHING TA	ASK :				(
	1)C 2) C	3) D	4)A,B	5)D	6)D	7)A	8)B	9)	D,A B,C	ĺ
<u>ΦΦ</u> □	LEARNER'ST	<u>ASK :</u>								
	1)D 2) A	3) B	4) C	5)D	6)C					ļ
	EXPLORERS :	7) A,B,C	8)A,I	B,C,D	9-D,	1	0) D	11)A	12) B	13)A
İ	14) 3,1,4,5									
VI ·	- CLASS									35