FACTORSATION OF POLYNOMIALS

🖙 FACTORISATION OF POLYNOMIALS 🧠

<u>SS</u> Homogeneous expression : An expression is said to be a homogeneous expression if all its terms are of same degree.

Ex: (i) $ax^2 + hxy + by^2$ (ii) $ax^2 + by^2 + cz^2 + fyz + gzx + hxy$ (iii) $ax^3 + bx^2y$

Note : If a homogeneous expression can be split into product of two algebraic expressions, then each of them are homogeneous and the sum of their degrees is equal to the degree of the original expression.

<u>§§</u> <u>Cyclic expression :</u> An expression f(x, y, z) is said to be cyclic if f(x, y, z) = f(y, z, x)

Ex: f(x, y, z) = x(y + z) + y(z + x) + z(x + y)

Note : (i) If f(x, y, z) is cyclic, then f(x, y, z) = f(y, z, x) = f(z, x, y)

(ii) If f(x, y, z) is cyclic and we know one term, we can write the other two s.

terms.

<u>Symmetrical function</u>: A function is said to be symmetrical with respect to two variables if its value is unaltered by interchanging them.

Ex : f(a,b,c) is symmetrical about *a*, *b* if f(a,b,c) = f(b,a,c)

A function is said to be symmetric if it is symmetrical about each pair of its variables.

Ex: (1)
$$E(a,b,c) = a^2 + b^2 + c^2 + ab + bc + ca$$

(2)
$$E(a,b,c) = a(b-c)^2 + b(c-a)^2 + c(a-b)^2$$

Factor theorem : If f(x) is an algebraic expression and f(a) = 0, then (x-a) is a factor of f(x).

Ex: $f(a) = a^2(b-c) + b^2(c-a) + c^2(a-b)$ If we take a = b, then

$$f(b) = b^{2}(b-c) + b^{2}(c-b) + c^{2}(b-b) = 0$$

 \therefore (*a* – *b*) is a factor of *f*(*a*).

Alternating function : A function is said to be alternating with respect to its variables, when its sign but not its value is altered by interchanging any pair of them.

VIII CLASS

Suppose E (a, b, c) is an alternating function.
Then
$$E(b,a,c) = -E(a,b,c)$$

Take $a = b$
 $E(b,b,c) = -E(b,b,c)$
 $\Rightarrow 2E(b,b,c) = 0 \Rightarrow E(b,b,c) = 0$
This means that $E(a,b,c) = 0$ if $a = b$
 $\therefore (a - b)$ is a factor of $E(a,b,c)$.
Similarly $(b - c), (c - a)$ are also factors.
Ex: $E(a,b,c) = a(b^2 - c^2) + b(c^2 - a^2) + c(a^2 - b^2)$
Notice that E is an alternating function
 $E(b,b,c) = b(b^2 - c^2) + b(c^2 - b^2) + c(b^2 - b^2)$
 $\therefore E = 0$ when $a = b$ so that $(a - b)$ is a factor of **E**
Similarly $(b - c), (c - a)$ are also factors
Hence $E(a,b,c) = k(a - b)(b - c)(c - a)$ as **E** is homogeneous of degree 3.
 k can be found by taking a suitable set of values for a, b, c .
EXAMPLE
Notice
 $\sqrt{1.$ Factorize $x^a + x^2 - 2ax + 1 - a^2$
Sol: $x^a + x^2 - 2ax + 1 - a^2$
sol: $x^a + x^2 - 2ax + 1 - a^2$
sol: $(x^2 + 4x + a)(x^2 + 1 - x - a)$
 $= (x^2 + 1)^2 - (x + a)^2$
 $= (x^2 + 1 + x + a)(x^2 + 1 - x - a)$
 $= (x^2 + x + a + 1)(x^2 - x - a + 1)$
 $\sqrt{2}$. Factorize, $(x^2 + 4x + 8)^2 + 3x(x^2 + 4x + 8) + 2x^2$
Sol: $(x^2 + 4x + 8)^2 + 3x(x^2 + 4x + 8) + 2x^2$
 $= k^2 + 3xk + 2x^2$, where $k = x^2 + 4x + 8$
 $= k^2 + xk + 2xk + 2x^2$
 $= k(k + x) + 2x(k + x)$
VUICLASS
2 Powered by togical class.com

$$= (k + 2x)(k + x)
= (x^{2} + 4x + 8 + 2x)(x^{2} + 4x + 8 + x)
= (x^{2} + 6x + 8)(x^{2} + 5x + 8)
= (x + 2)(x + 4)(x^{2} + 5x + 8)
(3. Factorize x^{22} + x^{16}y^{16} + y^{32}
= x^{32} + 2x^{16}y^{16} + y^{32}
= x^{32} + 2x^{16}y^{16} + y^{32}
= (x^{16} + y^{16})^{2} - (x^{8}y^{8})^{2}
= (x^{16} + y^{16} + 2x^{8}y^{8} - x^{8}y^{8})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{16} + y^{16} + 2x^{8}y^{8} - x^{8}y^{8})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{16} + y^{16} + 2x^{8}y^{8} - x^{8}y^{8})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{8} + y^{8} + x^{4}y^{4})(x^{8} + y^{8} - x^{8}y^{8})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{8} + y^{8} + x^{4}y^{4})(x^{8} + y^{8} - x^{8}y^{8})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{4} + y^{4} + x^{2}y^{2})(x^{8} - x^{4}y^{4} + y^{6})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{2} + xy^{4} + x^{2}y^{2})(x^{4} - x^{2}y^{2} + y^{4})(x^{8} - x^{4}y^{4} + y^{8})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{2} + xy + y^{2})(x^{2} - xy + y^{2})(x^{4} - x^{2}y^{2} + y^{4})(x^{8} - x^{4}y^{4} + y^{8})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{2} + xy + y^{2})(x^{2} - xy + y^{2})(x^{4} - x^{2}y^{2} + y^{4})(x^{8} - x^{4}y^{4} + y^{8})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{2} + xy + y^{2})(x^{2} - xy + y^{2})(x^{4} - x^{2}y^{2} + y^{4})(x^{8} - x^{4}y^{4} + y^{8})(x^{16} - x^{8}y^{8} + y^{16})
= (x^{2} - 2xz) - y^{2} - 3z^{2} - 2xz + 4yz
Sol : x^{2} - y^{2} - 3z^{2} - 2xz + 4yz
= (x^{2} - 2xz) - y^{2} - 3z^{2} + 4yz
= (x^{2} - 2xz) - y^{2} - 3z^{2} + 4yz
= (x - z)^{2} - (y - 2z)^{2}
= [(x - z)^{4} - (y - 2z)][(x - z) - (y - 2z)]
= (x + y - 3z)(x - y + z)
(\sqrt 5. Factorize (x + y + z)^{3} + (x + y - z)^{3} + (x - y + z)^{3} + (x - y - z)^{3}
Sol : consider (a + b)^{3} + (a - b)^{3} = [(a + b) + (a - b)][(a + b)^{2} - (a + b)(a - b) + (a - b)^{2}]
VIII CLASS 3 Powered by logical class.com$$

FACTORSATION OF POLYNOMIALS

MATHEMATICS

$$= 2a[a^{2} + 2ab + b^{2} - (a^{2} - b^{2}) + (a^{2} - 2ab + b^{2})]$$

$$= 2a[a^{2} + 3b^{2}]$$

$$\therefore (x + y + z)^{3} + (x - y - z)^{3} = [x + (y + z)]^{3} + [x - (y + z)]^{3}$$

$$= 2x[x^{2} + 3(y + z)^{3}] - \dots \dots (1)$$
and $(x + y - z)^{3} + (x - y + z)^{3} = [x + (y - z)]^{3} + [x - (y - z)]^{3}$

$$= 2x[x^{2} + 3(y - z)]^{2} - \dots \dots (2)$$

$$(1)+(2) \Rightarrow (x + y + z)^{2} + (x + y - z)^{2} + (x - y + z)^{2} + (x - y - z)^{2}$$

$$= 2x[x^{2} + 3(y + z)^{2} + x^{2} + 3(y - z)^{2}]$$

$$= 2x[x^{2} + 6y^{2} + 6z^{2}]$$

$$= 4x[x^{2} + 3y^{2} + 3z^{2}]$$

$$(1) + (2) \Rightarrow (x + y + z)^{2} + (x + y - z)^{2} + (x - y + z)^{2} + (x - y - z)^{2}$$

$$= 2x[x^{2} + 6y^{2} + 6z^{2}]$$

$$= 4x[x^{2} + 3y^{2} + 3z^{2}]$$

$$(2) + (2) + b^{2}(c + a) + c^{2}(a + b) + 2abc$$

$$(2) + (2) + b^{2}(c + a) + c^{2}(a + b) + 2abc$$

$$(2) + (2) + b^{2}(c - b) + c^{2}(a + b) + 2abc$$

$$(2) + (2)$$

7. Factorize $(x + y + z)^5 - x^5 - y^5 - z^5$ **Sol**: Denote, $E(x, y, z) = (x + y + z)^5 - x^5 - y^5 - z^5$ **Observations** : 1. E(x, y, z) is a symmetric function in x, y, z 2. E(x, y, z) is homogeneous of degree 5 3. If we take x = -y, $E(x,y,z) = E(-y,yz) = (-y+y+z)^5 - (-y)^5 - y^5 - z^5 = z^5 + y^5 - y^5 - z^5 = 0$ \therefore (*x* + *y*) is a factor of *E* Due to symmetry of *E*, (y + z), (z + x) are also factors 4. E(x, y, z) = (x + y)(y + z)(z + x) F(x, y, z)where F is symmetric and homogeneous of degree 2 $\therefore F = A(x^2 + y^2 + z^2) + B(xy + yz + zx)$ Hence $E(x, y, z) = (x + y)(y + z)(z + x) \left[A(x^2 + y^2 + z^2) + B(xy + yz + zx) \right]$ $\Rightarrow (x + y + z)^{5} - x^{5} - y^{5} - z^{5} = (x + y)(y + z)(z + x)[A(x^{2} + y^{2} + z^{2}) + B(xy + yz + zx)] - --$ ----(1) To find A, B, we take particular values for x, y, z Take x = 0, y = 1, z = 1 in (1) $\Rightarrow 2^5 - 1 - 1 = (1) (2) (1) [A(2) + B] \Rightarrow 2(2A + B) = 30$ $\Rightarrow 2A + B = 15$ -----(2) Take x = 1, y = 1, z = 1 in (1) $\Rightarrow 3^5 - 1 - 1 - 1 = (2) (2) (2) [3A + 3B] \Rightarrow 24(A + B) = 240$ \Rightarrow A + B = 10 -----(3) Solving (2), (3) we get A = 5, B = 5 $\therefore (x+y+z)^5 - x^5 - y^5 - z^5 = 5(x+y)(y+z)(z+x)(x^2 + y^2 + z^2 + xy + yz + zx)$ $\sqrt{}$ **8.** Without removing the brackets at any stage, factorize 2y(y+z) - (x+y)(x+z)**Sol**: 2y(y+z) - (x+y)(x+z)= [(y + x) + (y - x)](y + z) - (x + y)(x + z)= (y + x)(y + z) + (y - x)(y + z) - (x + y)(x + z)= (y - x)(y + z) + (x + y)[(y + z) - (x + z)]VIII CLASS Powered by logicalclass.com

= (y-x)(y+z) + (x+y)(y+z-x-z)= (y - x)[(y + z) + (x + y)]= (y - x)(x + 2y + z) $\sqrt{}$ **9.** Simplify $(b-c)(b+c-a)^3 + (c-a)(c+a-b)^3 + (a-b)(a+b-c)^3$. **Sol**: Let $E(a,b,c) = (b-c)(b+c-a)^3 + (c-a)(c+a-b)^3 + (a-b)(a+b-c)^3$ Then E(a, b, c) is (i) Homogenous of degree 4 in a, b, c (ii) Cyclic in a, b, c Take a = b $E(b,b,c) = (b-c)(b+c-b)^{3} + (c-b)(c+b-b)^{3} + (b-b)(b+b-c)^{3}$ atiol = $c^{3}(b-c) + c^{3}(c-b) + 0 = 0$ \therefore (a-b) is a factor of E. As E is cyclic, (b - c), (c - a) are also factors. Since (a - b), (b - c), (c - a) are factors and E is homogenous of degree 4, E(a,b,c) = (a-b)(b-c)(c-a) k(a+b+c), where k is a constant Take a = 0, b = 1, c = 2E(0, 1, 2) = (-1)(-1)(2)k(3) $(-1)(3)^{3} + (2)(1)^{3} + (-1)(-1)^{3} = 6k$ -27 + 2 + 1 = 6k $6k = -24 \implies k = -4$ $\therefore E(a,b,c) = -4(a-b)(b-c)(c-a)(a+b+c)$ **10.** Simplify $(b^2 - ca)(c^2 - ab) + (c^2 - ab)(a^2 - bc) + (a^2 - bc)(b^2 - ca)$. $\sqrt{}$ Sol: Denote the given expression by E. $E = \sum (b^2 - ca)(c^2 - ab)$ $= \sum \left[b^2 c^2 - a(b^3 + c^3) + a^2 bc \right]$ $= (b^{2}c^{2} + c^{2}a^{2} + a^{2}b^{2}) - \left\lceil a(b^{3} + c^{3}) + b(c^{3} + a^{3}) + c(a^{3} + b^{3}) \right\rceil + abc(a + b + c)$ $= (ab + bc + ca)^{2} - \left[a(b^{3} + c^{3}) + b(c^{3} + a^{3}) + c(a^{3} + b^{3})\right] - abc(a + b + c)$ VIII CLASS 6

FACTORSATION OF POLYNOMIALS

$$= (ab + bc + ca)^{2} - [a^{3}b + a^{2}bc + a^{3}c] - [ab^{3} + b^{3}c + ab^{2}c] - [abc^{2} + bc^{3} + ac^{3}]$$

$$= (ab + bc + ca)^{2} - a^{2}(ab + bc + ca) - b^{2}(ab + bc + ca) - c^{2}(ab + bc + ca)$$

$$= (ab + bc + ca)^{2} - (a^{2} + b^{2} + c^{2})(ab + bc + ca)$$

$$= (ab + bc + ca)[ab + bc + ca - a^{2} - b^{2} - c^{2}]$$

$$= -(ab + bc + ca)[a^{2} + b^{2} + c^{2} - ab - bc - ca]$$

1. Factorisation :

Process of writing the given expression as a product of its factors is called factorisation.

A factor which cannot be further expressed as product of factors is an irreducible factor.

* The form of factorisation where all factors are primes is called product of prime = 1 x 72 = 2 x 36 = 3 x 24 = 4 x 18 factor form.

Ex:72

= 8 x 9

1,2,3,4,6,8,9,12,18,24,36,72 are the factors of 72.

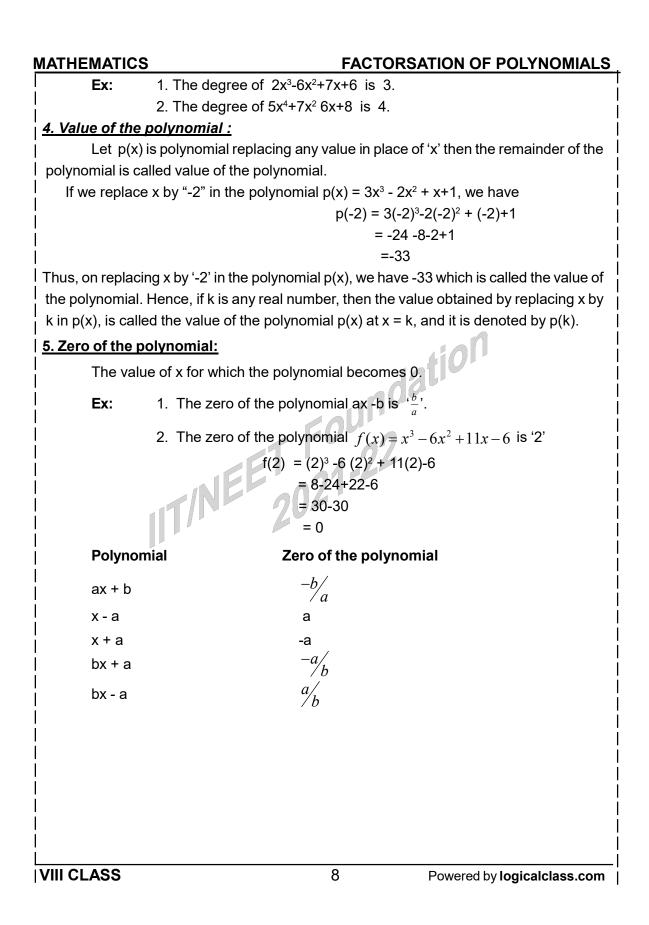
* If the given expression is of the form $x^2 + (a+b)x + ab$, then its factorisation is (x+a) (x+b)

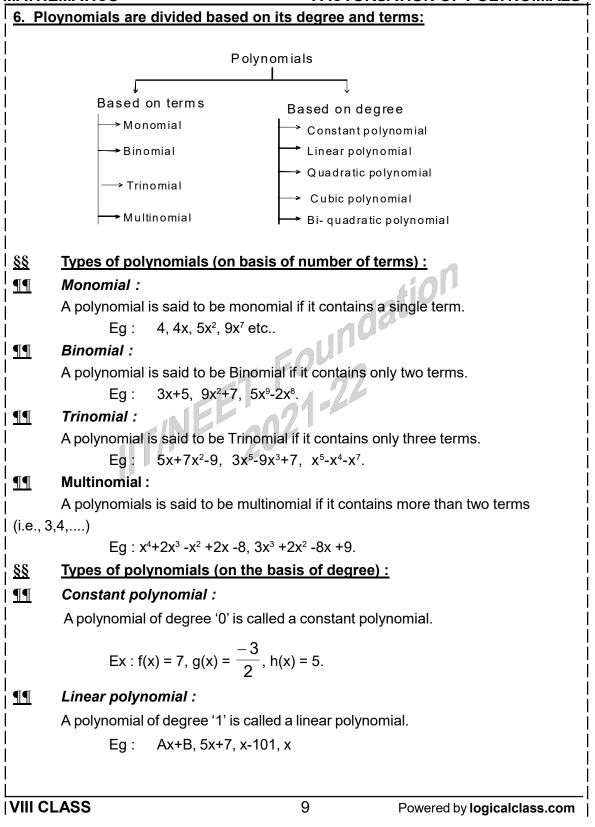
2. Polynomial :

An expression is of the form $f(x) = a_1 + a_1x + a_2x^2 + \dots + a_nx^n$, where 'n' is non negative integer and $a_0, a_1, a_2, \dots, a_n$ are complex numbers such that $a_n^1 0$ is called a polynomial of degree 'n'.

Ex: 1. $3x^4 - 2x^3 + 4x^2 - 5x + 6$

4 is the degree of polynomial.


2. $6x^6 + 5x^5 - 4x^4 + 3x^3 - 2x^2 + 6x - 7$


6 is the degree of polynomial.

3. Degree of the polynomial :

The highest power of x in the given polynomial is called the degree of that polynomial.

VIII CLASS

¶¶ Quadratic polynomial :

A polynomial of degree '2' is called a quadratic polynomial.

Eg:
$$ax^2 + bx + c$$
, $2x^2 - 5x$, $x^2 - 6x + 2$, x^2

<u>¶</u> Cubic polynomial :

A polynomial of degree '3' is called a cubic polynomial.

$$\exists g: \quad ax^3 + bx^2 + cx + d, \ x^3 - 5x^2 + 7, \ x^3 - 8$$

Image: Bi-quadratic polynomial :

A polynomial of degree '4' is called a Bi-quadratic polynomial.

$$\label{eq:Eg} \mathsf{Eg}: \qquad \mathsf{a} x^4 + \mathsf{b} x^3 + \mathsf{c} x^2 + \mathsf{d} x + \mathsf{e} \,, \ x^4 + \mathsf{5} x^3 + \mathsf{6} x - \mathsf{9} \,, \! x^2 \! y^2 \! + \! \mathsf{9} \,.$$

7. A complex number 'a' is said to be zero of the polynomial if f(a) = 0.

8. If all the terms of an algebraic expression are of the same degree then such expression are called as homogeneous expressions.

9. Standard forms of homogeneous expressions in two (or) more variables.

Variables	Degree	Standard form
x,y	1	ax+by
x,y	2	ax²+bxy+cy²
x,y	3	ax ³ +bx ² y+cxy ² +dy ³
x,y	4	ax ⁴ +bx ³ y+cx ² y ² +dxy ³ +ey ⁴
x,y,z	1	ax+by+cz
x,y,z	2	ax²+by²+cz²+dxy+eyz+fzx
x,y,z	3	ax ³ +by ³ +cz ³ +dx ² y+exy ² +fy ² z+gyz ² +hz ² x+kzx ²

10. A homogeneous expression is said to be complete, if it contains all the possible terms in it.

11. Alternating function :

If a function f of x, y, z is transformed in to -f by the interchanging any two of the set x, y, z, then 'f' is called an alternating function of x, y, z.

12. Symmetric function :

A function which is unaltered by the interchange of any two of the variables which it contains is said to be symmetric with regard these variables i.e., an expression f(x,y) is said to be symmetric if f(x,y) = f(y,x)

13. An expression f(x,y,z) is said to be a cyclic expression if f(x,y,z) = f(y,z,x).

14. We use the symbols Σ (read as sigma) and \prod (pi) to write a cyclic expression.

VIII CLASS

FACTORSATION OF POLYNOMIALS

 Σ is used for **sum of terms** and Π is used for **product of terms**. i.e.,

 $\sum x(y+z) = x(y+z) + y(z+x) + z(x+y)$

 $\prod (a^2 + b^2) = (a^2 + b^2) (b^2 + c^2) (c^2 + a^2)$

15. Division algorithm :

If f(x), $g(x) \neq 0$ are two polnomials then there exists polynomials q(x), r(x) uniquely such that $f(x) = g(x) \cdot q(x) + r(x)$.

Where r(x) = 0 (or) deg r(x) < deg g(x). The polynomial q(x) is called quotient and the polynomials r(x) is called remainder of f(x) when divided by g(x).

16. Remainder theorem :

If f(x) is a polynomial, then the remainder of f(x) when divided by (x-a) is f(a).

17. Let f(x), g(x) be two polynomials. g(x) is said to be factor of f(x), if there exists a polynomials q(x) such that f(x) = q(x).

18. Factor theorem :

If f(x) is a polynomial and f(a) = 0 then (x - a) is a factor of f(x).

19. a) $x^n - y^n$ is divisible by x - y for every positive integer n.

b) $x^n - y^n$ is divisible by x + y for every even positive integer n.

c) $x^n + y^n$ is divisible by x + y for every odd positive integer n.

20. A quadratic polynomial can have at most 2 zeroes and a cubic polynomial can have at the most 3 zeroes.

21. If α and β are the zeroes of the quadratic polynomial $ax^2 + bx + c$, $a \neq 0$, then

$$\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}.$$

22.

If α and β are the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$, $a \neq 0$, then

$$\alpha + \beta + \gamma = -\frac{b}{a},$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a},$$

and
$$\alpha\beta\gamma = -\frac{d}{a}.$$

List of formulae :

1) $(a+b)^2 = a^2 + 2ab + b^2$ 2) $(a-b)^2 = a^2 - 2ab + b^2$ 3) $(a+b)(a-b) = a^2 - b^2$

VIII CLASS

	4)	$(a+b)^2-(a-b)^2=4ab$
Ì	5)	$(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$
	6)	$a^{2} + b^{2} = (a + b)^{2} - 2ab = (a - b)^{2} + 2ab$
	7)	$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$
ļ	8)	$(a-b+c)^2 = a^2+b^2+c^2+2(-ab-bc+ca)$
	9)	$(a + b - c)^2 = a^2 + b^2 + c^2 + 2(ab - bc - ca)$
	10)	$(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2 = a^3 + b^3 + 3ab(a+b)$
	11)	$(a-b)^3 = a^3 - b^3 - 3a^2b + 3ab^2 = a^3 - b^3 - 3ab(a-b)$
	12)	$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ (or) $(a + b)^{3} - 3ab(a + b)$
 	13)	$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2}) \text{ or } (a-b)^{3}+3ab(a-b)$
	14)	$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$
Ì	15)	If $a + b + c = 0$ or $a = b = c$ then $a^3 + b^3 + c^3 = 3abc$
	16)	$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
 	17)	$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$
 	<u>Thero</u>	oms and its Proof :
Ψ	<u>Rema</u>	inder Theorem :
		x) be any polynomial of degree greater than or equal to one and let any real number. If p(x) is divided by the linear polynomial (x-a), then
		emainder is p(a).
Proof	: Let p	(x) be any polynomial with degreee greater than or equal to 1.
 	Furthe quotie	er suppose that when $p(x)$ is divided by a linear polynomial $g(x) = (x-a)$, then ent is $q(x)$ and the remainder is r (x).
1		er words, $f(x)$ are two making arrivals quark that the degree of $r(x)$ degree of $r(x)$ and
	,	nd $g(x)$ are two polynomials such that the degree of $p(x)^3$ degree of $g(x)$ and then we can find polynomials $q(x)$ and $r(x)$
	such t	
l		r(x) = 0 or degree of $r(x) < degree of g(x)$.
	•	ision algorithm,
	p(x) =	g(x). q(x) + r(x)
	<u> </u>	12 Powered by logicalclass.com
	-433	12 Powered by logicalclass.com

FACTORSATION OF POLYNOMIALS

p(x) = (x-a) .q(x) + r(x) \therefore g (x) = (x - a) Since the degree of (x - a) is 1 and the degree of r(x) is less than the degree of (x - a)a). Degree of r(x) = 0, implies r(x) is a constant, say K. so, for every real value of x, r(x) = K. Therefore, p(x) = (x-a) q(x) + KIf x=a, then p(a) = (a-a)q(a) + K= 0+K = K P(a) = Kdation Then the remainder is P(a) Hence proved. Ψ Factor Theorem : If P(x) is a polynomial of degree $n \ge 1$ and 'a' is any real number, then (i) x - a is a factor of (x), if p(a) - 0 (ii) and its converse "if (x-a) is a factor of a polynomial p(x) then p(a)=0. Let us see the simple proof of this theorem. Proof: By Remainder Theorem, p(x) = (x-a) q(x) + p(a)(i) Consider proposition (i) If p(a) = 0, then p(x) = (x-a) q(x) + 0. = (x-a) q(x)Which shows that (x-a) is a factor of p(x). Hence proved. (ii) Consider proposition (ii) since (x-a) is a factor of p(x) then p(x)=(x-a)q(x) for some polynomial q(x). p(a) = (a-a)q(a)= 0 Hence p(a)=0 when (x-a) is a factor of p(x)<u>§§</u> HCF and LCM of polynomials. **Divisor (Factor)** If a polynomial f(x) is a product of two polynomials g(x) and h(x). i.e., f(x) = g(x) X h(x) then g(x) and h(x) are called factors of f(x). VIII CLASS Powered by logicalclass.com

Eg: $f(x) = x^2 - 5x + 6$

 $f(x) = x^2 - 5x + 6 = (x - 2)(x - 3)$

then (x-2) and (x-3) are factors of x^2-5x+6 .

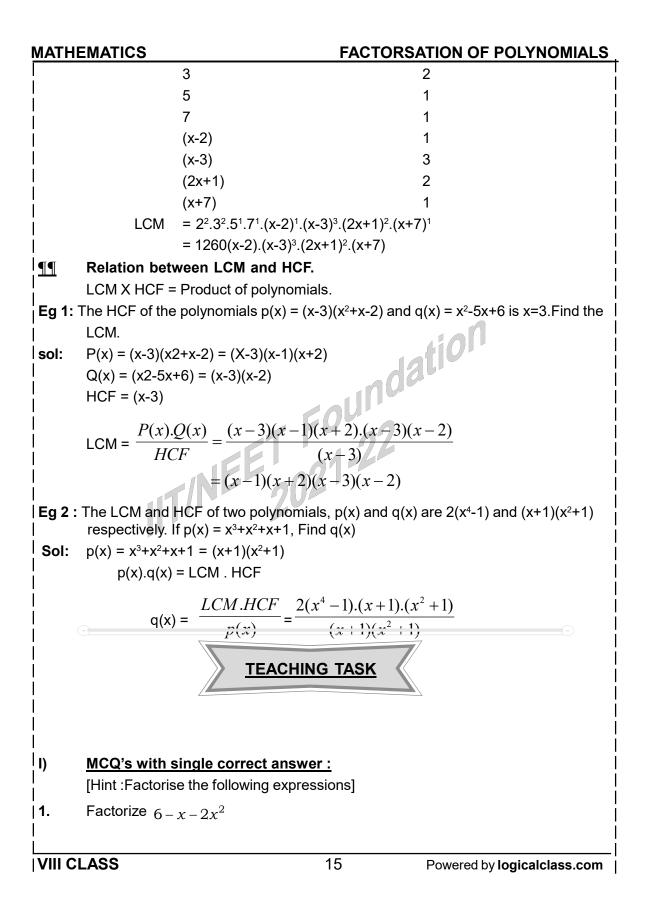
Note: If g(x) is a factor of f(x) then -g(x) is also a factor of f(x).

88 Highest common factor (HCF) or Greatest Common Divisor (GCD)

The HCF of two polynomials f(x) and g(x) is that common factor which has highest degree among all the factors and in which the co-efficient of highest degree term is positive.

Eg: Find the HCF of the polynomials $150(6x^2+x-1)(x-3)^3$ and $84(x-3)^2(8x^2+14x+5)$

Sol:


Lef $f(x) = 150(6x^2 + x - 1)(x - 3)^3$
and g(x) = 84(x-3) ² (8x ² +14x+5)
Now $f(x) = 150(6x^2+x-1)(x-3)^3$
$= 2.3.5^{2}(2x+1)(3x-1)(x-3)^{3}$
g(x)=84(x-3) ² (8x ² +14x+5)
$= 2^{2}.3.7(x-3)^{2}(2x+1)(4x+5)$
Common Factor Least Exponent
2
3
(2x+1) 1
(x-3) 2
HCF = $2^{1}.3^{1}.(2x+1)^{1}.(x-3)^{2}$
$= 6.(2x+1).(x-3)^2$

<u>§§</u> <u>LCM of polynomials:</u>

The LCM of two or more polynomials is the polynomial of the lowest degree having smallest numerical co-efficient which is exactly divisible by the given polynomials and whose co-efficient of highest degree term has the same sign as the sign of the co-efficient of highest degree term in their product.

Eg: LCM of the polynomials $90(x^2-5x+6)(2x+1)^2$ and $140(x-3)^3(2x^2+15x+7)$ Let $f(x) = 90(x^2-5x+6)(2x+1)^2$ $g(x) = 140(x-3)^3(2x^2+15x+7)$ $f(x) = 2.3^2.5.(x-2)(x-3)(2x+1)^2$ $g(x) = 2^2.5.7.(x-3)^3(2x+1)(x+7)$ <u>Factors of f(x) and g(x)</u> 2 <u>Greatest exponent</u> 2

VIII CLASS

	a) $(x-2)(-2x+3)$	b) $(-2x+3)(x-2)$	
 	c) $(-2x+3)(x+2)$	d) None of these	
2.	$(2a-b)^2+2(2a-b)-8 =$		
 	a) $(2a-b+4)(2a-b-2)$	b) $(2a+b-4)(2a-b$	(b-2)
1	c) $(2a+b+4)(2a+b+2)$	d) None of these	
3.	Factorize $12x^2 - 23xy + 10y^2 =$		
	a) $(4x-5y)(3x-2y)$	b) $(5x-4y)(3x-2y)(3x)$	/)
	c) $(5x+4y)(3x+2y)$	d) $(5x-4y)(4x-5x)(5x-5x)(5x-5y)(5x-5y)(5x-5y)(5x-5y)(5x-5y)(5x-5y)(5x-5y)(5x)$	ı)
4.	Factorize $9 - a^6 + 2a^3b^3 - b^6 =$. diol	
 	a) $(a^3 + b^3 - 3)(-a^3 + b^3 + 3)$	b) $(a^3 - b^3 + 3)(-a^3)$	$(+b^3+3)$
	c) $(a^3 - b^3 - 3)(a^3 - b^3 - 3)$	d) None of these	
 5.	Factorize of $x^3 + x^2 - 21x - 38$ is		
	a) $2x$ b) $x^2 + x + x^2$	19 c) $x-2$ c	d) $x + 2$
6.	Factor of $x^3 + 6x^2 + 11x + 6$ is		
ļ	a) $x-3$ b) x^2-3	c) $x + 3$	d) $x + 5$
7.	The quotient of $a^3 + b^3 + 1 - 3ab$ by	a+b+1	
	a) $a^2 + b^2 - b - a - ab$	b) $(a+b)(a^2+ab+3)(a^2+a$	l) I
	c) $a^2 - b^2 + b - a$	d) None of these	
8.	The value of $a^3 + b^3 + c^3$, when $b + b^3 + c^3$		20
	a) 1595 b) 2567	,	d) 1135
9 . 	The value of $(b+c)(b-c)+(c+a)(c+a)(c+a)(c+a)(c+a)(c+a)(c+a)(c$		
	a) 0 b) $a^2 - b^2$ c)		iese
10.	Find the value of $x^{12} - 7x^6 + 2001$		د <i>۱</i> ۰
 11.	a) 0 b) 2009 a² + 10a + 25	c) 2007 (d) 2
	CLASS	16 Powered by Io	 gicalclass.com

MATHEMATICS FACTORSATION OF POLYNOMIALS A) $(a-5)^{2}$ B)(a-5)(a+5) C)(a-5)(a+5) D) $(a+5)^2$ **12.** 25m² -40mn +16n² A) $(5m-4n)^2$ B) $(5m+4n)^2$ C)(5m+4n)(5m-4n)D)None $81x^2 - 198xy + 121y^2$ 13. A) $(9x+11y)^2$ B)(9x+11y)(9x-11y) C) $(9x-11y)^2$ D)None 14. (x+y)² -4 xy A) $(x+y)^{2}$ B) $(x-y)^{2}$ C(x+y)(x-y)D)None 15. (p² - 2pq + q²) - r² A)(p+q+r)(p-q-r) $\mathsf{B})(p+q+r)(p-q+r)$ $\mathsf{D})(p+q+r)^2$ C)(p-q+r)(p-q-r) $(x + y)^2 - (x-y)^2$ 16. A) (x+y) $49x^{2} - \frac{16}{25}$ A) $\left(7x + \frac{4}{5}\right)^{2}$ B) $\left(7x + \frac{4}{5}\right)\left(7x - \frac{4}{5}\right)$ C) $\left(x+y\right)^{2}$ C) $\left(7x - \frac{4}{5}\right)^{2}$ D) 4xy17. D)None 18. $4(a+b)^2 - 9(a-b)^2$ A) $(5a-b)^2$ B) $(5b+a)^2$ C)(5a-b)(5b+a)D(5a-b)(5b-a)19. a⁴ - (b+c)⁴ A) $(a^2 + b^2 + c^2 + 2bc)$ B(a+b+c)C) $(a^{2}+b^{2}+c^{2}+2bc)(a+b+c)(a-b-c)$ D)(a-b-c)l² - (m-n)² 20. A)(l+m-n)(l-m+n) B)(l+m-n) C)(l-m+n)D)None If $p(x) = 2 + x + 2x^2 - x^3$ then $P(-2) = \dots$ 21. C)14 A)16 B)15 D)13 22. If '2' is a zero of the polynomial $p(x) = 2x^2 - 3x + 7a$, then value of a = ...VIII CLASS 17 Powered by logicalclass.com

FACTORSATION OF POLYNOMIALS

A) $\frac{2}{7}$ B) $\frac{7}{2}$ C) $\frac{-2}{7}$ D) $-\frac{7}{2}$ The remainder when $9x^3 - 3x^2 + x - 5$ is divided by 3x + 223. A) $-\frac{13}{2}$ B) $-\frac{3}{12}$ C) $\frac{3}{12}$ D) $\frac{13}{2}$ If $\frac{a}{b} = \frac{b}{c}$ then (a+b+c)(a-b+c) is.... 24. A) $a^{2} + b^{2} - c^{2}$ B) $a^{2} - b^{2} - c^{2}$ C) $a^{2} + b^{2} + c^{2}$ D) $a^{2} - b^{2} + c^{2}$ 25. The remainder when $p(x) = x^3-6x^2+14x-3$ is divided by g(x) = 1-2x $C)\frac{21}{8}$ A) $\frac{21}{5}$ B) $\frac{8}{21}$ D)None If both (x-2) and $\left(x-\frac{1}{2}\right)$ are factors of px² +5x+r then ... 26. B) p = 2r C) p = 3rA) p = rD) r = 2pIf x²-x-6 and x²+3x-18 have a common factor (x-a) then the value of a..... 27. C)2 A)0 B)1 D)3 The polynomials ax^3+3x^2-13 and $2x^3-5x+a$ are divided by (x-2) the remainder in 28. each case is same then a = A)0 B)1 C)2 D)3. Let $R_1 \& R_2$ be the remainders when the polynomials $x^3+2x^2-5ax+7$ & $x^3+ax^2-12x = 6$ 29. are divided by (x + 1) and (x - 1) respectively if $R_1 - R_2 = 20$ then $a = \dots$ A) $-\frac{7}{4}$ C) 7/ D) $-\frac{4}{7}$ B) $\frac{4}{7}$ If $x^3 + px^2 + x + 6$ leaves the remainder 3 when divided by (x - 3) then P = 30. A) $\frac{11}{2}$ D) $\frac{-11}{2}$ B) $\frac{3}{11}$ C) $-\frac{3}{11}$ The polynomial $kx^4 + 3x^3 + 6$ when divided by (x-2) leaves a remainder which 31. is doubled the remainder left by the polynomial $2x^3 + 17x + k$ when divided by VIII CLASS 18 Powered by logicalclass.com

FACTORSATION OF POLYNOMIALS

(x-2) then k = B)4 A)5 C)3 D)1 What must be subtracted from $x^3 - 6x^2 - 15x + 80$ so that the result is exactly 32. divided by $x^2 + x - 12$. A)(x-1)B) 2(x-1)C)3(x-1)D) 4(x-1)For the expression $f(x) = x^3 + ax^2 + bx + c$. if f(1) = f(2) = 0 & f(4) = 0 then a = 33. .., b =, c = A)7,14,8 C)-7,14,-8 B)-7,-14,-8 D)7,-14,8 34. The quadratic polynomial in x which when divided by (x-1), (x-2), (x-3) leaves the remainder of 11,22 & 37 respectively. B_{2x^2+5x-4} C) $_{2x^2-5x-4}$ D) $2x + 5x^2 + 4$ A) $2x^2 5x + 4$ What must be subtracted from $14x^3 - 2x^2 + 7x - 8$ so that the resulting polyno-35. mial is exactly divisible by x-2FOL C)110 A)108 B)109 D)111 Factorise x³ - 23x² + 14x - 120 36. B)(x-1)(x-10)(x-12)A)(x+1)(x-10)(x-12)D(x-1)(x-10)(x+12)C(x-1)(x+10)(x-12)37. The remainder when x^{100} is divided by $x^2 - 3x + 2$ is A) $(2^{100} - 1)x + (2 - 2^{100})$ B) $(2^{100}-1)+(2-2^{100})x$ C) $(2^{100} - 1)x - (2 - 2^{100})$ D) $(2^{100}-1)-(2-2^{100})x$ The H.C.F of the polynomials $x^2 - 3x + 2$ and $x^2 + x - 6$ is 38. B)(x-1)(x-2)(x+3) C)x-2A) r + 2D)None The L.C.M of $xy + yz + zx + y^2$ and $x^2 + xy + yz + zx$ is.... 39. A)(x+y)(y+z)B(x+y)(y+z)(z+x)C)(y+z)(z+x)D(x+y)(z+x)**VIII CLASS** 19 Powered by logicalclass.com

i

40. The value of
$$\frac{(a-b)^3 + (b-c)^3 + (c-a)^3}{(a-b)(b-c)(c-a)}$$
 is......
A)1 B)1 C)2 D)3
41. If $a^{\frac{1}{3}} + b^{\frac{1}{3}} + c^{\frac{1}{3}} = 0$ then the value of $(a+b+c)^3 =$
A)27 abc B) 9 abc C) 3 abc D) 6 abc
42. If $a+b+c = 0$ then the value of $(a+b-c)^3 + (a-b+c)^3 + (-a+b+c)^3$ is
A) $a^3 + b^3 + c^3$ B)-24abc C) $a+b+c$ D)24abc
43. The expression $(1+q)(1+q^2)(1+q^4)(1+q^8)(1+q^{16})(1+q^{32})(1+q^{64})$ where $q \neq 1$
is......
A) $\frac{1-q^{64}}{1-q}$ B) $\frac{1-q^{64}}{1+q}$ C) $\frac{1-q^{128}}{1-q}$ D) $\frac{1-q^{128}}{1+q}$
44. If $(3x-1)^7 = a_7x^7 + a_6x^6 + a_3x^5 + \dots, a_8 + a_9$ then $a_7 + a_6 + a_5 + \dots, a_1 + a_0 =$
A)16 B)32 C)64 D)128
45. $(x-1)$ and $(x+2)$ are the factors of the polynomial $(x^3 + ax^2 + bx - 8)$. then
 $a=\dots$ and $b=\dots$.
A) $(16-x^2)(x+3)(x-2)$ B) $(x+3)(x-2)$
C) $(16-x^2)(x+3)(x-2)$ B) $(x+3)(x-2)$
C) $(16-x^2)(x-3)(x+2)$ D)None
47. G.C.D of $x^2 - 4$ and $x^2 + x - 6$ is....
A) $(x+2)(x-3)(x-5)(x-2)$ B) $(x-3)(x-5)(x-2)$
C) $(x-3)(x+5)(x+2)$ D) None
48. The H.C.F and L.C.M of the polynomials $x^2 - 5x - 6$ and $x^2 - 7x + 10$ is....
A) $(x+2)(x-3)(x-5)(x-2)$ B) $(x-3)(x-5)(x-2)$
C) $(x-3)(x+5)(x+2)$ D) None
49. The G.C.D of the polynomials $(x+3)^2(x-2)(x+1)^2$ and
VIII CLASS 20 Powered by logical class.com

	$(x+1)^3(x+3)$	(x+4) is		
	A) $(x+3)(x+1)$	2	B) $(x+3)^3(x-2)(x+3)^3(x-3)^3(x-3)^3(x-3)^3(x-3)^3(x-3)^3(x+3)^3(x-3)$	$(+1)^{2}(x+4)$
 	C) $(x+3)(x-2)$	(x+1)(x+4)	D)None	
50.	The number of e	lements in the set		
ļ	$\left\{n \in N / n^3 - 8n\right\}$	$^{2}+20n-13$ is a	prime number} is	(SAT-2010)
	A) 1	B) 2	C) 3	D)4
51.	Factorise $2y(y - y)$	(x+z)-(x+y)(x+z)	z)=	(SAT-2006)
 	A)(y+x)(x+2)	y-z)	B)(y+x)(x+	-2y+z)
	C)(y-x)(x+2)	y+z)	D)(y-x)(x-	2y-z)
52. 		exactly divisible by then a =b =	$x - 1$, $x - 2$ and leave $x - 1$, $z = \dots$	es remainder 6 when
 	A)1,2,-3	B) 1,-3,2		D) 2,-3,1
! II) !			e correct answer : ions. Each question has 4 cho	ines (A) (B) (C) (D)
•		MORE is correct. Choo		(Ces (A), (B), (C), (D),
1. 	Which of the follo	owing are polynom	als	
 	A) $4x^2 + 5x - 2$	$B)\frac{1}{x+1}$	C) $2x^2 + \frac{3}{x} - 5$	D) $\sqrt{3}x^2 + 5y$
2.	The factors of \sum	$ab(a-b)\dots$		
1	A) $a-b$	B) <i>b</i> - <i>c</i>	C) <i>c</i> – <i>a</i>	D)None
3.	Factors of $x^4 +$	$3x^3 - 7x^2 - 27x -$	18	
	A) $x - 2$	B) $x + 2$	C) $x - 3$	D) $x - 1$
4.	The zero's of the	polynomial $x^3 - 2$	$3x^2 + 142x - 120$	
 	A)1	B)10	C) 12	D)0
III)	<u>Integer type qu</u>	<u>estions :</u>		
1.	If $p(x) = 4x^4 - $	$5x^3 - x^2 + 6$ then $x^3 - x^2 + 6$	<i>p</i> (1) =	
2.	If $2x-3$ is a fac	tor of $2x^3 - 9x^2 +$	x + K and $K = 2a$ the	n a =
	LASS	,	x + K and $K - 2a$ the 21 Powere	d by logicalclass.com

 3.	If $x^3 - 23x^2 + 142x - 120 = (x-a)(x-b)(x-c)$ and $a < b < c$ then
	$c-b+a\cdots$
4.	If $(x+4)$ $(x-3)$ and $(x-7)$ are factors of $x^3 + ax^2 + bx + c$ then $c+3b+3a$
IV)	SOLVE THE FOLLOWING
1.	Check whether $x^{2} + 3x + 1$ is a factor of $3x^{4} + 5x^{3} - 7x^{2} + 2x + 2$.
2.	Divide $3x^2 - x^3 - 3x + 5$ by $x - 1 - x^2$, and verify the division algorithm.
3.	Divide $6x^3 + 13x^2 + x - 2$ by 2x+1, and find quotient and remainder.
4.	Find other zeroes of the polynomial $x^4 + x^3 - 9x^2 - 3x + 18$, if it is given that
	two of its zeroes are $\sqrt{3}$ and - $\sqrt{3}$.
 5. 	Find other zeroes of $x^4 - 7x^3 + 17x^2 - 17x + 6$, if two of its zeroes are 1 and 2.
6.	Divide $(4x^4 - 8x^3 + 9x^2 + 3x - 7)$ by $(2x^2 - x - 2)$ and verify division algorithm.
7.	write a quaratic polynomial, the sum and product of whose zeroes are 3 and -2.
8.	Form a quaratic polynomial p(y) with sum and product of zeroes are 2 and -3/5 respectively.
9.	Find a quadratic polynomial , the sum of whose zeroes is 7 and their product is 12. Hence find the zeroes of the polynomial.
10 .	If zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are a-b, a and a+b find a and b.
11. 	Find the zeroes of the polynomial $\chi^2 - 3$ and verify the relationship between the zeroes and the coefficients.
12.	Find a quadraic polynomial if the zeroes of it are 2 and $\frac{-1}{3}$ respectively.
 13.	Verify that $3, -1, -\frac{1}{3}$ are the zeroes of the cubic polynomial
	$p(x) = 3x^3 - 5x^2 - 11x - 3$ and then verify the relationship between zeroes and
	the coefficients
 14.	the coefficients $ \begin{pmatrix} \sum_{a,b,c} a^{4} \\ \sum_{a,b,c} a \end{pmatrix}^{4} - \sum_{a,b,c} a^{3} \\ \begin{pmatrix} \sum_{a,b,c} a \end{pmatrix}^{4} - \sum_{a,b,c} (a+b)^{4} + \sum_{a,b,c} a^{4} \\ \sum_{a,b,c} (a+1)^{3} (b^{2} - c^{2}) $ HASS Powered by legislalace com
15. 	$\left(\sum_{a,b,c}a\right) = \sum_{a,b,c}(a+b)^4 + \sum_{a,b,c}a^4$
16.	$\sum_{a,b,c} (a+1)^3 (b^2 - c^2)$
	LASS 22 Powered by logicalclass.com

MATHEMATICS FACTORSATION OF POLYNOMIALS **17.** $\sum_{x,y,z} x^2 (y^2 - z^2)$ **18.** $\sum_{a,b,c} ab(a^2 - b^2)$ **19.** $\sum_{a,b,c} a^2 (b^3 - c^3)$ $\sum_{a,b,c} \left(a^2 + b^2\right) \left(a - b\right)^2$ 20. **21.** $\prod_{a,b,c} (a^2 - b^2)$ LEARNER'S TASK **BEGINNERS** (Level - I) Junda MCQ's with Single Answer type: I) The degree of the polynomial $7 - x + 3x^2$ is 1. A) 0 B) 1 C) 2 D) 3 2. The degree of a constant polynomial B) 1 C) 2 D) not defined A) 0 3. Which of the following is cubic polynomial B) $3x^3 - 2x^2 + 5x + 7$ C) 5 A) x-12 D) $2x^2 + 3x + 4$ Zero of the polynomial of $x^2 - 3x - 4$ is 4. C) 3 D) 4 A) 1 B) 2 5. Zero's of the polynomial $f(x) = 3x^2 - 1$ are B) $\pm \frac{2}{\sqrt{3}}$ A) $\pm \frac{1}{\sqrt{3}}$ C) ±1 D) none The degree of a polynomial $ax^4 + bx^3 + cx^2 + dx + e$, a=0 is 6. A) 4 D) 1 B) 3 C) 2 7. Which of the following is complet homogeneous expression ? B) $ax^{3} + by^{3} + cx^{2}y$ C) ax + byA) $ax^{2} + by^{2}$ D) ax.by8. Which of the following is symmetric expression ? VIII CLASS 23 Powered by logicalclass.com

MATHEMATICS FACTORSATION OF POLYNOMIALS A) $2x^2 + 3xy + 2y^2$ B) $x^2 + 3xy - y^2$ C) $x^2 - 3xy + 2y^2$ D) $2x^2 + 3xy - y^2$ The value of $\sum_{a,b,a} a^2$ if a=0, b=1, c=2 is 9. A) 3 B) 4 C) 5 D) 6 The value $\prod_{a,b,c} (a^2 - b^2)$ if a=0, b=1, c=2 is 10. C) -4 A) -12 B) 3 D) 12 11. The remainder of f(x) when divided by ax+bA) $f\left(\frac{b}{a}\right)$ B) $f\left(-\frac{b}{a}\right)$ C) $f\left(-\frac{a}{b}\right)$ D) $f\left(\frac{a}{b}\right)$ The remainder when $x^3 - px^2 + 6x - p$ is divided by (x-p) is... 12. C) $p^3 + 6p$ B) $p^{3} + 5p$ A) 6p D) 5p $ax^4 + bx^3 + cx^2 + dx + e$ is exactly divisible by $x^2 - 1$, when 13. A) a+b+c+d+e=0 B) a+c+e=0 C) b+d=0 D) a+c+e=0 (or) b+d=0 When a polynomial p(x) is divided by (x-2) the quotient is $3x^2 - x - 5$ and the 14. remainder is -1 then p(-1) is B) 3 A) 2 C) 4 D) 7 The factors of $x^3 + 6x^2 + 11x + 6$ are 15. A) (x+1)(x+2)(x+3)B) (x+1) (x-2) (x-3) C) (x-1) (x-2) (x+3) D) (x-1)(x+2)(x-3)16. If $x^2 + ax + b$ and $x^2 + bx + a$ have a common factor then A) a+b=1 B) a+b=-1 C) a=b D) a+b=0 $x^{n} + y^{n}$ is divisible by x+y when n is 17. A) a positive integer B) an even posiive integer C) an odd posiive integer D) a real number 18. $x^n - y^n$ is divisible by x-y when n is A) a positive integer B) an even posiive integer C) an odd posiive integer D) a real number $x^n - y^n$ is divisible by x+y when n is 19. A) a positive integer B) an even posiive integer C) an odd posiive integer D) a real number

VIII CLASS

MATHEMATICS FACTORSATION OF POLYNOMIALS

			TOLINOMIALO
20.	x ⁴ +2x ³ +3x ² +2x+1=		
	A) $(x^2 + x - 1)^2$ B) $(x^2 + x + 1)^2$	C)(x ² -x +1) ²	D)(x ² -x -1) ²
21.	18a ⁵ +8a ³ +2a+24a ⁴ -12a ³ -8a ² =		
	A)2a(3a ² +2a+1) ² B)2a(3a ² -2a-1) ²	C)2a(3a ² +2a-1) ²	D)none
22.	(x+y) (1-z)-(y+z)(1-x)=		
	A)(x-z)(1-y) B)(x-z)(1+y) C)(x+y)(1-y) D)(x-z)	(1+y ²)
23.	(x+y)(a+bz)-(y+z)(a+bx)=		
	A)(x-z)(a-by) B)(x+z)(a-by)	C)(x-z)(a+by) D)nor	ne
24.	$\frac{9}{25}x^2 - \frac{4}{5}xy + \frac{4}{9}y^2$ can be factorised	d as	
	25 5 7		
	$A\left(\frac{3x}{5} + \frac{2y}{3}\right)^2 \qquad B\left(\frac{3x}{5} - \frac{y}{3}\right)^2 \qquad C\left(\frac{3x}{5} - \frac{y}{3}\right)^2$	$(3x 2y)^2$	$(\mathbf{x} + 2\mathbf{y})^2$
	$A)\left(\frac{1}{5} + \frac{1}{3}\right) \qquad B)\left(\frac{1}{5} - \frac{1}{3}\right) \qquad 0$	$C\left(\frac{-5}{5}-\frac{-5}{3}\right)$ D)	$\frac{-3}{5}$
25.	$a^{2}b + a^{2}c + ab^{2} + b^{2}c + ac^{2} + bc^{2} + 3abc$		/
20.	A)(ab+ac+bc) (a+b+c) B)(ab		
	C)(ab+ac-bc)(a-b+c) $D)(ab$		
26.	$a^4 + 4(a-1)^2 - 4(a^3 - a^2) =$		
20.	A) $(a^2 + 2a + 2)^2$ B) $(a^2 - 2a + 2)^2$	C)(a² - 2a - 2)²	D) None
27.	$x^{2} - z^{2} - 2xy + 2yz =$	0)(d - 2d - 2)	D) None
27.) (x-z) (x- 2y + z)	
		D) None	
28.	$a^4 - 2a^3 + 2a^2 - 2a + 1$ can be factorised	,	
20.	A) $(a^{2}+1)(a-1)$ B) $(a^{2}+1)^{2}(a-1)$		$(a^2+1)(a-+1)^2$
			(a r)(a r)
29.	If the value of $a^4 + \frac{1}{a^4} = 119$ the value	ue of $(a^3 - \frac{1}{a^{3)}})$ is .	
	A) 52 B)48 C)	36 4)29	
30.	If the polynamial $x^{19} + x^{17} + x^{13} + x^{11} + x^{12}$	7 +x ⁵ +x ³ is divided by ($x^2 + 1$), then the
	(remainder is	- · · ·	
	A) X ▲ ∎ ∎ ^B) ⁻ X <u>ACHIEVER</u>	KSQ) 2ĕvel-II) •∎∎	,,D)X²
<u>Solve</u>	e the following :		
1.	Find a quadratic polynomial if the zer	oes of it are 2 & -1/3 res	pectively.
2.	Verify that 1, -1, -3 are the zeroes of th		x ² -x -3 and check
	the relationship between zeroes and	the coefficients.	
VIII C	CLASS 2	25 Powered b	y logicalclass.com

VIII	CLASS	26 Powered by logicalclass.com
3.	Factors of $4x^3 + 8x^2 - 6x - 12$	is
	C) $ax + by + cz$	D) $3x^2 + 4y^2 + 5z^2$
	A) $x^3 - 3x^2y + 3xy^2 - y^3$	B) $x^2 + xy + y^2$
2.	. Which of the following are hor	mogeneous and complete ?
	C) $x^3 + y^3 + x^2 + y^2 + x + y$	D) $(a+b)^3 + (b+c)^3 + (c+a)^3$
	A) $x^2 + y^2 + z^2$	B) $x^2 + y^2 + x + y + 1$
1.	Which of the following are sym	imetric ?
•	out of which ONE or MORE is correct. Ch	
I) ∳	MCQ's with More than one A This section contains multiple choice aue	nswer type: estions. Each question has 4 choices (A), (B), (C),(D),
N	MCO's with Mars than and A	
	at a time, and the product of its	s zeroes as 2, -7, -14 respectively. RERS (Level - III)
10.	and -2x+4, respectively. Find g Find a cubic polynomial with th	(X). e sum, sum of the product of its zeroes taken two
9.	On dividing x ³ -3x ² +x+2 by a po	lynomial $g(x)$, the quotient and remainder were x-2
8.	Obtain all other zeroes of 3x ⁴ +	$6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
	$\sqrt{2}$ and - $\sqrt{2}$.	ndau
7.	Find all the zeroes of $2x^4 - 3x^3$	-3x ² +6x -2, if you know that two of its zeroes are
	then find the value of 'a'?	
		vided by $(x+1) \& (x-1)$ respectively if $2R_1 + R_2 = 12$
0.		when the polynomials. $f(x) = x^3 + 2ax^2 - 5x - 7$,
6.		
5.		rnomial. $x^6 - ax^5 + x^4 - ax^3 + 3x - a + 2$
	divided by $x^2 + 2x - 3$	
4.	What must be added to χ^4 +	$2x^3 - 2x^2 + x - 1$ so that the result is exactly
3.	5	and breadth of the rectangle whose area is $2x^2 + 9x$ -

117 \1			A TOROATION O	
	A) $(2x + \sqrt{6})$	B) $(2x - \sqrt{6})$	C) (x+2)	D) (x+1)
4.	If $ax^2 + 2a^2x + b^3$	is divisible by x+a ther	·	
	A) a-b=0) C) $a^2 - ab + b^2 =$	$= 0$ D) $a^2 - b^2 = 0$
5.	x-1 is a factor of .			
	A) $x^{n} - 1$	B) $x^3 - 3ax^2 + 3ax$	- ,	D) $x^2 - 2x + 1$
II)	Assertion and Re	easoning type questi	<u>ons:</u>	
*	(Assertion) and Statemen	ain number of questions. E t – 2 (Reason). Each quest t Choose the correct optio	ion has 4 choices (A), (B,	
	,			
1.	A : $2x^2 - 3x^{-1} + 5$	is a polynomial of deg	ree 2	
	R : $f(x) = a_0 + a_1$	$x + a_2 x^2 + \dots + a_n x^n$	where $n \in z^+$ and	$a_1, a_2, a_3, \dots, a_n \in C$
	such that $a_n \neq 0$ is	s called polynomial os	degree n.	
2.	A : $7x^3 + 4x^2y + 3$.	$xy^2 + y^3$ is a complete	homogeneous.	
		us expression is said t		contains all possible
3.	A : $(a^2 - 2ab + 3b^2)$	(3a-2b) is homoge	neous expression.	
	R : An expression	f(x,y) is said to be sy	mmetric if f(x,y)= f(y	x).
4.	A : $f(x,y,z) = ax^{2} + $	$ay^2 + az^2 + 2bxyz$ is at	solutely symmetric.	
	R: If the expression	on is symmetric in x,y;	y,z; z,x then it is abs	solutely symmetric.
5.	$\mathbf{A}: \sum a^4(b-c) = -$	-(a-b)(b-c)(c-a)(a-b)(a-b)(a-b)(a-b)(a-b)(a-b)(a-b)(a	$^{2}+b^{2}+c^{2}+ab+bc$	+ca)
	R : If $(a-b)(b-c)$ factor is K(a+b+c)	(c-a) are factors of).	4 th degree cyclic ex	pression then other
6.	A: $x^3 - 3x^2 + 4x - $	$5 = (x+1)(x^2 - 4x + 8)$	+(-13)	
	R : dividend = (divi	isor) $_{\times}$ (quotient) + rel	mainder.	
7.	A: (x-2) is a factor	of $x^3 - x^2 - 8x + 12$		
VIII	CLASS	27	Powered	by logicalclass.com

	IEMATICS		FACTUR	SALION OF I	POLYNOMIALS
	R: f(x) is divide	ed by (x-a) then th	e remainder is f(a	ı)	
	A: (x+1) is fac	etor of $x^4 + 4x^3 + 3x^4$	$x^2 - 4x + 5$		
	R: The sum o of x if (x+1) is	f coefficient of eve a factor.	n powers of x= sוּ	um of coefficie	nt of odd powers
	A: (x-1) is a fa	actor of $x^3 + 2x^2 - x^3$	x-2		
	R: Sum of co	efficient is not equ	al to zero then (x-	-1) is a factor.	
)	Integer type	<u>questions :</u>			
	The remainde	r when $x^{2016} + 201$	6x + 2016 is divid	led by (x+1) is	
	$2^{2n}+1$ where i	n is odd integeris c	livisible by		
	If (x-2) $\left(x - \frac{1}{2}\right)$	$\left(\frac{1}{p}\right)$ are factors of p	$px^2 + 5x + q$ then p	-q =	
		$x^{2014} + 2x^{2013} + \dots$			1. If p(x) divided
	When a polyr	nemial p(R)ESEAR	CHERS the eve		₄ ∍ and the
		then p(-1) =			
			021-22		
		Single Answer typ			
	-	f the polynomial (1	, ,	,	(RMA-2012)
		b) 6026	c) 1060	d) 20060	
	a) 2012	,			
	If the polynom	ials ax^3 +3x ² -13 a		livided by (x-2)	
	If the polynom remainder the	ials ax ³ +3x ² -13 ai en find the value o	fa.	- ()	leaves the same (RAM-2013)
	If the polynom remainder the a) 7	ials ax ³ +3x ² -13 ai en find the value o b) 0	f a. c)2	d) 1	(RAM-2013)
	If the polynom remainder the a) 7	ials ax ³ +3x ² -13 ai en find the value o	f a. c)2	d) 1	(RAM-2013) ed by x-1 is
	If the polynom remainder the a) 7 The remainde	ials ax ³ +3x ² -13 ai en find the value o b) 0	f a. c)2	d) 1	(RAM-2013)
	If the polynom remainder the a) 7 The remainde a) 4	ials ax ³ +3x ² -13 an en find the value o b) 0 er when a polynom	f a. c)2 nial x+x³+x ⁹ +x ²⁷ +x c)-4	d) 1 ⁸¹ +x ²¹³ is divid d) -6	(RAM-2013) ed by x-1 is (RMA-2012) -1 the remainder
	If the polynom remainder the a) 7 The remainde a) 4 When the poly is ax+b then	ials ax ³ +3x ² -13 an en find the value o b) 0 er when a polynom b)6	f a. c)2 nial x+x³+x ⁹ +x ²⁷ +x c)-4 l7x²+21x+7 is divid	d) 1 ^{x81} +x ²¹³ is divid d) -6 ded by 3x ² +4x-	(RAM-2013) ed by x-1 is (RMA-2012) -1 the remainder (NTSE-2013)
	If the polynom remainder the a) 7 The remainder a) 4 When the poly is ax+b then a) a=1, b=2	ials ax ³ +3x ² -13 an en find the value o b) 0 er when a polynom b)6 ynomial 6x ⁴ +8x ³ +1	f a. c)2 nial x+x ³ +x ⁹ +x ²⁷ +x c)-4 17x ² +21x+7 is divid c) a=, b= 1	d) 1 ^{x81} +x ²¹³ is divid d) -6 ded by 3x ² +4x- d) a=-1, b	(RAM-2013) ed by x-1 is (RMA-2012) -1 the remainder (NTSE-2013) =-2
	If the polynom remainder the a) 7 The remainder a) 4 When the poly is ax+b then a) a=1, b=2 If $f(x) = 2x^3+46$	ials ax ³ +3x ² -13 an en find the value of b) 0 er when a polynom b)6 ynomial 6x ⁴ +8x ³ +1 b) a=1, b=-2	f a. c)2 nial x+x ³ +x ⁹ +x ²⁷ +x c)-4 17x ² +21x+7 is divid c) a=, b= 1 +1) g(x) =	d) 1 ^{x81} +x ²¹³ is divid d) -6 ded by 3x ² +4x- d) a=-1, b	(RAM-2013) ed by x-1 is (RMA-2012) -1 the remainder (NTSE-2013) =-2 (ASRao-2014)
	If the polynom remainder the a) 7 The remainder a) 4 When the poly is ax+b then a) a=1, b=2 If $f(x) = 2x^3+46$ a) $(2x+3)$ (6x+	aials ax ³ +3x ² -13 an en find the value or b) 0 er when a polynom b)6 ynomial 6x ⁴ +8x ³ +1 b) a=1, b=-2 6x ² +229x+6 = (2x+	f a. c)2 hial x+x ³ +x ⁹ +x ²⁷ +x c)-4 17x ² +21x+7 is divid c) a=, b= 1 +1) g(x) = +3) c) (3x+6) (2x)	d) 1 d) -6 ded by 3x ² +4x- d) a=-1, b 	(RAM-2013) ed by x-1 is (RMA-2012) -1 the remainder (NTSE-2013) =-2 (ASRao-2014)
	If the polynom remainder the a) 7 The remainder a) 4 When the poly is ax+b then a) a=1, b=2 If $f(x) = 2x^3+46$ a) $(2x+3)$ (6x+	ials ax ³ +3x ² -13 an en find the value o b) 0 er when a polynom b)6 ynomial 6x ⁴ +8x ³ +1 b) a=1, b=-2 6x ² +229x+6 = (2x+ -1) b) (6x+4) (4x-	f a. c)2 hial x+x ³ +x ⁹ +x ²⁷ +x c)-4 17x ² +21x+7 is divid c) a=, b= 1 +1) g(x) = +3) c) (3x+6) (2x)	d) 1 d) -6 ded by 3x ² +4x- d) a=-1, b 	(RAM-2013) ed by x-1 is (RMA-2012) -1 the remainder (NTSE-2013) =-2 (ASRao-2014) [4x-3]

MATH	EMATICS		FACTO	RSATION OF F	
7.	If x²+x-6 is a	factor of 2x ⁴ +x ³ -a	< ^₂ +bx+a+b-1 the	en the value of a+	b is
	a) 22	b) 18	c) 19	d) 17	
8.	x ⁿ⁺¹ -x ⁿ -x+1 i	s exactly divisible l	oy (x-1)² if n is		(AMTI-2011)
	a) an odd pos	sitive integer	b) an even	positive integer	l
l	c) an ood prii	ne	d) any posi	tive integer	
9.	If f(x) is a qu	adratic polynomial	with $f(0) = 6$, $f(1)$) = 1 and f(2) = 0	then f(3) =
	a) 1	b) 3	c) 5	d) 0	
10. 	The remaindo value of k.	er x ⁵ +kx² is divideo	d by (x-1) (x-2) (x	-3) contains no te	erm in x² find the (NTSC-2013)
Ì	a) - 50	b) -60	c) -80	d) -90	
		PRACTISE PR	OBLEMS. <u>pe:</u>	1:0N	
II)		Single Answer ty	OBLEIVIS.		ļ
1.	98 a⁴ -16 2 a		<u>pe.</u>)0	l
		bc) (7a - 9bc)		A)a² (7a + 9b	c) (7a - 9bc)
	, ,	bc) (7a - 9bc)	FU	C) $4a^2$ (7a + 0	bc) (7a - 9bc)
 2 .	, ,	² - 9c ² + 12cd - 4 c	¹² =		
		c -2d) (2a +b + 3c		2a -b -3c -2d)(2	2a +b -3c -2d)
İ		c -2d) (2a -b - 3c		2a +b +3c -2d) (,
3.	a ³ - 8b ³ -27 c ³		, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
	A)(a + 2b + 3	$(a^2 + 4b^2 + 9c^2)$	² - 2ab -3ac+ 6b	c)	l
1	B)(a - 2b - 3d	$(a^2 + 4b^2 + 9c^2)$	+2ab +3ac- 6bc))	
i	C)(a - 2b - 3d	c) (a² - 4b² - 9c² +	2ab +3ac+ 6bc)	
	D) None				ĺ
4.	x ⁶ -1 can be f	actorized as			l
	A)(x+1) (x ² +	x+ 1) (x- 1) (x ² + 2	x -1)		
i	B)(x+1) (x ² - 1	x + 1) (x- 1) (x ² + 2	x +1)		
	C)(x+1) (x ² -	x+ 1) (x- 1) (x² + >	(+1)		ĺ
1		x-1) (x- 1) (x ² + x	,		
5.		c + a + b - c can			
		(a+b+c+1)		, (,	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(a-b+c+1)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	l
6.		ab. $x^3 + b^2 x^3 + a^3$	³ b² -2a⁴ b can b	e resolve as fact	iors.
		$(a - b)^2$			l
	// //	xa - a²) (a - b)			
	LASS		29	Powered by I	ogicalclass.com

MATHEMATICS FACTORSATION OF POLYNOMIALS A)(x-a) ($x^2 - xa + a^2$) D) None 7. If $a^3 = 117 + b^3$ and a = 3 + b than the value of (a + b) is **B)** ±3 C) ±5 A) +2 $D) \pm 7$ If $x^4 + x^3$ is divided by (x + 9), then find the degree of the remainder? 8. A) 1 B) 0 C) 2 D)3 If the degree of the expression $(x^4 - \frac{3}{8})(x^n + \frac{16}{17})$, is 12 then n =9. A) 2 B) 3 C) 8 D)None 10. which of the following expression is a polynomial? B) $\sqrt{ax} + x^2 - x^3$ A) $3\sqrt{z} + 4z + 5z^2$ C) $\sqrt{a} x^{\frac{1}{2}} + ax + 9x^{2} + 5$ D) $3z^3 - \sqrt{5} Z + 9$ If (2x + 3) and (x-1) are two factors of $(2x^2 + x)^2 - 4(2x^2 + x) + 3$: then 11. remaining two factors are A)(2x-1) (x-1) B)(2x-1) (x+1) C)(2x-1) (x-1) D) None 12. The factors of $x^8 - x^4 - 30$ are B) $(x^4 + 6)$ and $(x^4 - 5)$ A) $(x^4 + 6)$ and $(x^4 + 5)$ C) $(x^4 - 6)$ and $(x^4 + 5)$ D) None $x^2 - y^2 - z^2 + 2yz + x + y - z$ can be expressed as 13. A) (x - y + z) (x + y + z - 1)B) (x + y - z) (x - y + z - 1)4 C)) (x - y + z) (x + y + z - 1)D) None If (x + a) is the H. C. F of $x^2 + px + q$ and $x^2 + lx + m$, then the value of 'a' 14. is given by. A) $\frac{P-l}{Q-m}$ C) $\frac{q+m}{p+l}$ D) $\frac{l+p}{Q+m}$ B) $\frac{q-m}{p-l}$ a⁶ - 6a⁴ + 12a² - 8 is eq 15. KEY D) $(a^2 + 3)^2$ A) $(a^2 + 2)^3$ B) (a ____ $\Phi\Phi$ TEACHING TASK : Ι. 1) C 2) A 3) A 4) B 5) D 6) C 7) A 8) B 9) A 10) B 12.A 13.C 14.B 15.C 16.D 17.B 18.D 19.C 11D. 20.A 21.A 22.C 23.D 24.C 25.C 29.C 26.A 27.D 28.B 30.D 34.A 35.C 31.A 32.D 33.C 36.B 37.A 38.C 39.B 40.D 45.D 41.A 42.B 43.C 44.D 46.A 47.C 48.B 49.A 50.C **VIII CLASS** 30 Powered by logicalclass.com MATHEMATICS FACTORSATION OF POLYNOMIALS 51.C 52.B 2. A,B,C 3. B,C 4. A,B,C II. 1. A,D III. 1.4 2.6 3.3 4.9 1. Yes. It's a factor 3. Q= $3x^2 + 5x - 2$ R=0 4. 2, - 3 IV. 5. 1. 3 7. $x^2 - 3x - 2$ 8. $5y^2 - 10y - 3$ 9. $x^2 - 7x + 12$ 10. 1, $\pm \sqrt{2}$ 11. 0, -3 12. $3x^2 - 5x - 2$ 13. $\frac{5}{3}, -\frac{11}{3}, 1$ $\Phi\Phi$ LEARNER'STASK : BEGINNERS : 7.C 8.A 6.B 2.A 3.B 4.D 5.A 9.C 10.D 1.C 11.B 12.D 13.A 14.A 15.A 16.B 17.C 18.A 19.B 21) B, 22) B 23) A 24) C 25) A 26) B 27) B 28) C 29) C 30) B ACHIEVERS : GOV 3. l=x+5, b=2x-1 4. (x-2) 5. -1 6. $a=\frac{14}{5}$ $1.3x^2 - 5x - 2$ 7. 1, $\frac{1}{2}$ 8. -1, -1 10. $x^3 - 2x^2 - 7x + 14$ **EXPLORERS**: 2. A,B,C,D 3. A,B,C 4. A,B 5. A,B,D Ι. 1. A,B,C,D 5. B 6. A 7. B II. 1. D 2. A 3. B 4. A 8. D 9. C Ш. 1.1 2.5 3.0 4.9 5.7 **RESEARCHERS** : 1. B 2. C 3. B 4. A 5. B 6. D 7. C 8. D 9. B Ι. 10. D 13) B 14)B 15)B ADDITIONAL PRACTICE PROBLEMS **II.** 1)A 2) C 3)B 4)C 5)C 6)A 7)D 8)B 9)C 10)D 11)B 12)C VIII CLASS 31 Powered by logicalclass.com