FUNCTIONS

 	FUNCTIONS
<u>§§</u>	Cartesian product :
!	The cartesian product of two sets A and B is $A \times B = \{(x,y): x \in A, y \in B\}$
<u>§§</u>	Relation :
	Any subset of $A \times B$ is called a relation from A to B.
	The number of relations from A to B is $2^{n(A).n(B)}$
<u>§§</u>	Function :
	Let $f: A \rightarrow B$ be a relation then it is called a function or mapping from A to B, if every
eler	ment in A has unique image in B.
<u>§§</u>	<u>Domain, codomain, Range :</u>
	Let $f: A \rightarrow B$ be a function then A is called the domain and B is called the co-domain of the
i func	
	The set of images of the domain A is called the range of f. The range of a function denoted $\vec{r}(A)$ ($r=R$)
DYI	(A) (\subseteq B) The number of functions from A to B is {n(B)} ^{n(A)}
i	
	The number of relations from A to B which are not functions is $2^{\{n(A),n(B)\}} - \{n(B)\}^{n(A)}$
<u>§§</u>	One-one function (Injection), Many-one function
İ	A function $f: A \rightarrow B$ is one-one (or injective) if distinct elements of A have distinct images in
B. A	function which is not one-one is called many-one.
	Let $n(A) = r$ and $n(B) = n$. Then the condition to define an injection from A to B is $r \le n$
and	the number of such injections is ${}^{n}P_{r}$.
!	If $r > n$ then the number of injections is 0.
 <u>§§</u>	On to function (Surjection), In to function :
<u>مم</u> 	$f: A \rightarrow B$ is called an onto or a surjection if every element of B has at least one pre-imag in
A.	
	If $f: A \rightarrow B$ is onto (a surjection) then the range of f is B. i.e., $f(A) = B$.
1	If $f: A \rightarrow B$ is not onto then it is called an into function.
ļ	The condition for a function $f: A \rightarrow B$ to be a surjection from A to B is $n(A) \ge n(B)$.
	If $n(A) = n(\ge 2)$, $n(B) = 2$ then the number of on-to functions from A to B = 2 ⁿ - 2.
1	The number of surjections from A to B is
İ	$(-1)^{n-1} n C$
	$n^{r} - {}^{n}C_{1}(n-1)^{r} + {}^{n}C_{2}(n-2)^{r} - {}^{n}C_{3}(n-3)^{r} + \dots + (-1)^{r} + C_{n-1}$
	Where $n(A) = r$ and $n(B) = n$
<u>§§</u>	Bijection :
	A function which is one-one and onto is called a one-one onto or a bijection.
	If $f: A \rightarrow B$ is a bijective function then $n(A) = n(B)$
İ	If $n(A) = n(B) = n$, then the number of injection (or surjection or bijections) from A to B is n!.
1	If $n(A) \neq n(B)$ then the number of bijections is 0.
1	
X -	CLASS 1 Powered by logicalclass.com

<u>§§</u> **Types of functions :** i) **Constant function :** A function f: $A \rightarrow B$ is a constant function if the range of f contains only one element. The number of constant functions from A to B is n(B). **Equality of Funtions :** ii) Two functions f(x) and g(x) are equal iff (a) the domain of f is the domain of g and (b) f(x) = g(x) for all the elements of domain iii) **Identity function :** Let A be a non - empty set then $f: A \rightarrow A$ defined by $f(x) = x \forall x \in A$ is called the identity function on A and it is denoted by I_{4} . iv) Inverse function : If f: A \rightarrow B is a bijection then f^{-1} : B \rightarrow A defined by $f^{-1}(x) = y \Leftrightarrow f(y) = x, \forall x \in B, y \in A$ is called the inverse of f. If the inverse of a function exists, then it is said to be invertible. The inverse of a function, if it exists, is unique. **Composite function :** V) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions then $gof: A \rightarrow C$ is defined by $(gof)(x) = g\{f(x)\} \forall x \in A \text{ is called the composite function of } f \& g$. **¶** Properties of composite function : If $f: A \rightarrow B$, $g: B \rightarrow C$ are one-one then gof : $A \rightarrow C$ is also one-one. a) If $f: A \rightarrow B$, $g: B \rightarrow C$ are onto then $gof: A \rightarrow C$ is also onto. b) If $f: A \to B$ and $g: B \to C$ are bijections then $gof: A \to C$ is a bijection c) $\&(gof)^{-1} = f^{-1}og^{-1}.$ If gof: $A \rightarrow C$ is one-one then f is one-one d) If $gof: A \rightarrow C$ is onto then g is onto. e) If $f: A \to B$ is a function then $foI_A = I_B of = f$ f) If $f: A \to B$ is a bijection then $fof^{-1} = I_{R}, f^{-1}of = I_{A}$ g) If $f: A \to B$ and $g: B \to A$ are functions such that $gof = I_A$ and $fog = I_B$ then h) $f: A \rightarrow B$ is a bijection and $g = f^{-1}$. If $f: A \to A$ is a bijection then $fof^{-1} = f^{-1}of = I_A$ i) $fog \neq gof$ in general. If $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$ are functions then ho(gof)=(hog)of. i) **Real valued function :** vi) If the range of $f \subset R$ then f is a real - valued function. $(a.f+b.g)(x)=a.f(x)+b.g(x), x \in A \cap B; a, b \in R$

vii) <u>Algebr</u>	a of real valued function :
Let f :	$A \rightarrow R \& g : B \rightarrow R$ then
(i) $(f \pm g$	$g(x) = f(x) \pm g(x) \forall x \in A \cap B$
(ii)(fg)	$(x) = f(x).g(x) \forall x \in A \cap B$
$\left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \qquad \text{(iii)} \left(\frac{f}{g} \right)$	$\Big) (x) = \frac{f(x)}{g(x)}, \forall x \in A \cap B \& g(x) \neq 0$
(iv) $(f +$	$(k+k)(x) = f(x) + k, k \in \mathbb{R}$
$(\mathbf{v}) \ (kf)$	$(x) = kf(x), k \in \mathbb{R}$
$ $ (vi) f^n	$(x) = \{f(x)\}^n, n > 0$
(vii) $ f $	$(x) = f(x) , x \in A$
	odd function :
$\begin{array}{c} I \\ I \end{array} f: A \to I \end{array}$	R,A \subseteq R and $f(-x) = f(x) \forall x \in A$ then f is an even function.
	$R,A \subseteq R$ and
f(-x)	$=-f(x)$ $\forall x \in A$ then f is an odd function.
∣ <u>¶</u> Importa	ant points of odd and even functions :
l a)	The graph of an odd function is symmetric about origin.
b)	The graph of an even function is symmetric about Y-axis.
c)	A function which is even or odd, when squared becomes even function.
d)	The derivative of an odd function is an even function and derivative of an even
function is an	
e)	Every function can be expressed as the sum of an even and an odd function.i.e.,
$\int f(x) = \frac{1}{2} \{f(x)\}$	$(+f(-x))$ + $\frac{1}{2}$ { $f(x)-f(-x)$ } = {even function} + {odd function}
f)	A function may neither be even nor odd.
g)	f(x) = 0 is the only function which is defined on the entire number line is even
and odd at the	e same time.
h)	Every even function y = f(x) is not one-one $\forall x \in D_f$.
i)	If f and g both are even or both are odd then the function f.g will be even but if
any one of the	em is odd then f.g will be odd.
a) Even or od	Id extension : if $f(x)$ is defined for $x > 0$, $f(x)$ can be made even by re-defining it as
	by redefining it as -f(x) for x< 0
ix) <u>Polynoi</u>	mial function :
If <i>f</i> : <i>A</i> –	$\rightarrow R$, A \subseteq R is defined by f(x)= $a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + + a_{n-1} x + a_n$,
$a_0 \neq 0, a_1, a_2$.	$a_n \in R$, n is a non-negative integer is a polynomial function of degree n.
I I	

-	
x)	Rational function :
 	A function of the form $\frac{f(x)}{g(x)}$ where f(x) and g(x) are polynomial functions and $g(x) \neq 0$ is
	called a rational function.
 xi)	Algebraic function :
 	A function obtained by a finite number of algebraic operations (addition, subtraction, multiplication, division, root extraction) on polynomial function is called an algebraic function.
¦ xii)	Explicit & Implicit functions :
i I	A function $f(x, y) = 0$ is said to the an explicit function if it expressed as $y = f(x)$ otherwise it is called an implicit function.
xiii)	Exponential function :
	If $a \in R$, a>0 then $f(x)=a^x$ is called an exponential function.
xiv)	Logarithmic function :
1	If $a \in R$, $a > 0$, $a^{1} 1$ then $f(x) = \log_{a} x$ is called a logarithmic function
xv)	Step function(Greatest integer function) :
	If x is any real number then there exist integers n and n+1 such that $n \le x < n+1$. Then the
i integ	ral part of x is defined as n. It is denoted by $[x]$.
1	perties of greatest integer function :
	(i) If $f(x) = [x + n]$, where $n \in I$ and [.] denotes the greatest integer function, then
f(x) =	= n +[x]
i	(ii) $x = [x] + \{x\}$, [.] denote the integral and $\{.\}$ fractional part of x respectively
	(iii) $x - 1 < [x] \le x$ (iv) $[-x] = -[x]$, if $x \in I$
	(v) $[-x] = -[x] - 1$, if $x \notin I$
	(vi) [x] – [−x] = 2n - 1, if n - 1 < x < n, <i>n</i> ∈ <i>I</i>
İ	(vii) $[x] - [-x] = 2n + 1$, if $x = n + \{x\}$, $n \in I$
	(viii) $[x + y] \ge [x] + [y]$.
 XV I)	Modulus function(Absolute value function) :
	The absolute value or numerical value or the modulus of real number x, denoted by $ x $,
je do	fined as
1	$\begin{bmatrix} -x & if & x < 0 \end{bmatrix}$

$$|x| = \begin{cases} -x & if & x < 0\\ 0 & if & x = 0\\ x & if & x > 0 \end{cases}$$

Thus we have $|x| \ge 0$ and |-x| = |x|

<u>¶</u> Properties of modulus function

(i)
$$|x| \le a \Longrightarrow -a \le x \le a; (a \ge 0)$$

(ii)
$$|x| \ge a \Longrightarrow x \le -a \text{ and } x \ge a; (a \ge 0)$$

L

(iii) $|x+y| = |x|+|y| \Leftrightarrow x \ge 0$ and $y \ge 0$ or $x \le 0$ and $y \le 0$ (iV) $|x-y| = |x|-|y| \Rightarrow x \ge 0$ and $|x| \ge |y|$ or $x \le 0$ and $|y| \le |y|$ (v) $|x \pm y| \le |x| + |y|$ (vi) $|x \pm y| \ge |x| - |y|$ <u>§§</u> **Signum Function :** The signum function f is defined as $sgn(x) = \begin{cases} \frac{|x|}{x} \text{ or } \frac{x}{|x|}; & x \neq 0\\ 0; & x = 0 \end{cases}$ <u>§§</u> **Periodic function :** A function f(x) is said to be periodic function if, there exists a positive real number T, such that, $f(x + T) = f(x), \ \forall x \in R.$ [-a,a] (-a,a) Then, f(x) is periodic with period T, where T is least positive value. **Function** Range $\sqrt{a^2-x^2}$ [0,a] $\frac{1}{\sqrt{a^2 - x^2}}$ $\left[\frac{1}{a},\infty\right)$ $\sqrt{x^2-a^2}$ $[0,\infty)$ $\frac{1}{\sqrt{x^2 - a^2}}$ $(-\infty,-a)\cup(a,\infty)$ $(0,\infty)$ a^x , $(a>0, a \neq A)$ $(-\infty,\infty)$ $(0,\infty)$ e× $(-\infty,\infty)$ **(**0,∞ **)** $\log_a x$ (0,∞) $(-\infty,\infty)$ $(a > 0, a \neq 1)$ |x| $(-\infty,\infty)$ **[**0,∞**)** $(-\infty,\infty)$ Ζ [X] $\{x\} = x - [x]$ $(-\infty,\infty)$ [0,A) \sqrt{x} **[**0, ∞ **) [**0, ∞ **)** $(-\infty,\infty)$ [-1,1] $\sin x$ $\cos x$ $(-\infty,\infty)$ [-1,1] $R - \left\{ (2n+1)\frac{\pi}{2} : n \in Z \right\}$ $(-\infty,\infty)$ tan x $R-\left\{n\pi:n\in Z\right\}$ $(-\infty, -1] \cup [1, \infty)$ cosec x

X - CLASS

Powered by logicalclass.com

	HEMATICS		FUNCTIONS
 	Function	Domain	Range
 	sec x	$R - \left\{ (2n+1)\frac{\pi}{2} : n \in Z \right\}$	(-∞,-1]∪[1,∞)
 	cot x	$R-\{n\pi:n\in Z\}$	(-∞,∞)
 	$Sin^{-1}x$	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
 	$Cos^{-1}x$	[-1,1]	[0, <i>π</i>]
 	$Tan^{-1}x$	$(-\infty,\infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
 	$Cosec^{-1}x$	$(-\infty,-1]\cup[1,\infty)$	$\left[-\frac{\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right]$
 	$Sec^{-1}x$	$(-\infty, -1] \cup [1, \infty)$ $(-\infty, -1] \cup [1, \infty)$ $(-\infty, \infty)$ $(-\infty, \infty)$ $(-\infty, \infty)$ $f(x + y) = f(x)f(y), \text{ then } f(x + y) = f(x) + f(y) \text{ then } f(x + y) = f(x) + f(y) \text{ then } f(x + y) = f(x) + f(y) \text{ then }$	$\left[0,\frac{\pi}{2}\right]\cup\left(\frac{\pi}{2},\pi\right]$
 	$Cot^{-1}x$	(-∞,∞)	(0, <i>π</i>)
i I	a cosx + b sinx	(-∞,∞)	$\left[-\sqrt{a^2+b^2},\sqrt{a^2+b^2}\right]$
 	a cosx + b sinx + c	(-∞,∞)	$\left[c - \sqrt{a^2 + b^2}, c + \sqrt{a^2 + b^2}\right]$
 	If f(x) is a function such that	at $f(x+y) = f(x)f(y)$, then $f(x)$	$\mathbf{x} = \mathbf{k}^{\mathbf{x}}$.
 	If f(x) is function such that	f(x+y) = f(x) + f(y), then $f(x) = f(x) + f(y)$	\mathbf{x}) = $\mathbf{k}\mathbf{x}$
 	If f(x) is function such that	f(xy) = f(x) + f(y), then $f(x) =$	$= k \log_a x (a \neq 1, a > 0)$
 	If f(x) is a polynomial funct	fon such that $f(x) + f\left(\frac{1}{x}\right) = f(x)$	$f\left(\frac{1}{x}\right)$, then $f(x) = 1 \pm x^n$.
 	If f(x) is a function such tha	at $f(x+y)+f(x-y)=2f(x)f(x)$	y), then $f(x) = \frac{k^{x} + k^{-x}}{2}$.
 		TEACHING TASK	
 1.	If f : A \rightarrow B is a function the	en	
 		$f(A) \subset B$ $C) f(A) \subseteq B$	D) B⊆f(A)
2 . 	If f and g are functions suc A) f is onto B)	h that fog is onto then g is onto C) gof is onto	 D) Neither f nor g is onto
3. 	If $f: A \rightarrow B$ is surjective th A) no two elements of A has	ien	,

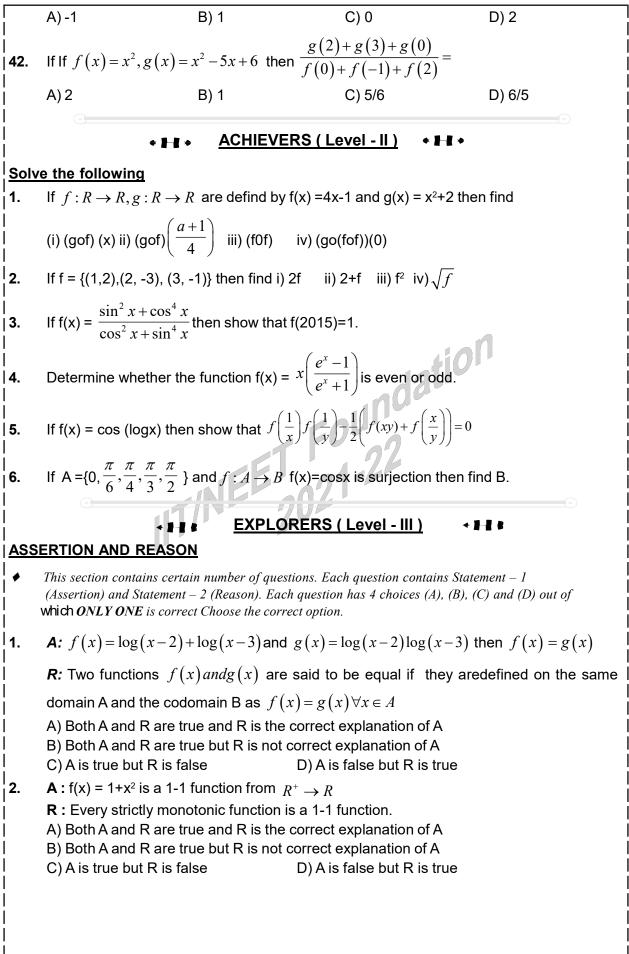
 	 B) Every element in A has an image in B C) every element of B has at least one pre-image in A D) A and B are finite non empty sets 						
4.	If $f: A \to B$ is a bijed	tion then $f^{-1} o f =$					
	A) fof^{-1}	B) <i>f</i>	C) <i>f</i> ⁻¹	D) <i>I</i> _A			
5.	If $f: A \to B$ is a cons	stant function which is o	onto then B is				
	A) a singleton set	B) a null set	C) an infinite set	D) a finite set			
6.	The function $y = f(x)$ s	such that $f\left(x+\frac{1}{x}\right)=x^2$	$+\frac{1}{x^2}$				
 	A) 2 - x ²	B) x ² - 2	C) x ² + 4	D) 4x ² - 2			
7.	f , h are relations from	om A to B where $A = \{a, a\}$	$\{a, b, c, d\}, B = \{s, t, u\} de$	efined as			
	f(a) = t, f(b) = s, f(b) the which of the follow	(c) = s, f(d) = u, h(a) wing is true	=s,h(b)=t,h(c)=sh(c)	[a) = u, h(d) = u			
	A) f , h are functions	-	B) f is a function, b	ut h is not a function $\ $			
	C) <i>h</i> is a function, bu	t f is not a function	D) neither f nor h i	s a function			
8.		ns from A={1,2,3} to B					
 9.	A) 4 ³ The number of function	B) 2 ⁷ ons that can be defined	C) 2^{12} from A={-1 0 1} to F	D) 3^4 B = {2.7.8.9} is			
	A) 24	B) 12	C) 81	D) 64			
 	The number of relatio A) 240	ns from A={2,6} to B={ B) 16	1,3,5,7} that are not fu C) 128	nctions from A to B is D) 200			
11.		ne functions that can b		<i>'</i>			
12.	A) 3 ⁵ The number of possib	B) 5 ³ ble many to one functio	C) ${}^{5}p_{3}$	D) 5! $B = \sqrt{12345}$ is			
' 2. 		B) 25		D) 20			
13.	If A = $\{1, 8, 11, 14, 25\}$ the	en the condition to defin	ne a surjection from A t	o B is			
 	A) $n(A) + n(B) = 20$		C) n(B) ≤ 5	D) n (B) = 10			
j 14.	, ,	$\{4,5,6,7,8\}$ then the nu		_ · · · ·			
15.	A) 81 The number of suried	B) 64 tions that can be define	C) 48 ed from A = {1 2 8 9} to	D) 150 B = $\{34510\}$ is			
	A) 4^4	B) 4 ²	C) 24	D) 18			
16.	,	surjective mappings that	at can be defined fron	, , , , , , , , , , , , , , , , , , ,			
	= $\{2,8,16,32,64\}$ is						
	A) 1024	B) 20	C) 505	D) 625			
17. 	If A = {11, 12, 13, 14} is	and B = $\{6, 8, 9, 10\}$ then	the number of bijectio	ns defined from A to B 			
	A) 256	B) 24	C) 16	D) 64			
18.	The number of non-b	ijective mappings poss	ible from A = $\{1, 2, 3\}$ to	B = {4, 5} is			
 	A) 9	B) 8	C) 12	D) 6			

The number of constant functions possible from R to B = $\{2,4,6,8,\dots,24\}$ is 19. A) 24 C) 8 D) 6 B) 12 20. A constant function $f : A \rightarrow B$ will be onto if A) n(A) = n(B)B) n (A) =1 C) n (B) = 1 D) n(A) > n(B)21. Let $A = \{1, 2, 3, \}, B = \{a, b, c\}$ and If $f = \{(1, a), (2, b), (3, c)\}, g = \{1, b), (2, a), (3, b)\}, h = \{(1, b), (2, c), (3, a)\}$ then A) g and h are injections B) f and h are injections C) f and g injections D) f,g and h are injections $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right) \rightarrow (-\infty,\infty)$ defined by f(x) = 1+3x is 22. A) one-one but not onto B) onto but not one-one C) neither one - one nor onto D) bijective 23. $f: R \rightarrow R$ defined by $f(x) = \cos(2x + 3)$ is A) injective only B) surjective only C) bijective D) neither injective nor surjective $f: N \to A$ Where A = {0,1} defined by $f(x) = \begin{cases} 0 & \text{if } x & \text{is odd} \\ 1 & \text{if } x & \text{is even} \end{cases}$. Then f is 24. A) one - one, onto B) one-one, into C) many-one, onto D) many-one, into 25. On the set of all integers defined as $f: Z \rightarrow Z$ such that f(x) = [x] then it is C) into function D) identity function B)many-to-one function A) not a function If f(x) = 2x + 1 and $g(x) = x^2 + 1$ then $g_0(fof)(B) =$ 26. C) 12 A) 112 B) 122 D) 124 If $f(x) = \frac{1}{x}$, $g(x) = \sqrt{x}$ and $\left(go\sqrt{f}\right)(16) =$ 27. C) $\frac{1}{2}$ A) 2 B) 1 D) 4 28. If f(x) = 1, x is rational = 0, x is irrational then (fof) $(\sqrt{5}) =$ D) $\frac{1}{\sqrt{5}}$ A) 0 B) 1 C) $\sqrt{5}$ Let $f(x) = \frac{Kx}{x+1}(x \neq -1)$ then the value of K for which (fof)(x) = x is 29. A) 1 B) _1 C) 2 D) $\sqrt{2}$ If: $R \to R, g: R \to R$ are defined by $f(x) = 4x - 1, g(x) = x^3 + 2$, then $(gof)\left(\frac{a+1}{4}\right) = 4x - 1$ 30. D) $a^2 - 1$ A) 43 B) 345 C) $a^{3}+2$ **31.** If $f: R \to R$ is defined by $f(x) = \frac{2x+1}{3}$ then $f^{-1}(x) = \frac{2x+1}{3}$ A) $\frac{3x-1}{2}$ B) $\frac{x-3}{2}$ C) $\frac{2x-1}{2}$ D) $\frac{x-4}{2}$ 32. The function $f: (0,\infty) \rightarrow (-\infty,\infty)$ is defined by $f(x) = \log_3 x$ then $f^{-1}(x) =$ A) 3[×] B) 3-× C) -3[×] D) -3x-x X - CLASS 8 Powered by logicalclass.com

If $f(x) = e^{5x+13}$ then $f^{-1}(x) =$ i 33. A) $\frac{13 - \log x}{5}$ B) $\frac{-13 + \log x}{5}$ C) $\frac{5 + \log x}{13}$ D) $\frac{5 - \log x}{13}$ 34. If f(x) = 3x - 1 and g(x) = 5x + 6 then $(g^{-1}of^{-1})(2) =$ D) 12 A) 10 B) -1 C) 11 If $f(x) = \frac{5x+6}{7x+9}$ then $f^{-1}(x) =$ 35. A) $\frac{x+6}{7x+9}$ B) $\frac{7x+9}{5x+6}$ C) $\frac{9x-6}{7x+9}$ D) $\frac{9x-6}{-7x+5}$ If f from R into R defined by $f(x) = x^3 - 1$, then $f^{-1}\{-2, 0, 7\} =$ 36. C) $\{\pm 1, \pm 2\}$ D) $\{0, \pm 2\}$ A) {-1, 1, 2} B) {0, 1, 2} **37.** $f: R \to R$ is defined by $f(x) = x^2 + 4$ then $f^{-1}(13) = x^2 + 4$ D) {0,4} A) $\{-3,3\}$ B) {-2,2} C) $\{-1,1\}$ **38.** If $f:[1,\infty) \to [2,\infty)$ is given by $f(x) = x + \frac{1}{x}$ then $f^{-1}(x) = \frac{1}{x}$ A) $\frac{x + \sqrt{x^2 - 4}}{2}$ B) $\frac{x}{1 + x^2}$ C) $\frac{x - \sqrt{x^2 - 4}}{2}$ D) $x + \sqrt{x^2 - 4}$ **39.** If $f: \{1, 2, 3,\} \rightarrow \{0, \pm 1, \pm 2, ...\}$ is defined by $f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ -\left(\frac{n-1}{2}\right) & \text{if } n \text{ is odd} \end{cases}$ the $f^{-1}(-100)$ is A) 100 B) 199 C) 201 D) 200 If $f(x) = 2^x$ then $\frac{f(x+3)}{f(x-1)} =$ 40. B) $\frac{1}{f(x)}$ A) f(x)C) f(4) D) f(2) **41**. If $f: R \to R$ is defined by $f(x) = x^2 - 3x + 2$, then $f(x^2 - 3x - 2) = x^2 - 3x + 2$ A) $x^{4} + 1$ B) $x^4 - 3x + 2$ C) $x^4 - 6x^3 + 2x^2 + 21x + 12$ D) $x^4 + 2x + 2$ **42.** If $f(x) = \cos\left[\pi^2\right] x + \cos\left[-\pi^2\right] x$ where [x] is the step function, then A) f(0)=1 B) $f(\pi/4)=2$ C) $f(\pi/2)=-1$ D) $f(\pi)=1$ If f(x+y) = f(x)f(y) and f(5) = 32 then f(7) =43. B) 36 C) 7/5 D) 128 A) 35 If f(x) is a polynomial in x (>0) satisfying the equation f(x) + f $\left(\frac{1}{x}\right)$ = f(x)f $\left(\frac{1}{x}\right)$ and f(2) = 9, 44. then f(3) =

	HEMATICS			FUNCTIONS
	A) 26	B) 27	C) 28	D) 29
 45. 	f(1) = 2 then f(100) =	nuous such that $f(x + B) = 50$		
	A) 100 $f(r_1, 1) = f(r_2) f(r_3, r_4)$	B) 50 $f(7) = 5$ then $f(7)$	C) 200	D) 0
46 . 	f(n+1) = f(n) for all $f(n)$	n ∈ N , f(7)=5 then f(3 B) 49	65 <i>)=</i> C) 35	D) 5
47.	If $f(x)$ is a function s	such that $f(xy) = f(x)$	f(y) and $f(2)=1$	then $f(x) =$
	A) x ²	B) 2 ^x	C) $\log_2 x$	D) $\log_x 2$
 48. 	If $f = \{(a,0), (b,-2), (c,-2), (3) , $g = \{(a,-2), (b,0), ($	$(c,1)$ } then $\frac{f}{g}$ =		
	A) $\{(a,-1),(b,-2),(c,4)\}$	B) $\{(a,3), (b,-2), (c,2)\}$	C) $\{(a,0), (c,3)\}$	D) does not exist
 49.	If $f(x) = x + 1$ and $g(x)$) = x^2 + 1 then $\frac{f+g}{fg}$ (o) =	
	A) 1	B) 2	C) 4	D) 1/4
50.	If f(x) = 2x - 1, g(x)	$=x^{2}$, then $(3f-2g)($	$\begin{array}{c} C) 4\\ x) = \end{array}$	
	A) $5x - x^2 + 9$	B) $6x - 5x^2 - 4$	C) 4 x = 0 C) $2x - x^2 - 3$ D) C) 2008	$6x - 2x^2 - 3$
 51.	If f(x) = $\frac{7^{1+1nx}}{x^{1n7}}$ then f (2)	2008) =	, 12	
 52. 	A) 20 If $f(x) = = = =$	B) 7 $x^{2}+1, x \le 0$ 2x-1, 0 < x < 5 $4x+3, x \ge 5$ then	C) 2008	D) 100
 	$\frac{f(-3) + f(2) + f(5)}{f(1)} =$			
	A) 28	B) 36	C) 26	D) 34
53.	If $f(x) = sin (log x)$ ther	$f(xy) + f\left(\frac{x}{y}\right) - 2f(x) \cos \theta$	s (logy) =	
 	A) cos (logx)	B) sin (logy)	C) cos (log (xy))	D) 0
54.	The domain of f(x) =	$rac{1}{\sqrt{x^2-4}}$ is		
 	A) (-∞,4)	B) (-2,3)	C) (4,∞) D) ($(-\infty,-2)\cup(2,\infty)$
55.	The domain of f(x) =	= $\sqrt{25 - x^2}$ is		
	A) (−∞,−5)	B) (5,∞)	C) [-5,5]	D) $\left[-\infty,\infty\right]$
56.	The domain of f(x) =	$\sqrt{x-2} + \frac{1}{\log(4-x)}$	is	
 	A) [2,∞)	B) (−∞,4)	C) [2,3) \cup (3,4)	D) [3,∞)
 	CLASS	10	Po	wered by logicalclass.com
1		10	10	

Γ


57.	The domain of f(x) =	$= \cot \frac{x}{3}$ is		
İ	A) $(-\infty,\infty)$	B) $R - \{n\pi : n \in Z\}$	C) $R - \{3n\pi : n \in Z\}$	D) (0,∞)
 58.	The domain of $f(x) =$	$\frac{1}{\sqrt{x^2+2x+9}} \text{is} $		
	A) (1,9)	B) (1,B)	C) $(-\infty,\infty)$	D) (0,∞)
 59.	The domain of f(x)	$=rac{1}{ x +x}$ is		
	A) (−∞,0)	B) $(0,\infty)$	C) (−∞,1)	D) (-2,-A)
 60. 	The domain of f(x) =	$= \frac{1}{\log x }$ is		
	A) R - {0}	B) R - {0,1}	C) R - {-1, 0, 1}	D) $(-\infty,\infty)$
 61.	If $f(x) = (1-x)^{\frac{1}{2}}$ and g	(x) = In (x) then the dom	nain of (gof) (x) is	-
	A) (-∞,2)	B) (-1,1)	C) (-∞,1]	D) (-∞,1)
 62.	The value of x for wh	ich the function $\frac{1}{2^x - 5}$	is not defined	
	A) $\log_2 5$	B) log ₅ 2	C) $\log_e 2$	D) log _e 5
 63. 	The range of $f(x) = \frac{1}{2}$	B) $\log_5 2$ $\frac{1}{5-3\cos 2x}$ is $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$		
	A) [0,1]	B) $\left[\frac{3}{4}, 1\right]$	C) $\left[\frac{1}{4}, 1\right]$	D) $\left[\frac{1}{8}, \frac{1}{2}\right]$
 64. 	The range of f(x) = 6 A) [6,8]	sin x + 8 cos x + 3 is B) [6,13]	C) [-7,13]	D) [3,6]
65 .	The range of $f(x) = \sqrt{1 + 1}$	$\sqrt{x^2 + 4x + 29}$ is		
 66.	A) $(-\infty,\infty)$ The range of f(x) = s	B) (0,∞) in⁻¹ x-cos⁻¹ x is	C) [5,∞)	D) (0,5)
	A) $[0,\pi]$	$B)\left[\frac{-3\pi}{2},\frac{\pi}{2}\right]$	C) $\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$	D) [- <i>π</i> , <i>π</i>]
ASS	ERTION AND REASO	<u>)</u> N	_	
◆ 	(Assertion) and Statemen	ain number of questions. Ea t – 2 (Reason). Each questio ect Choose the correct optio	on has 4 choices (A), (B), (C	
 67.	Assertion (A) : $f(s)$	$(x) = \frac{x^2 - 4}{x - 2}$ and $g(x) =$	x+2 are equal	
 		ctions f and g are said t	-	
X -	CLASS	11	Powe	ered by logicalclass.com

and $f(x) = g(x) \forall x \in domain$ A) Both A and R are true and R is the correct explanation of A B) Both A and R are true and R is not correct explanation of A C) A is true but R is false D) A is false but R is true 68. The function $f: R \rightarrow R$ is defined by $f(x) = 3^{-x}$ then observe the following statements. I: f is 1-1 II: f is onto III: f is a decreasing funtion out these, true statemtents are A) only I, II B) only II, III C) only I, III D) I, II and III 69. If f(x) and g(x) are two functions such that $f(x) + g(x) = e^x$ and $f(x) - g(x) = e^{-x}$ then I: f(x) is an even function II: g(x) is an odd function **III:** both f(x) and g(x) are neither even nor odd B) only I is true C) only II si true D) only III is true A) I and II are true Match the following This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column-I have to be matched with statements (p, q, r, s) in **Column–II**. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s, then the correct bubbled 4*4 matrix should be as follows: List - II 70. List - I i) If $f: A \to B$ and $g: B \to C$ are two functions a) g is necessarily onto aof is 1-1 function then funtion b) 3× ii) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are two functions gof is onto function then iii) $f: R \rightarrow R^+$, $f(x) = 3^x$ then $f^{-1}(x) =$ $c) \log_3^x$ iv) $f: R^+ \to R$, $f(\mathbf{x}) = \log_3^x$ then $f^{-1}(\mathbf{x})^2$ d) f is necessarily 1-1 e) g is necessarily 1-1 A) i-e, ii-a, iii-b, iv-c B) i-d, ii-a, iii-c, iv-b C) i-e, ii-a, iii-c, iv-b D) i-b,ii-c,iii-a,iv-d, LEARNER'S TASK **BEGINNERS** (Level - I) I. MCQs with single correct answer If $f(x) = \alpha x + \beta$ and $f = \{(1,1), (2,3), (3,5), (4,7)\}$ then the values of α, β are 1. A) 2, -1 B) -2, 1 C) 3, -1 D) -2. -1 2. The number of one-one functions that can be defined from $A = \{4, 8, 12, 16\}$ to B is 5040, then n(B) =A) 7 B) 8 C) 9 D) 10 3. The number of injections that are possible from A to itself is 720, then n (A) = B) 6 C) 7 A) 5 D) 8 The total number of function from A to itself is 256, then n(A) =| 4. A) 2 C) 4 B) 3 D) 5

5.	The number of injecti	ons possible from	A = $\{1,3,5,6\}$ to B = $\{2,3,5,6\}$,8,11} is
	A) 8	B) 64	C) 2 ¹²	D) 0
6.	The number of possibn=	ble surjection from A	A= $\{1, 2, 3, \dots, n\}$ to B = $\{1, 2, 3, \dots, n\}$	2 (where n \ge B) is 62, then
	A) 5	B) 6	C) 7	D) 8
¦ 7.	If n (A) = 4 and n(B) =		-	
	A) 4^6	B) 6 ⁴	C) 0	D) 24
8. 	A) 125	B) 243	C) 15	pings possible from B to A is D) 90
9 .	The number of non-b	ijective mappings	that can be defined fr	om A = $\{1,2,7\}$ to itself is
	A) 21	B)27	C) 6	D) 9
10.	If n(A) = 5, n(B) =3 th	en the number of b	ijections from A to B is	S
	A) 15	B) 125	C) 243	D) 0
11.	A constant function f	$A \rightarrow B$ will be one-	one if	
	A) n (A) = n(B)	B) n(A) = 1	C) n (B) = 1	D) n (A) <n (b)<="" th=""></n>
12. 	Let A = [-1,1]= B then	which of the follow	ing function from A to	B is bijective function
	A) $f(x) = \frac{x}{2}$	$B) \ g(x) = x $	() $h(x) = x^2$	$D) \ k(x) = \sin \frac{\pi x}{2}$
ļ	$(x) = \frac{1}{2}$	D) $g(x) - x $	O(n(x)) = x	D (x) $\sin^2 2$
13.	$f: R \rightarrow R$ such that			
	A) only one-one	B) only into C		D) not a function
<mark> </mark> 14.	If $f(x) = x$, $g(x) = 2x^2 + 1$			
	A) x ² + 2	B) 2x ² +1	C) x ² +1	D) 2(x ² +1)
15. 	If $f: R \to R, g: R \to R$		$f = x^2, g(x) = \cos x$ the	en (gof) (x) =
i	A) cos 2x	B) x ² cos x	C) cos x ²	D) $\cos^2 x^2$
16. 	If $f:(-\infty,\infty) \to (-\infty,\infty)$			
	A) $\frac{x+5}{6}$	B) $\frac{x-5}{6}$	C) $\frac{x-6}{5}$	D) $\frac{x+6}{5}$
1	0	0	5	, 5
<mark> </mark> 17.	If $f:(0,\infty) \to (0,\infty)$) is defined by f(x) :	$= x^{2}$ then f ⁻¹ (x) =	
	· · · · ·	1		2
	A) \sqrt{x}	B) $\frac{1}{\sqrt{x}}$	C) <i>x</i>	D) $\frac{2}{\sqrt{x}}$
18.	If $f(x) = 2 + x^3$ then f	-1 (x) =		
ļ	A) $\sqrt[3]{x+2}$	B) $\sqrt[3]{x} - 2$	C) $\sqrt[3]{x-2}$	D) $\sqrt[3]{x+2}$
		•	•	, , , , , _
 19. 	If $f(x) = \frac{e^x + e^{-x}}{2}$ the	n the inverse of f(x)) is	
	A) $\log_{e}\left(x + \sqrt{x^2 + 1}\right)$			
	C) $\log_{e}\left(x + \sqrt{x^2 - 1}\right)$	D) $\log_{e}(x - \sqrt{x^2})$	(-1)	
20.	If $f: R \to R^+$ then	$f(x) = (1/3)^x$, then	$f^{-1}(x) =$	
	1. $(1/3)^{-x}$	2 . 3 ^{<i>x</i>}	3. $\log_{1/3} x$	4. $\log_x(1/3)$
X -	CLASS	13		Powered by logicalclass.com
•				

21.	If $f(x) = x^4 + 5x^2$.	+1, then $f(1/x)$	=	
	A) $\frac{f(x)}{x^4}$	B) $\frac{f(x)}{x^3}$	C) $x^2 f(x)$	D) $x^4 f(x)$
		t	$f(\pi) - f\left(\frac{3\pi}{2}\right) + f(0)$	
22.	$f(x) = \sin x$ and $g(x) = \sin x$	-	$\frac{(2)}{g(\pi) + g(0) + g\left(\frac{\pi}{3}\right)}$	
	A) $\frac{1}{2}$	B) 1	C) 2	D) $\frac{1}{3}$
 23.	If $f(x) = 3x + 1, g(x)$	$(x) = x^3 + 2$, then	(f+g)(0) - fg(0) =	
	A) <i>x</i>	B) $\frac{3}{2}$	C) 3	D) 1
 24 .	If $f(x) = x^2, g(x)$	$x^2 - 5x + 6$ the	en $g(2) + g(3) + g(0) - f$	f(0) - f(1) - f(-2)
İ	A) 2	B) 6/5	C) 5/6	O D) 1
25.	If $f(x)$ is a polynomial	omial in $x(>0)$ s	atisfying the equation $f(x)$	f(1/x) = f(x).f(1/x)
	and $f(2)\!=\!-7$, then	n $f(3) =$	FOUR	
	A) –26		C) –28	D) -29
 26 .	If $f(x)$ is a polynomial	mial function such	that $f(x)f\left(\frac{1}{x}\right) = f(x)$	$+f\left(\frac{1}{2}\right)$ and $\left $
	1		(x)	(x)
	f(3) = -80 then	f(x) =		
	A) $x^4 + 1$	B) $x^4 - 1$	C) $1 - x^4$	D) $-1-x^4$
27.	If f(x) = 3x + 1, g(x)	$x) = x^3 + 2$, then	$\frac{f+g}{fg}(0) =$	
Ì	A) <i>x</i>	B) 1	C) 3	D) 3/2
28.	If $f(x) = x^2, g(x)$	$=x^2-5x+6$ the	n $\frac{g(2)+g(3)+g(0)}{f(0)+f(1)+f(-2)} =$	
	A) 2	B) 1	C) 5/6	D) 6/5
29.	If $f(x) = 2^x$ then	f(0), f(1), f(2)	are in	
∣30.	A)A.P The domain of f(x	B) G.P.	C) H.P.	D)A.G.P
			$(2n+1)^{\pi} = -7$	
	A) $(-\infty,\infty)$		$B) R - \left\{ (2n + 1) \frac{\pi}{4}, n \in Z \right\}$	
	C) $R - \left\{ (2n+1)\frac{\pi}{2} : n \right\}$	$n \in Z$	D) R – $\{n\pi : n \in Z\}$	
 31.	The domain of f(x	x) = $\log x-2 $ is		
 	A) $(-\infty,2)$	B) (2,∞)	C) $(-\infty,2) \cup (2,\infty)$	D) $(-\infty,\infty)$
X -	CLASS		14	Powered by logicalclass.com

32.	The domain of f(x) = A) IR	x! is B) Z	C)Q		D) {0,1,2,3,}
 33.	The domain of f(x) =	$\sqrt{x-2} + \frac{1}{\log(x-2)}$	$\frac{1}{5-x)}$ is		
	_ <i>,</i>	B) [2,5]	- /	∪(4,5)	D) (−∞,2)
34.	The domain of f(x) =	$\frac{x^2-5x-16}{x^2-x-6}$ is	3		
	A) R – {2,3}			- {- 2,3}	D) R - {2,-3}
 35. 	The domain of f(x) =	$=\frac{3^x+3^{-x}}{3^x-3^{-x}}$ is			
	A) $(-\infty,\infty)$	B) (-∞,0)∪((0,∞) C	$(0,\infty)$	D) (0,1)
36.	The domain of $f(x) =$	x-2 - x-5 is	5		
	A) R - (2,5)	B) R - {0}	С	$(0,\infty)$	D) R
		[$x+2 (x \leq$	≤−1)]	
37.	Let $f: R \to R$ be defi	ned by $f(x) = \begin{cases} \\ \\ \\ \end{cases}$	$\begin{array}{c} x^2 & (-1) \\ 2-x & (x) \end{array}$	$\left\{ \begin{array}{c} < x < 1 \\ \ge 1 \end{array} \right\}$ then the	D) R value of f(–1.75)+f(0.5)
	+ f(1.5) is			.02	
	A) 0	B) 2		() 1	D) -1
	1		$f(x) = \int_{-\infty}^{x+1} x^{+1}$	$+2 (x \le -1)$ $x^2 (-1 < x < 1)$	
38. 	Let $f: R \to R$ by	e fined by	$\left[\begin{pmatrix} x \end{pmatrix}^{-} \\ 2 \end{bmatrix}^{-1}$	$-x (x \le 1)$	D)-1 then the value of
	f(-1) + f(0) + f(1)	is			
	A) 0	B) 1	С	;) 2	D) -1
39 .	If $f(x) = 3^{-x} - 1$, for	$-1 \le x < 0$			
	$= \tan(x/2),$	for $0 \le x < \pi$			
	$= \frac{x}{x^2 - 2} \text{ for}$	$\pi \le x \le 6$			
	then $f(-1) + f(\pi/6)$	f(5) = f(5) =			
	A) 0	B) $\frac{27}{23} - \sqrt{3}$	С	$(27) \frac{27}{13} + \sqrt{13}$	D) $\frac{97}{23} - \sqrt{3}$
40.	If $f(x) = \frac{3x - x^3}{1 - 3x^2}$, ta	$n \theta \neq \frac{1}{\sqrt{3}}$ then	$f(\tan\theta) =$		
	A) 3 tan θ	B) tan 3 θ	С	\Rightarrow) $\tan^3 \theta$	D) $\tan^4 \theta$
 41. 	If $f(x) = Sin([\pi^2]x) +$	$-\sin\left(\left[-\pi^2\right]x\right)$	then $f\left(\frac{\pi}{2}\right) =$:	
 X -	CLASS		15	Pc	wered by logicalclass.com
I					· •

 3.	A : $f(x) = \frac{x+1}{x-1}, x \neq 1$ the	en (fofofofof)(x) = f(x	;)	
	R: If $f(x) = \frac{ax+b}{cx+d}$ then (fofof (odd no of t	imes))(x) = $f(x)$	
 4 .	A) Both A and R are tru B) Both A and R are tru C) A is true but R is fals I :Every function must b	e and R is the corre e but R is not correc se D) A	ct explanation of A ct explanation of A . is false but R is true	
	II: The function f(x) = lo	$g\left(x+\sqrt{x^2+1}\right)$ is ar	odd function	
	· •	B) only II is true	- +	
	C) both I & II are true	,		
5. 	I : If $f: A \to B$ is bijec	tion then only f has i	nverse function	
ļ	II: the inverse function	$f: R^+ \rightarrow R^+$ define	d by $f(x)=x^{2}$ is $f^{-1}(x)=x^{2}$	\sqrt{x}
	A) only I is true	B) only II is true		4
<u>MA</u>	TCH THE FOLLOWING		410	
•			ns. Each question contains	-
 6.	with statements (p, q, r, s) bubbled as illustrated in	in Column–II . The an. the following example.	nents (A, B, C, D) in Colum swers to these questions hav and D-s,then the correct by List - II	ve to be appropriately
	i) The number of relation		a) 15	
İ	$A=\{1,3,5\}$ to $B=\{a,b,c\}$			
ļ	ii) The number of 1-1 fu		b) 512	
	from A to A is 720 then iii) The number of cons		c) 1	
	that can be defined		0) 1	
ĺ	iv) The number of ident	ity functions	d) 14	
	on the set A = {1,2,3,4,5	5,6}		
 	A)i-c,ii-e,iii-a,iv-d,		a,iii-e,iv-d	
i	C)i-c,ii-b,iii-a,iv-d	D) i-c,ii-	e,iii-a,iv-b	
ļ		$\int x+4, for x$		
 7.	If $f: R \to R$ is defined	by f(x)= $\begin{cases} 3x+2, for x \\ x-4, for x \end{cases}$	$x \le x < 4$ then the correct ≥ 4	t matching
1	List - I	List - II		
	i) f(-5) +f(-D)	a) 14		
	ii) f(f(-8)) =	b) 4		
 	ii) f[f(-7)+f(C)]	c) -11		
	iv) f[f(f(f(0)))]+1	d) -1		
l		e) 1 f) 0		
	A)i-c,ii-f,iii-b,iv-e	f) 0 B)i-c,ii-d,iii-b,iv-f	C)i-d,ii-c,iii-b,iv-a	D)i-d,ii-e,iii-b,iv-c
 	, , .,, .	, , _,,	-, ,,,	, , , -, <u>,</u>
I 				

A) one-one B) onto C) one-one and onto D) Identity function If $n \ge 2$ then the number of surjections that can be defined from $\{1,2,3,,n\}$ onto $\{1,2\}$ is (EAM-92) A) $n^2 - n$ B) n^2 C) 2^n D) $2^n \cdot 2^n$ 3. $n(A) = 3, n(B) = 2$ then the number of surjections from A to B (EAM-94) A) 3 B) 6 C) 8 D) 9 4. The number of bijection from the set A to itself when A contains 106 elements is (EAM-93) A) 106 B) 106 ² C) 106! D) 2^{106} 5. $f: Z \rightarrow Z$ and $f(x) = x^2$ then f is (EAM-95) A) bijection B) injection C) surjection D) not bijection 6. $f: R \rightarrow R$ is defined as $f(x) = 3^3$ then which of the following is correct (EAM-01) I) f is one-one II) f is onto III) f is a increasing function A) 1, II only B) II, III only C) 1, III only D) 1, II, III 7. If $f: R \rightarrow R, f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f: R \rightarrow R, g: R \rightarrow R$ and $f(x) = Sin x g(x) = x^2$ then $fog(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $Sin x^2$ 9. If $f: R^+ \rightarrow R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) $2^x - 1$ D) $2^{x-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \rightarrow R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If $f[2,3] \rightarrow R$ is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If $f[2,3] \rightarrow R$ is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-209) A)[1,12] B)[12, 34] C)[35,50] D)[-12,12]		< 1 1 1	RESEAF	RCHERS (Level - I	<u>V)</u> <≇₽₽₽	
A) one-one B) ont C) one-one and onto D) Identity function If n≥ 2 then the number of surjections that can be defined from {1,2,3,,1} onto {1, 2} is (EAM-92) A) n ² - n B) n ² C) 2 ⁿ D)2 ⁿ - 2 3. $n(A) = 3, n(B) = 2$ then the number of surjections from A to B (EAM-94) A) 3 B) 6 C; 8 D) 9 4. The number of bijection from the set A to itself when A contains 106 elements is (EAM-93) A) 106 B) 106 ² C; 106! D) 2 ^{no} 5. $f: Z \rightarrow Z$ and $f(x) = x^2$ then f is (EAM-95) A) bijection B) injection C; surjection D) not bijection 6. $f: R \rightarrow R$ is defined as $f(x) = 3^x$ then which of the following is correct (EAM-01) i) f is one-one II) f is onto III) f is a increasing function A) I, Ilonly B) II, III only C; I, II only D) I, II, III 7. If $f: R \rightarrow R, f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C; $3f(x)$ D) $-f(x)$ 8. $f: R \rightarrow R, g: R \rightarrow R$ and $f(x) = Sin x g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sin x$ B) $x^2 Sin x$ C; $Sin^2 x$ D) $Sin x^2$ 9. If $f: R^* \rightarrow R$ such that $f(x) = \log_3 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C; 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C; $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right) \cdot 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C; $f($	MCC	<u>Qs with single correct</u>	answer			
2. If n ≥ 2 then the number of surjections that can be defined from {1,2,3,,n} onto {1,2} is (EAM-92) A) n ² − n B) n ² C) 2 ⁿ D)2 ⁿ - 2 3. n(A) = 3, n(B) = 2 then the number of surjections from A to B (EAM-94) A) 3 B) 6 C, 8 D) 9 4. The number of bijection from the set A to itself when A contains 106 elements is (EAM-93) A) 106 B) 106 ² C) 106! D) 2 ^{max} 5. f : Z → Z and f(x) = x ² then f is (EAM-95) A) bijection B) injection C) surjection D) not bijection 6. f : R → R is defined as f(x) = 3 ^x then which of the following is correct (EAM-01) i) f is one-one II) f is onto III) f is a increasing function A) 1, Il only B) II, III only C) I, III only D) I, II, III 7. If f: R → R, f(x) = 3x - 2 then (fof)(x) + 2 = (EAM-99) A) f(x) B) 2f(x) C) 3f(x) D) - f(x) 8. f : R → R, g : R → R and f(x) = Sin x g(x) = x ² then fog(x) = (EAM-99) A) x ² + Sin x B) x ³ Sin x C) Sin ² x D) Sin x ² 9. If f : R ⁺ → R such that f(x) = log, x then f ⁻¹ (x) = (EAM-97) A) log, 10 B) 5 ^x C) 3 ^{-x} D) 3 ^{v/x} 10. f(1) = 1, n ≥ 1 ⇒ f(n + 1) = 2f(n) + 1 then f(n) = (EAM-92) A) 2 ^{x+1} B) 2 ⁿ C) 2 ⁿ⁻¹ D) 2 ⁿ⁻¹ - 1 11. f(a) = log(2+a/2-a), 0 < a < 2 then $\frac{1}{2}f(\frac{8a}{4+a^2}) =$ (EAM-96) A) f(a) B) 2f(a) C) $\frac{1}{2}f(a)$ D) -f(a) 12. f : R → R is defined as f(x) = 2x + x then f(3x) - f(-x) - 4x = (EAM-97) A) f(x) B) -f(x) C) f(-x) D) 2f(x) 13. If f[:2,3] → R is defined by f(x) = x ² + 3x-2, then the range of f(x) is contained in the interval (EAM-2009) A)[1,12] B) [12,34] C) [35,50] D)[-12,12] 14. Domain of f(x) = $\frac{2x-1}{x^3 + 4x^2 + 3x}$; $x \in R$ (EAM-2009) A)R-(0) B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	1.	To have inverse for the	e function f, f sho	ould be	(E-98	B)
(EAM-92) A) $n^2 - n$ B) n^2 C) 2^n D) $2^n - 2$ (EAM-92) A) $n^2 - n$ B) n^2 C) 2^n D) $2^n - 2$ (EAM-94) A) $3 = 3, n(B) = 2$ then the number of surjections from A to B (EAM-94) A) $3 = 0$ B) $6 = 0$ B $0 = 0$ C) $8 = 0$ D) 9 The number of bijection from the set A to itself when A contains 106 elements is (EAM-93) A) 106 B) 106 ² C) 106! D) 2^{108} (EAM-95) A) bijection B) injection C) surjection D) not bijection 6. $f : R \to R$ is defined as $f(x) = 3^x$ then which of the following is correct (EAM-01) I) f is one-one II) f is onto III) f is a increasing function A) II only B) II, III only C) I, III only D) I, II, III 7. If $f : R \to R$, $f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f : R \to R$, $g : R \to R$ and $f(x) = Sinx \ g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sinx$ B) $x^2 Sinx$ C) $Sin^2 x$ D) $Sinx^2$ 9. If $f : R^* \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f : R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If $f[2,3] \to R$ is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[-1,2,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		,	,	,	, .	
A) $n^2 - n$ B) n^2 C) 2^n D) $2^n - 2$ 3. $n(A) = 3, n(B) = 2$ then the number of surjections from A to B (EAM-94) A) 3 B) 6 C) 8 D) 9 4. The number of bijection from the set A to itself when A contains 106 elements is (EAM-93) A) 106 B) 106 ² C) 106! D) 2^{106} 5. $f: Z \to Z$ and $f(x) = x^2$ then f is (EAM-95) A) bijection B) injection C) surjection D) not bijection 6. $f: R \to R$ is defined as $f(x) = 3^x$ then which of the following is correct (EAM-01) I) f is one-one II) f is onto III) f is a increasing function A) 1, II only B) II, III only C) I, III only D) I, II, III 7. If $f: R \to R, f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f: R \to R, g: R \to R$ and $f(x) = Sin x g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sin x$ B) $x^2 Sin x$ C) $Sin^2 x$ D) $Sin x^2$ 9. If $f: R' \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_3 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log(\frac{2+a}{2-a}), 0 < a < 2$ then $\frac{1}{2}f(\frac{8a}{4+a^2}) =$ (EAM-96) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If $f: [2,3] \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)[A-(0] B) R-(0,1,3) C)R-(0,-1,-3) D)R-(0,-1,-3,1/2)	2.	If $n \ge 2$ then the number	er of surjections	that can be defined f		
3. n(A) = 3,n(B) = 2 then the number of surjections from A to B (EAM-94) A) 3 B) 6 C) 8 D) 9 4. The number of bijection from the set A to itself when A contains 106 elements is (EAM-93) A) 106 B) 106 ² C) 106! D) 2 ¹⁰⁸ 5. f: Z → Z and f(x) = x ² then f is (EAM-95) A) bijection B) injection C) surjection D) not bijection 6. f: R → R is defined as f(x) = 3 ^x then which of the following is correct (EAM-91) I) f is one-one II) f is onto III) f is a increasing function A) 1, II only B) II, III only C) 1, III only D) 1, II, III 7. If f: R → R, f(x) = 3x - 2 then (fof)(x) + 2 = (EAM-99) A) f(x) B) 2f(x) C) 3f(x) D) -f(x) 8. f: R → R, g: R → R and f(x) = Sin x g(x) = x ² then fog(x) = (EAM-99) A) x ² + Sin x B) x ² Sin x C) Sin ² x D) Sin x ² 9. If f: R → R such that f(x) = log ₅ x then f ⁻¹ (x) = (EAM-97) A) log _x 10 B) 5 ^x C) 3 ^{-x} D) 3 ^{1/x} 10. f(1) = 1, n ≥ 1 ⇒ f(n + 1) = 2 f(n) + 1 then f(n) = (E		A) $n^2 - n$	B) n ²	C) 2 ⁿ	•	-,
A) 3 B) 6 C) 8 D) 9 The number of bijection from the set A to itself when A contains 106 elements is (EAM-93) A) 106 B) 106 ² C) 106! D) 2 ¹⁰⁰ 5. $f: Z \to Z$ and $f(x) = x^2$ then f is (EAM-95) A) bijection B) injection C) surijection D) not bijection 6. $f: R \to R$ is defined as $f(x) = 3^x$ then which of the following is correct (EAM-01) I) f is one-one II) f is onto III) f is a increasing function A) 1. II only B) II, III only C) 1. III only D) 1. II, III 7. If $f: R \to R$, $f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f: R \to R$, $g: R \to R$ and $f(x) = Sin x g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sin x$ B) $x^2 Sin x$ C) $Sin^2 x$ D) $Sin x^2$ 9. If $f: R' \to R$ such that $f(x) = \log_3 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $3f(-x)$ D) $2f(x)$ 13. If f: [2,3] → R is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x-1}{x^2 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	3.		n the number of	f surjections from A to	,	4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
A) 106 B) 106 ² C) 106! D) 2 ¹⁰⁸ 5. $f: Z \to Z$ and $f(x) = x^2$ then f is (EAM-95) A) bijection B) injection C) surjection D) not bijection 6. $f: R \to R$ is defined as $f(x) = 3^x$ then which of the following is correct (EAM-01) I) f is one-one II) f is onto III) f is a increasing function A) 1.11 only B) II.11 only C) 1.11 only D) I.11.11 7. If $f: R \to R, f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f: R \to R, g: R \to R$ and $f(x) = Sin x \cdot g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sin x$ B) $x^2 Sin x$ C) $Sin^2 x$ D) $Sin x^2$ 9. If $f: R^* \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log(\frac{2+a}{2-a}), 0 < a < 2$ then $\frac{1}{2}f(\frac{8a}{4+a^2}) =$ (EAM-96) A) $f(x)$ B) $-f(x)$ <	4.	The number of bijection	on from the set A	A to itself when A cont		22)
A) bijection B) injection C) surjection D) not bijection 6. $f: R \to R$ is defined as $f(x) = 3^x$ then which of the following is correct (EAM-01) 1) f is one-one II) f is onto III) f is a increasing function A) 1.1 only B) II, III only C) 1.11 only D) I, II, III 7. If $f: R \to R, f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f: R \to R, g: R \to R$ and $f(x) = Sin x$ $g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sin x$ B) $x^2 Sin x$ C) $Sin^2 x$ D) $Sin x^2$ 9. If $f: R^* \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C)		A) 106	B) 106 ²	C) 106!	•	5)
A) bijection B) injection C) surjection D) not bijection 6. $f: R \to R$ is defined as $f(x) = 3^x$ then which of the following is correct (EAM-01) 1) f is one-one II) f is onto III) f is a increasing function A) 1.1 only B) II, III only C) 1.11 only D) I, II, III 7. If $f: R \to R, f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f: R \to R, g: R \to R$ and $f(x) = Sin x$ $g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sin x$ B) $x^2 Sin x$ C) $Sin^2 x$ D) $Sin x^2$ 9. If $f: R^* \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C)	5.	$f: Z \rightarrow Z$ and $f(x) =$	x^2 then f is	,	(EAM-9	95)
I) f is one-one II) f is onto III) f is a increasing function A) I, II only B) II, III only C) I, III only D) I, II, III (EAM-99) A) f(x) B) 2f(x) C) 3f(x) D) -f(x) 8. f: R → R, g: R → R and f(x) = Sinx g(x) = x ² then fog(x) = (EAM-99) A) x ² + Sinx B) x ² Sinx C) Sin ² x D) Sinx ² 9. If f: R ⁺ → R such that $f(x) = \log_3 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5 ^x C) 3 ^{-x} D) 3 ^{1/x} 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2 ⁿ⁺¹ B) 2 ⁿ C) 2 ⁿ - 1 D) 2 ⁿ⁻¹ - 1 11. $f(a) = \log\left(\frac{2+a}{2-a}\right) \cdot 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) f(a) B) 2f(a) C) $\frac{1}{2}f(a)$ D) -f(a) 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) f(x) B) -f(x) C) f(-x) D) 2f(x) 13. If f: [2,3] → R is defined by $f(x) = x^2 + 3x - 2$, then the range of f(x) is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x-1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		• • • •		C) surijectio	n D) not bijection	
A) I, II only B) II, III only C) I, III only D) I, II, III 7. If $f: R \to R$, $f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f: R \to R$, $g: R \to R$ and $f(x) = Sin x \ g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sin x$ B) $x^2 Sin x$ C) $Sin^2 x$ D) $Sin x^2$ 9. If $f: R^+ \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If f: [2,3] \rightarrow R is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	6.	$f: R \rightarrow R$ is defined a	as $f(x) = 3^x$ the	hen which of the follo	wing is correct (EAM-0	1)
7. If $f: R \to R$, $f(x) = 3x - 2$ then $(fof)(x) + 2 =$ (EAM-99) A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f: R \to R$, $g: R \to R$ and $f(x) = Sin x$ $g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sin x$ B) $x^2 Sin x$ C) $Sin^2 x$ D) $Sin x^2$ 9. If $f: R^+ \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If $f: [2,3] \to \mathbb{R}$ is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12, 12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		I) f is one-one	II) f is onto	III) f is a inc	creasing function	
A) $f(x)$ B) $2f(x)$ C) $3f(x)$ D) $-f(x)$ 8. $f: R \to R, g: R \to R$ and $f(x) = Sin x g(x) = x^2$ then $fog(x) =$ (EAM-99) A) $x^2 + Sin x$ B) $x^2 Sin x$ C) $Sin^2 x$ D) $Sin x^2$ 9. If $f: R^+ \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If $f[2,3] \to R$ is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)R-{0} B) $R-{0,1,3}$ C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		A) I, II only	B) II, III only	C) I, III only	D) I, II, III	1
8. $f: R \to R, g: R \to R$ and $f(x) = Sinx g(x) = x^{2}$ then $fog(x) =$ (EAM-99) A) $x^{2} + Sinx$ B) $x^{2} Sinx$ C) $Sin^{2} x$ D) $Sinx^{2}$ 9. If $f: R^{+} \to R$ such that $f(x) = \log_{5} x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_{x} 10$ B) 5^{x} C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^{n} C) $2^{n} - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^{2}}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If $f[2,3] \to R$ is defined by $f(x) = x^{2} + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B)[12,34] C)[35,50] D)[-12,12] 14. Domain of $f(x) = \frac{2x-1}{x^{3} + 4x^{2} + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	7.	If $f: R \to R, f(x) = 3x$	x-2 then (fof)((x) + 2 =	(EAM-9	99)
A) $x^{2} + Sin x$ B) $x^{2} Sin x$ C) $Sin^{2} x$ D) $Sin x^{2}$ 9. If $f: R^{+} \rightarrow R$ such that $f(x) = \log_{5} x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_{x} 10$ B) 5^{x} C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^{n} C) $2^{n} - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^{2}}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \rightarrow R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If f: [2,3] \rightarrow R is defined by $f(x) = x^{2} + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A) [1, 12] B) [12, 34] C) [35, 50] D) [-12, 12] 14. Domain of $f(x) = \frac{2x - 1}{x^{3} + 4x^{2} + 3x}; x \in R$ (EAM-2009) A) R-{0} B) R-{0, 1, 3} C) R-{0, -1, -3} D) R-{0, -1, -3, 1/2}		A) $f(x)$	B)2f(x)	C) $3f(x)$	D) $-f(x)$	
9. If $f: R^+ \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If f: [2,3] \to R is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	8.	$f: R \to R, g: R \to R$	and $f(x) = Sin$	$f(x) = x^2$ then $f(x) = x^2$	pg(x) = (EAM-9	9)
9. If $f: R^+ \to R$ such that $f(x) = \log_5 x$ then $f^{-1}(x) =$ (EAM-97) A) $\log_x 10$ B) 5^x C) 3^{-x} D) $3^{1/x}$ 10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If f: [2,3] \to R is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		A) $x^2 + Sin x$	B) $x^2 Sin x$	C) $Sin^2 x$	D) $Sin x^2$	
10. $f(1) = 1, n \ge 1 \Rightarrow f(n+1) = 2f(n) + 1$ then $f(n) =$ (EAM-92) A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If f: [2,3] \to R is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A) [1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	9.			x then $f^{-1}(x) =$	(EAM-9)	7)
A) 2^{n+1} B) 2^n C) $2^n - 1$ D) $2^{n-1} - 1$ 11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If f:[2,3] \to R is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		A) $\log_x 10$	B) 5 ^{<i>x</i>}	C) 3 ^{-x}	D) 3 ^{1/x}	l
11. $f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a < 2$ then $\frac{1}{2}f\left(\frac{8a}{4+a^2}\right) =$ (EAM-96) A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If f:[2,3] \to R is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	10.	$f(1) = 1, n \ge 1 \Longrightarrow f(n)$	n+1) = 2f(n)	+1 then $f(n)$ =	(EAM-92	2)
A) $f(a)$ B) $2f(a)$ C) $\frac{1}{2}f(a)$ D) $-f(a)$ 12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If f:[2,3] \to R is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		A) 2 ^{<i>n</i>+1}	B) 2 ^{<i>n</i>}	C) $2^{n} - 1$	D) $2^{n-1}-1$	ļ
12. $f: R \to R$ is defined as $f(x) = 2x + x $ then $f(3x) - f(-x) - 4x =$ (EAM-97) A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If f:[2,3] \to R is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	11.	$f(a) = \log\left(\frac{2+a}{2-a}\right), 0 < a$	$a < 2$ then $\frac{1}{2}f\left($	$\left(\frac{8a}{4+a^2}\right) =$	(EAM-9	6)
A) $f(x)$ B) $-f(x)$ C) $f(-x)$ D) $2f(x)$ 13. If $f:[2,3] \rightarrow R$ is defined by $f(x) = x^2 + 3x - 2$, then the range of $f(x)$ is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x - 1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		A) <i>f</i> (<i>a</i>)	B) 2 <i>f</i> (<i>a</i>)	C) $\frac{1}{2}f(a)$	D) $-f(a)$	
13. If f:[2,3] → R is defined by f(x) = x ² +3x-2, then the range of f(x) is contained in the interval (EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of f(x)= $\frac{2x-1}{x^3+4x^2+3x}$; $x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	12.	$f: R \rightarrow R$ is defined	as $f(x) = 2x + \left $	x then $f(3x) - f(-x)$	(x) - 4x = (EAM-9)	7)
(EAM-2009) A)[1,12] B) [12, 34] C) [35,50] D) [-12,12] 14. Domain of $f(x) = \frac{2x-1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		A) $f(x)$	B) - f(x)	C) <i>f</i> (- <i>x</i>)	D) $2f(x)$	
14. Domain of $f(x) = \frac{2x-1}{x^3 + 4x^2 + 3x}; x \in R$ (EAM-2009) A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}	13.	If f:[2,3] \rightarrow R is define	d by $f(x) = x^2 + 3x$	x-2, then the range of		
A)R-{0} B) R-{0,1,3} C)R-{0,-1,-3} D)R-{0,-1,-3,1/2}		A)[1,12]	B) [12, 34]	C) [35,50]	D) [-12,12]	
	14.	Domain of $f(x) = \frac{2x}{x^3 + 4}$	$\frac{x-1}{x^2+3x}$; $x \in R$		(EAM-200)9)
X - CLASS 18 Powered by logicalclass.com		A)R-{0}	B) R-{0,1,3}	C)R-{0,-1,-3}	D)R-{0,-1,-3,1/2}	
	X -	CLASS		18	Powered by logicalclass	.com

FUNCTIONS

15.	The no.of subsets of {1,2,3,9} containing at least one odd number is (EAM-200									
	A)324 B)396 C)496 D)512									••)
16.	$f:[-6,6] \rightarrow R$ defined by $f(x) = x^2 - 3$ for $x \in R$ then(fofof)(-1) + (f0f0f)(0) + (f0f0f)(1) =									
	_		_		_		_		(EAM-200	8)
	A) $f(4\sqrt{2})$	B) f (.	3√2)	C) f(2	.√2)	D) f(-	√ 2)			
17. 	$f : R \rightarrow R$ is a function defined by $f(x) = 10x - 7$. If $g=f^{-1}$ then $g(x) = f^{-1}$								(EAM-92	2)
	A) $\frac{1}{10x-7}$	B)	B) $\frac{1}{10}$		C) $\frac{x+7}{10}$		D) $\frac{x-7}{10}$			
	710x - 7	' 10:	x + 7	<i>'</i> 10		, 10				
KEY										
ά <u>ΦΦ</u>	TEACHING TAS									
 	1.C 2.A 11.C 12.C	3.C 4.D 13.C 14.D	5.A 15.C	6.B 16.D	7.B 17.B	8.C 18.B	9.D 19.B	10.A 20.C		
	21.B 22.A	23.D 24.C			27.C	28.B	29.B	30.C		
 	31.A 32.A 41.C 42.C	33.B 34.A 43.D 44.C			37.A 47.C	38.A 48.C	39.C 49.B	40.C 50.D		
	51.B 52.B	53.D 54.D		56.C	57.A	58.C	59.B	60.C		
	61.D 62.A	63.D 64.C	65.C	66.B	67.D		69.A	70.B		
$\frac{\Phi\Phi}{\Phi} \underline{LEARNER'S TASK}$										
	BEGINNERS : 1.A 2.D	3.B 4.C	5.D	6.B	. 7	8.B	9.A	10.D		
	11.B 12.D	13.C 14.D	15.C	16.D	17.A	18.C	19.C	20.C		
	21.A 22.A 31.C 32.D	23.D 24.D 33.C 34.C		26.C 36.D	27.D 37.C	28.D 38.B	29.B 39.D	30.B 40.B		
 	41.B 42.D									
	, ,	,	ii) a ² +2 iii) 16x-5 iv) 27							
$ \begin{array}{c c} 2) \text{ i) } \{(1,4),(2,-6),(3,-2)\} \\ i \text{ iii) } \{(1,4),(2,9),(3,1)\} \\ i \text{ iv) } \{(1,\sqrt{2})\} \end{array} $										
 	4. Even function	on 6.B=	$=\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}, 0, \frac{1}{2}\right\}$							
1	EXPLORERS:1.B	2.A 3.B	4.B	5.C	6.C	7.A				
	RESEARCHERS: 1.C 2.D	3.B 4.C			7.C	8.D	9.D	10.C		
	11.A 12.D	13.B 14.C	15.C	16.A	17.C					
I										
	- CLASS 19 Powe						ad by la	nicalclass.co		