2. OXIDATION AND REDUCTION SOLUTIONS TEACHING TASK JEE MAIN LEVEL OUESTIONS 1. The oxidation number of sulfur is not a whole number in: B) Sulfur dioxide (SO₂) A) Sodium tetrathionate $(Na_2S_4O_6)$ C) Sulfur hexafluoride (SF₆) D) Sulfite ion (SO₂²-) Answer:A Solution: In $Na_2S_4O_6$, sulfur has an average oxidation state of +2.5 (fractional). Structure: Two central S atoms have 0 oxidation state (S-S bond), while the other two S atoms have +5 (bonded to O). $Na_2S_4O_6=2(1)+4S+6(-2)=0$ 4S=12-2S=10/4=2.52. The oxidation state of nitrogen is maximum in: A) Nitrous oxide (N₂O) B) Nitric acid (HNO₃) C) Ammonium ion (NH₄⁺) D) Nitric oxide (NO) Answer:B Solution:A)N₂O=2N-2=0 $2N=2 \rightarrow N=2/2=1$ B) $HNO_3 = 1 + N + 3(-2) = 0 \rightarrow N = +5$ C) $NH_4^+ = N+4(1)=1$ N=1-4=-3D)NO=N-2= $0 \rightarrow N=2$ 3. The oxidation state of oxygen is minimum in: A) Potassium superoxide (KO₂) B) Ozone (O₃) D) Oxygen difluoride (OF₂) C) Water (H₂O) Answer:C Solution:A) $KO_2 = 2(O) + 1 = 0 \rightarrow 2(O) = -1 \rightarrow O = -1/2$. In superoxides, each oxygen atom has an oxidation state of -1/2. This is the lowest oxidation state commonly seen for oxygen. $B)O_{3}=0$ C) $H_0O=2(1)+O=0 \rightarrow O=-2$. D)OF₂=O+2(-1)=0 \rightarrow O=+2 4. The highest oxidation number of chlorine is found in: A) Sodium hypochlorite (NaOCl) B) Chlorine dioxide (ClO₂) C) Perchloric acid (HClO₄) D) Dichlorine monoxide (Cl₂O) Answer:C Solution:A)NaOCl=1+(-2)+Cl=0 \rightarrow Cl=2-1=0 B)ClO₂=Cl+(-2)=0 \rightarrow Cl=2

Answer:B

Solution: Gain of 1 electron reduces oxidation state by 1: $+2 \rightarrow +1$.

11. The oxidation number and covalency of phosphorus in PCl₅ are:

A) +5 and 3 B) +5 and 5 C) 0 and 3 D) +3 and 3

Answer:B

Solution: PCl_5 : P = +5 (Cl = -1).

Covalency = 5 (5 bonds formed by P).

12. The total oxidation number of carbon atoms in ethanoic acid (CH₃COOH) is:

C)
$$+2$$

Answer:A

Solution: $CH_3COOH=2C+4-2-2=0 \rightarrow 2C=0 \rightarrow C=0$

13. In potassium dichromate (K₂Cr₂O₇), the oxidation state of chromium is:

A)
$$+2$$

B)
$$+3$$

$$C) +6$$

Answer:C

Solution:Let Cr = x.

 $K_2Cr_2O_7=2(1)+2x+7(-2)=0$

 $2x=14-2 \rightarrow x=12/2=+6$

14. In the compound sodium hydride (NaH), the oxidation number of hydrogen is:

A)
$$+1$$

D)
$$+2$$

Answer:B

Solution:NaH=+1+H=0

H = -1

15. Which of the following reactions is a redox reaction?

A) NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O

B)
$$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$$

C)
$$Zn + CuSO_4 \rightarrow ZnSO_4 + \tilde{C}u$$

D)
$$NH_3 + H_2O \rightarrow NH_4 + OH_2$$

Answer:C

Solution:Zn (0) \rightarrow Zn²⁺ (+2): Oxidation.

 Cu^{2+} (+2) \rightarrow Cu (0): Reduction.

JEE ADVANCED LEVEL QUESTIONS

Multi correct answer type:

16. The oxidation number of manganese is NOT +7 in:

Answer:B,C,D

Solution:

A)
$$KMnO_4 = 1 + Mn + 4(-2) = 0$$

Mn=8-1=+7

B)
$$MnO_2 = Mn + 2(-2) = 0 \rightarrow Mn = 4$$

C)
$$MnCl_{2}^{2} = Mn + 2(-1) = 0 \rightarrow Mn = 2$$

D)
$$Mn_2O_3 = 2Mn + 3(-2) = 0 \rightarrow Mn = 6/2 = 3$$

17. The reaction Zn + CuSO₄
$$\rightarrow$$
 ZnSO₄ + Cu is NOT an example of:

A) Oxidation B) Reduction

B) Reduction C) Redox reaction D) Combination reaction

Answer:D

Solution:A) Oxidation:Zn \rightarrow Zn²⁺ + 2e⁻ (oxidation occurs).

- B) Reduction: $Cu^{2+} + 2e^{-} \rightarrow Cu$ (reduction occurs).
- C) Redox reaction:

Both oxidation and reduction occur (Zn is oxidized, Cu²⁺ is reduced).

D) Combination reaction:

Incorrect. This is a single displacement reaction, not a combination (where two reac-

tants form one product).

Statement Type/Assertion and Reason Type:

18. Assertion (A): Oxygen shows an oxidation state of -2 in most of its compounds. Reason (R): Oxygen is highly electronegative and can gain two electrons to achieve a stable octet.

Answer:A

Solution:Assertion (A) is true because oxygen typically has an oxidation state of -2 (e.g., H_2O , CO_2). Exceptions:-1 in peroxides (O_2^{2-}) .

 $-\frac{1}{2}$ in superoxides (O_2) .

+1/+2 in OF_2/O_2F_2 .

Reason (R) is true and explains (A): Oxygen's high electronegativity allows it to gain 2 electrons (achieving octet), resulting in -2 oxidation state.

19. Assertion (A): The oxidation number of hydrogen is -1 in metal hydrides like LiH. Reason (R): In metal hydrides, hydrogen behaves as a more electronegative element than the metal.

Answer:A

Solution: Assertion (A) is true: In ionic hydrides (e.g., LiH, NaH), hydrogen has -1 oxidation state.

Reason (R) is true and explains (A): Hydrogen is more electronegative than alkali/alkaline earth metals, so it gains 1 electron (forming H?), resulting in -1 oxidation state.

20. Assertion (A): The oxidation number of sulfur in H_2SO_4 is +6.

Reason (R): The total oxidation number of all atoms in a neutral compound must equal zero.

Answer:B

Solution: Assertion (A) is true:

Let oxidation state of S = x

2(+1)+x+4(-2)=0

2+x-8=0

x = +6.

Reason (R) is true (neutral compounds have net oxidation number = 0), but it does not explain why S is +6. The explanation lies in S's bonding with highly electronegative O (-2).

Comprehension Type

21. In which of the following processes is sulfur oxidized?

A) S
$$\rightarrow$$
 SO $_2$ B) SO $_2$ \rightarrow S C) H $_2$ S \rightarrow S D) S \rightarrow H $_2$ S

Answer:A

Solution:Oxidation means an increase in oxidation number (loss of electrons). Analyzing sulfur's oxidation state in each option:

A) $S \rightarrow SO2$:

S (elemental form): Oxidation state = 0.

$$SO_2$$
: S = +4 (O = -2)
x+2(-2)=0 ?

x=+4).

Change: \rightarrow +4 (Oxidation)

B)
$$SO_2 \rightarrow S$$
:

$$SO_{0}$$
: $S = +4 \rightarrow S$: 0.

Change: $+4 \rightarrow 0$ (Reduction)

C)
$$H_0S \rightarrow S$$
:

$$H_2S: S = -2 (H = +1)$$

$$2(+1)+x=0$$

$$x=-2$$
).

S: 0.

Change: $-2 \rightarrow 0$ (Oxidation) \rightarrow (But not among the options where sulfur is oxidized to a higher state like in A).

- D) $S \rightarrow H_0S$:
- S: 0, H₂S: -2.

Change: $0 \rightarrow -2$ (Reduction)

22. In the reaction:

 $Ca \rightarrow CaCl_{2}$,

the oxidation number of calcium:

- A) Increases from 0 to +2 B) Decreases from +2 to 0
- C) Does not change
- D) Increases from +1 to +2

Answer:A

Solution:Calcium (Ca) in elemental form: Oxidation state = 0.

Calcium in CaCl2:

$$C1 = -1$$

$$x+2(-1)=0 \rightarrow x=+2.$$

Change: $0 \rightarrow +2$ (Oxidation).

Conclusion: The oxidation number of calcium increases from 0 to +2 (loses 2 electrons).

Integer Type:

23. The number of electrons involved in the half-reaction of: $Fe^{2+} \rightarrow Fe^{3+}$ is _____.

Answer:1

Solution: The half-reaction shows the conversion of Fe²⁺ to Fe³⁺.

Oxidation state change: $+2 \rightarrow +3$ (loss of 1 electron).

Half-reaction: $Fe^{2+} \rightarrow Fe^{3+} + 1e^{-}$

Thus, 1 electron is involved.

24. The oxidation state of phosphorus in Na₃PO₄ is _____.

Answer:5

Solution:
$$Na_3PO_4 = 3(1)+P+4(-2)=0$$

$$P=8-3=5$$

Matrix Matching Type:

25.	List - I	List - II			
	(Compound)	(Oxidation no of sulphur)			
	A) $H_2S_2O_8$	1) + 1			
	B) H ₂ S	2) + 2			
	C) Na ₂ SO ₃	3) + 6			
	D) $S_2C\ell_2$	4) + 4			
		5) ₋₂			

Answer: A-3, B-5, C-4, D-1

Solution:

A)
$$H_2S_2O_8 = 2(1) + 2S + 6(-2) + 2(-1) = 0 \rightarrow 2S = 14 - 2 \rightarrow 2S = 12 \rightarrow S = 12/2 = +6$$

B)
$$H_2S = 2(1) + S = 0 \rightarrow S = -2$$

C) Na₂SO₃ =2(1)+S+3(-2)=0
$$\rightarrow$$
S=6-2=4

D)
$$S_2C\ell_2 = 2S+2(-1)=0 \rightarrow 2S=2 \rightarrow S=+1$$

LEARNERS TASK

CONCEPTUAL UNDERSTANDING QUESTIONS

1. The oxidation state of chlorine in $KClO_3$ is:

A)
$$+3$$
 B) $+5$ C) $+7$ D) -1

Answer:B

Solution: $KClO_3 = 1 + Cl + 3(-2) = 0$

2. Nitrogen exhibits its lowest oxidation state in:

Answer:A

Solution:A) $NH_3 = N+3(1)=0 \rightarrow N=-3$

B)
$$N_2O = 2N+1(-2)=0 \rightarrow 2N=2 \rightarrow N=2/2=1$$

C)
$$N\tilde{O}_2 = N + 2(-2) = 0 \rightarrow N = +4$$

D)
$$HNO_3 = 1 + N + 3(-2) = 0 \rightarrow N = 6 - 1 = 5$$

3. The oxidation number of carbon in C_2H_2 (ethyne) is:

A)
$$+1$$
 B) -1 C) 0 D) -2

Answer:B

Solution: $C_2H_2 = 2C+2(1)=0 \rightarrow 2C=-2 \rightarrow C=-2/2=-1$

4. The oxidation state of oxygen in KO₂ (potassium superoxide) is:

A)
$$-1$$
 B) $-1/2$ C) -2 D) 0

Answer:B

Solution: $KO_2 = 1 + 2x = 0$

$$2x=-1 \rightarrow x=-1/2$$

5. In KMnO₄, the oxidation number of manganese is:

Answer:C

Solution: $KMnO_4=1+Mn+4(-2)=0$

$$Mn=8-1=+7$$

6. Oxidation number of chromium in Cr₂O₇²⁻ is:

Answer:A

Solution:

$$Cr_2O_7^{2-}=2Cr+7(-2)=-2$$

$$2Cr=14-2 \rightarrow 2Cr=12 \rightarrow Cr=12/2=+6$$

7. In NO₃, the oxidation number of nitrogen is:

Answer:C

Solution: $NO_3^- = N + 3(-2) = -1$

N=6-1=+5

8. In which of the following does phosphorus have an oxidation state of +3?

A) PCl₃ B) H₃PO₄ C) PCl₅ D) H₄P₂O₇

Answer:A

Solution:PCl3: Cl = -1

$$x+3(-1)=0 \rightarrow x=+3$$

Others:

 H_3PO_4 : +5

 PCl_5 : +5

 $H_4P_2O_7$: +5

9. The oxidation number of hydrogen is negative in:

A) H₂O B) NH₃ C) CH₄ D) NaH

Answer:D

Solution:

In metal hydrides (e.g., NaH), H = -1.

In other compounds (H_2O , NH_3 , CH_4), H = +1.

10. Which of the following elements shows variable oxidation states?

A) Neon B) Iron C) Sodium D) Fluorine

Answer:B

Solution:Iron (Fe): Common states = +2, +3 (variable).

Others:

Neon: 0 (inert) Sodium: +1 (fixed)

Fluorine: -1 (fixed)

JEE MAIN LEVEL QUESTIONS

11. The minimum oxidation state that sulphur can exhibit is:

A)
$$-1$$
 B) -2 C) 0 D) -3

Answer:B

Solution: Sulfur's lowest oxidation state is -2 (e.g., in H₂S or metal sulfides).

Higher states: 0 (elemental S), +2, +4, +6.

12. What is the oxidation number of carbon in methane (CH₄)?

Answer:B

Solution:
$$CH_4 = C + 4(1) = 0$$

$$C = -4$$

13. In which of the following compounds does oxygen have an oxidation state of -1?

A) CO_2 B) H_2O C) H_2O_2 D) NaOH

Solution:Peroxides (O_2^2) like H_2O_2 have O = -1.

Others: CO_2 : O = -2

 $H_2O: O = -2$

NaOH: O = -2

14. The oxidation numbers of nitrogen in N₂, NH₃, and HNO₃ are respectively:

Answer:A

Solution:Oxidation number fo elementary form is Zero, $N_2 = 0$

 $NH_3 = N + 3(1) = 0$

N=-3

 HNO_3

1+N+3(-2)=0

N=6-1=5

15. When Br_2 reacts with hot concentrated NaOH, the oxidation numbers of bromine in the products are:

A) -1 and +5 B) 0 and -1 C) -1 and +1 D) +3 and -1

Answer:A

Solution: $3Br_2 + 6NaOH \rightarrow 5NaBr + NaBrO_3 + 3H_2O$

NaBr (Br -): -1

NaBrO₃ (Br⁵⁺): +5

16. The element that always shows an oxidation state of -1 in its compounds is:

A) Oxygen B) Chlorine C) Fluorine D) Iodine

Answer:C

Solution:Fluorine is the most electronegative element and always -1.

17. In the conversion of MnO₄⁻ to Mn²⁺, the oxidation number of manganese:

A) Increases B) Decreases C) Remains the same D) Becomes zero

Answer:B

Solution: $MnO_4^- = Mn+4(-2)=-1$

Mn = -1 + 8 = 7

 $Mn^{2+}:Mn=+2$

Change: $+7 \rightarrow +2$ (reduction, oxidation number decreases).

18. The oxidation number of nitrogen in NO₂- (nitrite ion) is:

A) +3 B) +2 C) +4 D) +1

Answer:A

Solution: $NO_2^- = N+2(-2)=-1$

N=4-1=3

19. The oxidation number of sulphur in Na₂S₂O₃ (sodium thiosulphate) is:

A) +2 B) +6 C) +3 D) a fractional value

Answer:A

Solution: $Na_2S_2O_3 = 2(1)+2S+3(-2)=0$

 $2S=6-2 \rightarrow 2S=4 \rightarrow S=4/2=2$

20. The element that shows only one oxidation state in its compounds is:

A) Calcium B) Iron C) Chlorine D) Sulphur

Answer:A

Solution:Calcium always shows +2 (no variable states).

Others:Iron: +2, +3

Chlorine: -1 to +7

JEE ADVANCED LEVEL QUESTIONS

Multicorrect Answer Type

- 21. $3\text{Cu} + 8\text{HNO}_3 \rightarrow 3\text{Cu}(\text{NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O}$ the correct statement for the reaction is
 - A) Cu is oxidized

B) HNO₃ is reduced

C) Cu is reduced

D) Cu acts as reducting agent

Answer:A,B,D

Solution: Oxidation:

Cu (0) \rightarrow Cu²⁺ (+2): Loses 2 electrons per Cu atom (Oxidation).

Reduction:

 HNO_3 (N⁵⁺) $\rightarrow NO$ (N²⁺): Gains 3 electrons per N atom (Reduction).

Roles:

Cu is oxidized and acts as the reducing agent.

HNO₃ is reduced and acts as the oxidizing agent.

Incorrect Option:

C) Cu is reduced: False (Cu is oxidized).

22. Which of the following have been arranged in order of decreasing oxidation number of Sulphur?

A)
$$H_2S_2O_7 > Na_2S_4O_6 > Na_2S_2O_3 > S_8$$

B)
$$SO^{2+} > SO_4^{2-} > SO_3^{2-} > HSO_4^{-}$$

C)
$$H_2SO_5 > H_2SO_3 > SCl_2 > H_2S$$

D)
$$H_2SO_4 > SO_2 > H_2S > H_2S_2O_8$$

Answer:C

Solution:Compound Oxidation State of S

 $H_2S_2O_7$ (Disulfuric acid) \rightarrow +6 (each S)

 $Na_{2}S_{2}O_{6}$ (Sodium dithionate) $\rightarrow +5$ (each S)

 SO^{2+} (Sulfuryl ion) $\rightarrow +6$

 SO_4^{2-} (Sulfate) $\rightarrow +6$

 SO_3^{2} (Sulfite) $\rightarrow +4$

 HSO_4^- (Bisulfate) $\rightarrow +6$

 H_2SO_5 (Peroxymonosulfuric acid) \rightarrow +6 (with peroxide)

 $H_2^2SO_3$ (Sulfurous acid) \rightarrow +4

 \overrightarrow{SCI}_2 (Sulfur dichloride) $\rightarrow +2$

 H_2S (Hydrogen sulfide) \rightarrow -2

 $H_2^2 S_2 O_6$ (Dithionic acid) \rightarrow +5 (each S)

Correct Option: C) $H_2SO_5 > H_2SO_3 > SCl_2 > H_2S$

Order: +6 > +4 > +2 > -2

Statement Type/Assertion and Reason Type:

23. Assertion (A): The reaction between zinc and copper(II) sulphate is a redox reaction.

Reason (R): Zinc loses electrons and gets oxidized while copper ions gain electrons and get reduced.

Answer:A

Solution: Verify Assertion (A):

The reaction is:Zn+CuSO→ZnSO₄+Cu

 $Zn(0) \rightarrow Zn^{2+}(+2)$: Oxidation (loss of 2 electrons).

 Cu^{2+} (+2) \rightarrow Cu (0): Reduction (gain of 2 electrons).

Conclusion: It is a redox reaction (both oxidation and reduction occur).

Assertion (A) is TRUE.

Verify Reason (R):

Zinc is oxidized (loses electrons). Copper ions (Cu²⁺) are reduced (gain electrons).

Reason (R) correctly explains (A).

Comprehension Type:

24. The atom undergoing oxidation is:

A) Mg B) Ag C) N D) NO₃-

Answer:A

Solution: In the reaction: $Mg + 2AgNO_3 \rightarrow Mg(NO_3)_2 + 2Ag$

Oxidation:

 $Mg(0) \rightarrow Mg^{2+}(+2)$: Loses 2 electrons (Oxidation).

Reduction:

 Ag^+ (+1) $\rightarrow Ag$ (0): Gains 1 electron per Ag? ion (Reduction).

25. Which of the following undergoes reduction?

A) Mg B) Ag $^{+}$ C) O $_{2}$ D) Mg(NO $_{3}$) $_{2}$

Answer:B

Soluton: Reduction involves gaining electrons.

In the reaction:

Ag + ions (from AgNO₃) gain electrons to form Ag (silver metal).

Integer Type

26. The oxidation number of phosphorus in elemental white phosphorus (P₄) is _____

Answer:0

Solution: Elemental forms of any atom (e.g., P₄, O₂, S₈) always have an oxidation state of 0 because they are in their pure, uncombined state.

27. What is the oxidation number of sulfur in the ion SO₃²-?

Answer:4

Solution:SO₂²-

S+3(-2)=-2

S=-2+6=4

Matrix Matching Type

28.Answer:a-2,b-1,c-4,d-3

Solution:

Column - I

Column - I

a) $Cr \rightarrow CrCl_3$

2) Cr is oxidised

Oxidation state change: $Cr(0) \rightarrow Cr^{3+}(+3)$. Conclusion: $Cr(0) \rightarrow Cr^{3+}(+3)$.

b)
$$M^{-2} \to X + 5e^{-}$$

1)
$$X = M^3$$

Initial oxidation state of M = -2. After losing 5 electrons: $X = M^3$

c)
$$F_2 + 2e^- \rightarrow 2F^-$$

4) F is reduced

Fluorine (F2) gains electrons \rightarrow Reduction.

d)Pb₃O₄

3) Good oxidising agent

29.Answer:a-3,5,b-4,c-2,d-1,5

Solution:

Column - I

a) Oxidation

- b) Reduction electron)
- c) Oxidant agent, readily gains electrons).
 - d) Reductant

Column - II

- 3) $Zn \rightarrow Zn^{2+} + 2e^{-}$ (Zinc loses 2 electrons)
- 5) Mg \rightarrow Mg⁺² + 2^{e-} (Magnesium loses 2 electrons).
- 4) $C\ell + e^- \longrightarrow C\ell^-$ (Chlorine gains 1
- 2) F (Fluorine is the strongest oxidizing
- 1) Ca (Calcium readily loses 2 electrons).
 - 5) $Mg \rightarrow Mg^{+2} + 2^{e-}$ (Magnesium loses 2 electrons)

KEY

						TEACHING TASK				
						JEE MAIN	LEVEL QUE			
	1	2	3	4	5	6	7	8	9	10
Α		В	С	С	Α	D	D	В	В	В
	11	12	13	14	15					
В		Α	С	В	С					
						JEE ADVANCED LEVEL QUESTIONS				
	16	17	18	19	20	21	22	23	24	25
B,C,D		D	Α	Α	В	Α	Α	1	5	A-3,B-5,C-
						LEARNERS	TASK			D-1
	1	2	3	4	5	6	7	8	9	10
В		Α	В	В	С	Α	С	Α	D	В
						JEE MAIN LEVEL QUESTIONS				
	11	12	13	14	15	16	17	18	19	20
В		В	С	Α	Α	С	В	Α	Α	Α
			JEE ADVANCED LEVEL QUESTIONS					NS		
	21	22	23	24	25	26	27	28		
A,B,D		С	Α	Α	В	0 4 a-2,b-1,c-4,d-3				
	29									
a-3,5,b	-4,0	:-2,d-1,5								