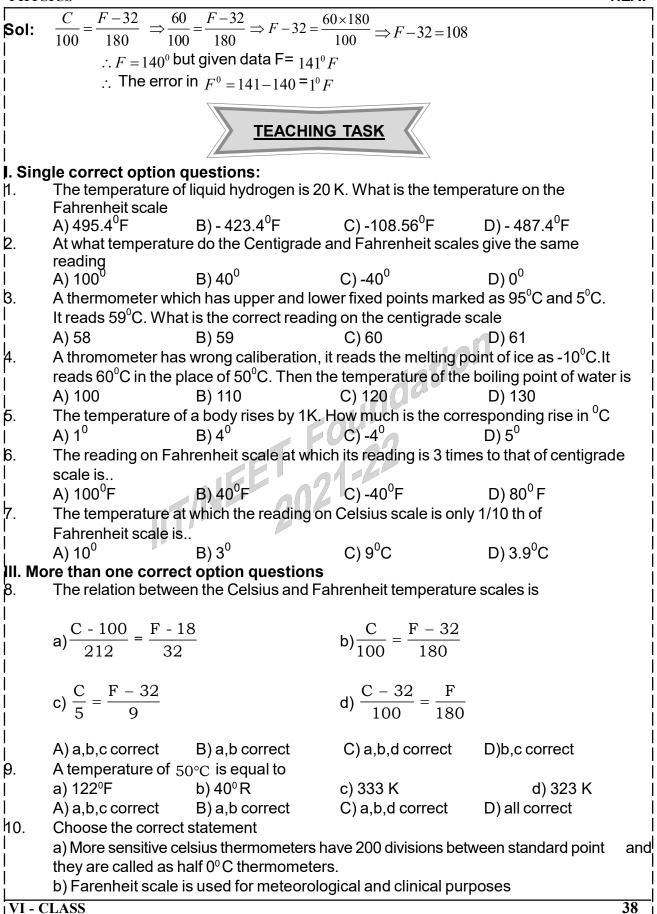

PHYSICS

PHYSICS				HEAT
hea	at energy supplied by th	e hot body.		
i.e l	Heat energy lost (given	out) = Heat energy ga	ained OR absorbed.	
	heat energy :			
	leat energy brings abo			
	leat energy brings abo			
iii) H	Heat energy brings abo	ut change in the state	s of matter.	
	Heat energy bring abou	t chemical changes in	matter.	
Units of h	eat :-			
1	system	Unit	Symbol	
1	C.G.S	calorie	Cal	
1	S.I	joule	J	
1	1 Calorie = 4.18 J	Kilo calorie = 4180	J	
	emperature :		<u>_</u>	
l Gei	nerally temperature is r	neasured in degree C	elsius (⁰ C).	
¦ In S	S.I system temperature	is measured in kelvin	(K).	
1				
Thermom				
	is a device used for me			
¦ *Fi	rst thermometer was in	vented by Galileo in 1	593 AD. In this thermometer air	
l Wa	as used as the thermor	netric substance,as th	e air rapidly expand on heating	
¦ an	d	de	0^{α}	
l co	ntract on cooling.			
	nical Thermometer :	E O V		
¦ 1)It	t is used for measuring	the temperature of the	human body.	
¦ 2) li	t is graduated in betwe	en 35 - 42ºC (or) 95 -	108F	
¦ 3)li	n this, the bend (constri	ction) in the bore does	s not allow the mercury to fall back	Ξ
¦ in	the bulb after its use, u	inless the thermometer	er is vigorously shaken.	
¦ 4) T	The normal temperature	e of a human body is 9	98.4^{0} F or 36.9 ⁰ C.	
	ximum and minimum			
Foi	r recording the maximu	m and minimum temp	eratures reached on any particula	ar day
i ma:	ximum and minimum th	ermometers are used	. They are:	
i) R	Rutherford's maximum T	hermometer.	-	
	Rutherford's minimum T			
	Six's maximum and mini			
	he other Thermometers			
i) L	aboratory thermometer	r ii) Alcohol Thermome	eters,etc.	
Reasons	for using mercury in	Thermometers:		
	•		s, it can easily record the	
i íte	emperature of a body w	ithout changing the te	emperature of the body.	
ί 2)Τ	he temperature at which	ch mercury boils is 35	7 ⁰ C. Thus, it can be used to	
ŗ,	ecord temperatures as	high as 357^{0} C.		
			nto solid state is - 39 ⁰ C.	
			llary tube. Thus, it helps	
	n recording accurate te		- · ·	
			e easily seen as a fine thread in	
	ne capillary tube.	~ ,	-	
1	. ,			
1				


Deeer	HEA
	s for using Alcohol in Thermometers:-
	Freezing point of alcohol is less than - 100° C.
	Alcohol expands more than mercury for the same rise (or) fall in temperature.
	nus, alcohol thermometers can measure more accurately than mercury.
	Alcohol can be brightly coloured and hence, can easily be seen in the glass
	capillary tube. I nainte (ar) fixed nainte: The fixed temperatures marked on the stem of a thermon
	points (or) fixed points:- The fixed temperatures marked on the stem of a thermon er by the common consent of scientists.
	andard point (or) lower fixed point : The melting point of pure ice at a pressure of 7
	of mercury.
	andard point (or) upper fixed point : The boiling point of pure water at a pressure (
	cm of mercury.
	netric Scales :
	s (or) Centigrade Thermometer:
	his scale was introduced by Celsius.
* C	On this scale 0° C represents the melting point of ice and 100° C is the steampoint.
	his scale is divided into 100 equal parts.
	nheit Scale :
	his Scale was introduced by Fahrenheit.
* C	On this Scale 32 ⁰ F represents the melting point of ice and 212 ⁰ F the steam point.
	he length in between the standard points is divided to 180 equal parts. Each
di	ivision on this scale is called 1 ⁰ F.
3) Reaun	nur scale:
* T	his Scale was introduced by Reaumur.
* C	On this Scale 0 ⁰ R represents the melting point of ice and 80 ⁰ R the steam point.
* T	he length in between the standard points is divided to 80 equal parts. Each divi
S	ion on this scale is called 1 ⁰ R.
4) Kelvin	n scale:
Ter	mperature on kelvin scale= Temperature in 0 C+273.
·	C = 0 $F = 32$ $R = 0$ $K = 273$
Re	elation between different temperature scales: $\frac{C-0}{100} = \frac{F-32}{180} = \frac{R-0}{80} = \frac{K-273}{100}$
Note · Th	ne relation between centigrade scale and Fahrenheit scale can also be written a
F =	$=\frac{9}{5}C+32\left(\because\frac{C}{100}=\frac{F-32}{180}\Rightarrow\frac{C}{5}=\frac{F-32}{9}\Rightarrow\frac{9C}{5}=F-32\Rightarrow F=\frac{9C}{5}+32\right)$
_	5 100 180 5 9 5 5 5 5
	EXAMPLES
Ex 1 : Co	privert $-10^{\circ}C$ into Fahrenheit scale.
Sol:	$C = -10^{\circ}C$
	$F = \frac{9}{9} (10) + 22 = 140 F$
	$F = \frac{9}{5}C + 32 = \frac{9}{5}(-10) + 32 = 14^{\circ}F$
	$r_{\rm r}$
Ex 2: Co	provert the normal temperature of a human body $98.4^{\circ}F$ into Celsius scale.
Sol:	$F = 98.4^{\circ}F$
l	5 5 5
l	$C = \frac{5}{9}(F - 32) = \frac{5}{9}(98.4 - 32) = \frac{5}{9}(66.4) = 36.9^{\circ}C$
	9 ' 9 ' 9 ' ' 9 ' '
1	
VI - CLAS	SS 35

Sol: On any scale of temperature
$$\frac{Rcading - LFP}{UFP - LFP} = a cons \tan t$$
.
Let the reading on the faulty thermometer be x and the corresponding reading on Celsius scale be C, By the above expression for the faulty thermometer and Celsius scale,
 $\frac{x - LFP}{UFP - LFP} = \frac{C - 0}{100 - 0} \Rightarrow \frac{x - 5}{95 - 5} = \frac{C}{100}$
 $\Rightarrow C = \frac{100}{90} (x - 5) = \frac{10}{9} (59 - 5) = 60^{\circ} C (\because x = 59^{\circ})$
Ex 8: Express 0 K on Fahrenheit scale.
Sol: $\frac{K - 273.15}{100} = \frac{F - 32}{180}$
 $-273.15 = \frac{5}{9} (F - 32) \Rightarrow F - 32 = -491.67 \Rightarrow F = -459.67^{\circ} F$
Ex 9: On reaumer scale of temperature the melting point of ice and the boiling point of water are taken as 0° R and 80° R respectively. The freezing point and boiling point of mercury on Celsius scale - 39° C and 367°C respectively. Express these temperatures on reaumer scale.
Sol: $\frac{100}{100} = \frac{R}{80} \Rightarrow \frac{-39}{100} = \frac{R}{80} \Rightarrow -39 \times 8 = R \times 10 = R = -31.2^{\circ}C$
(i) $\frac{367}{100} = \frac{R}{80} \Rightarrow \frac{-39}{100} = R \times 10^{\circ} 2936 \Rightarrow R = 2936/10 \Rightarrow R = 293.6^{\circ}$
Ex 10: A faulty thermometer has its fixed points marked as 3° and 102°. The temperature of the body on Celsius scale.
Sol: $\frac{R = ading - LF.P}{U.F.P - LF.P} = a(cons \tan t)$
 $= \frac{x - LF.P}{U.F.P - LF.P} = a(cons \tan t)$
 $= \frac{x - LF.P}{U.F.P - LF.P} = \frac{C - 0}{100} \Rightarrow \frac{x - 3}{102 - 3} = \frac{C}{100} \Rightarrow C = \frac{100}{99}(x - 3) \Rightarrow C = \frac{100}{99}(80 - 3)$
 $\Rightarrow C = \frac{100}{99} \times 77 \Rightarrow C = 77.8^{\circ}C$
Ex 11: At what temperature on the Fahrenheit scales will the reading be double of the reading on the Celsius scale?
Sol: $C = \frac{5}{9} (F - 32)$, let $C = x$ then $F = 2x$
 $9C = 5F - 160 \Rightarrow X = 160^{\circ}C \Rightarrow F = 2x F = 2 \times 160^{\circ}F \Rightarrow F = 320^{\circ}F$
Ex 12: An accurate Celsius thermometer and a Fahrenheit thermometer register 60° and 141° respectively when places in the same constant temperature enclosure. What is the error in the Fahrenheit thermometer?

VI - CLASS

PHYSICS

HEAT

38

PHY	SICS		HEAT
	c) Kelvin scale of temperature al		mperture
	d) There cannot be any tempera	ture below 0k	
	A) a,b,c B) a,b	C) a,b,d	D) all
Asse	rtion - A and Reason - R:		
	A) Both A and R are true and R is	s the correct explanation f	orA.
	B) Both A and R are true and R is	s not correct explanation c	of A.
	C) A is true but R is false.	D) A is false but R is tru	le
11.	A: A degree on Kelvin scale is 1/ steam point.		
	R: A degree on Reaumur scale is and the steam point.	s 1/80th part of the interva	al between the ice point
12.	A: Normal temperature of humar	n body is 98.6 ⁰ F	
	R: Doctors use laboratory therm		emperature of a patient.
Matc	h the following.		
13.	a) Clincial	1) Temprature of insect	S
	b) Six's max min	2) Temprature variation	
	c) Pyrometer	3) Temparature of sun	01
	d) Thermocouple	4) Temprature of humar	body
	A) a-1,b-4,c-2,d-3	B) a-3,b-1,c-2,d-4	
	C) a-2,b-1,c-4,d-3	D) a-4,b-2,c-3,d-1	
	,		
Com	prehension type questions:-	2021-22	
	C F-32 K-273 R	01-6	
14.	$\frac{C}{5} = \frac{F - 32}{9} = \frac{K - 273}{5} = \frac{R}{4}$	A02	
		20-	
	A) –273°C B) 100°C	C) 212°C	D) –73°C
	ii) Express 37°C in Kelvin.	\sim	D) 400 K
	A)100 K B) 200 K	C) 310 K	D) 400 K
	iii) Express 100° F in degree rea A) 37.8°R B) 40°R	C) 80°R	D) 30.2°R
	A) 57.0 K B) 40 K	0)00 K	D) 30.2 K
	n the blanks:		
15.	The upper fixed point of Fahrenh		
16.	The best thermometric liquid to n		s is
17.	SI unit of temperature is		
18.	The number divisions on centigra		
19.	If temparature increased in cent	rigrade scale by 10º the co	prrospondig increase
	in kelvin scale is		
Kov.	1) B, 2) C, 3) C, 4) D, 5) A, 6) D,		NB 12) C 13) D
itey.	14) i) D, ii) C, iii) D, 15) 212°F, 1		
	,.,.,.,.,.,.,.,.,.,.,,.,,.,,,,,,,,,,		,
VI - (CLASS		39
, . .			U,

	LEARNER'S TASK
	◆ ₽-Ⅱ ◆ BEGINNERS (Level - I) ◆ ₽-Ⅱ ◆
. Sin	gle correct option questions:
1.	Choose the correct statement
	A) $1^{0}C < 1^{0}F$ B) $1^{0}F = 1^{0}C$ C) $1^{0}F < 1^{0}C$ D) $1^{0}C \ge 1^{0}F$
<u>)</u> .	Temperature in Kothagudem on June 1st is 40° C. Express it in kelvin
	A) 313K B) 40K C) 273K D) 231K
3.	The measure of degree of hotness or coldness of a body is called
	A) heat energy B) Celsius C) kelvin D) temperature
ŀ.	The difference between lower fixed point and upper fixed point is divided into
	parts on Celsius scale A) 100 B) 273 C) 180 D) 50
5.	A) 100 B) 273 C) 180 D) 50 The range of clinical thermometer is
).	A) 0 - 100° C B) 32 - 212° F C) 0 - 273° C D) 35 - 42° C
ð.	The number of divisions between the lower fixed point and the upper fixed point
<i>.</i>	on the kelvin scale are
	A) 100 B)273 C) 180 D) 212
7.	The boiling point of water expressed on the Fahrenheit scale is
	A) 100 ⁰ F B) 212 ^d F C) 180 ⁰ F D) 273 ⁰ F
3.	Melting point of ice represented on the Fahrenheit scale is
	A) 32 ⁰ F C) 100 ⁰ F D) 212 ⁰ F
).	At low temperatures type of thermometer is used
	A) mercury thermometer B) water thermometer
	C) alcohol thermometer D) thermometers cannot be used
0.	A difference in temperature of 1° C is same as a
	A) difference in temperature of 1K B) difference in temperature of 273K
	C) difference in temperature of 10K
	D) difference in temperature of 1° F
1.	A difference in temperature at 11 ⁰ C is same as
	A) difference in temperature 11K B) difference in temperature of 273K
•	C) difference in temperature of 10K D) difference in temperature of 11° F
2.	On a Fahrenheit scale A halfing point of water is 242^{0}
	A) boiling point of water is 212° F
	B) The temperature will be equal to that on the Celsius scale at -40° C
	C) The difference between the upper fixed point and the lower fixed point is divided into 18 equal parts D) all the above
3.	The lower fixed point on the Celsius scale
5.	A) melting point of ice B) boiling point of water
	C) melting point of mercury
	D) mean of melting point and boiling point of water
4.	In the Celsius scale, the upper fixed point is
-	A) melting point of ice B) boiling point of water
	C) boiling point of mercury D) mean of melting point and point of water
Key:	1) A, 2) A, 3) D, 4) A, 5) D, 6) A, 7) B, 8) A, 9) C, 10) A, 11) A, 12) D, 13) A, 14) B.
-	

	▲∎∎ ◆ <u>ACHIEVERS</u>	<u>(Level - II)</u>	
	ore than one correct option questions		
1.	Choose the correct statements:		
	a) S.I. unit of temperature is kelvin b) Te	emperature is a scalar	quantity.
	c) S.I. unit of heat is joule(J).	d) 1 cal = 4.2 J	
	A) a,b,c B) a,b	C) a,b,d	D) all
2.	Units(s) of heat energy is	,	,
	a) Joule b) Calorie	c) Kelvin	d) Celsius
	, , ,	a,b correct	
	, · · · /	ll correct	
3.	Mercury is the commonly used thermor		
J.	a) it can be easily obtained in pure state	•	
	, , ,		
	b) it does not stick to glass tube thermo	inelei	
	c) It has a very high density		
	d) It has very low freezing point and a ve		
	A) a,b,c correct	B) a,b correct	
	C) a,b,d correct	D) all correct	
4.	choose the correct option :		1
	a) Temperature is a scalar quantity	b) Heat is a	
	c) The device for measuring the temper	rature of a substance i	s called a thermometer
	d) The device for measuring the heat of	f a substance is called	a thermometer
	A) a,b,c B) a,b	C) a,b,d	D) a,c
	,	0 ⁴	, .
ΙΔς	ssertion - A and Reason - R:	~ ~1	
	A) Both A and R are true and R is the co	prect explanation for	^
	B) Both A and R are true and R is not co	-	\.
_	C) A is true but R is false. D) A is false	e but R is true	
5.	A: Heat is a vector Quantity.		
	R: Temperature is a scalar Quantity.		
6.	A: 1 J = 4.18 Cal.		
	R: Heat energy always travel from hot b	odv to cold bodv.	
7	R: Heat energy always travel from hot b		
7.	A: There are 100 divisions in a celsius t	hermometer.	
7.		hermometer.	
	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca	hermometer.	
I. Ma	A: There are 100 divisions in a celsius t	hermometer.	
I. Ma	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale	hermometer. ale. LFP and UFP	
I. Ma	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade	hermometer. ale. LFP and UFP 1) 32, 212	
I. Ma	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat	hermometer. ale. LFP and UFP 1) 32, 212 2) 0, 100	
I. Ma	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat c) Reaumur	hermometer. ale. LFP and UFP 1) 32, 212 2) 0, 100 3) 0, 80	
I. Ma	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat c) Reaumur d) Kelvin	hermometer. ale. 1) 32, 212 2) 0, 100 3) 0, 80 4) 273, 373	D) a-4 b-1 c-3 d-2
I. M a 3.	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat c) Reaumur d) Kelvin A) a-1,b-4,c-2,d-3 B) a-3,b-1,c-2,d-4	hermometer. ale. LFP and UFP 1) 32, 212 2) 0, 100 3) 0, 80 4) 273, 373 C) a-2,b-1,c-3,d-4	D) a-4,b-1,c-3,d-2
I. M a 3.	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat c) Reaumur d) Kelvin A) a-1,b-4,c-2,d-3 B) a-3,b-1,c-2,d-4 Scale	hermometer. ale. LFP and UFP 1) 32, 212 2) 0, 100 3) 0, 80 4) 273, 373 C) a-2,b-1,c-3,d-4 no. of divisions	D) a-4,b-1,c-3,d-2
I. M a 3.	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat c) Reaumur d) Kelvin A) a-1,b-4,c-2,d-3 B) a-3,b-1,c-2,d-4 Scale a) Celsius scale	hermometer. ale. LFP and UFP 1) 32, 212 2) 0, 100 3) 0, 80 4) 273, 373 C) a-2,b-1,c-3,d-4 no. of divisions 1) 100	D) a-4,b-1,c-3,d-2
I. M a 3.	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat c) Reaumur d) Kelvin A) a-1,b-4,c-2,d-3 B) a-3,b-1,c-2,d-4 Scale a) Celsius scale b) Fahrenheit scale	hermometer. ale. LFP and UFP 1) 32, 212 2) 0, 100 3) 0, 80 4) 273, 373 C) a-2,b-1,c-3,d-4 no. of divisions 1) 100 2) 180	D) a-4,b-1,c-3,d-2
7. 1 I. M a 3. 9.	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat c) Reaumur d) Kelvin A) a-1,b-4,c-2,d-3 B) a-3,b-1,c-2,d-4 Scale a) Celsius scale b) Fahrenheit scale c) Kelvin scale	hermometer. ale. LFP and UFP 1) 32, 212 2) 0, 100 3) 0, 80 4) 273, 373 C) a-2,b-1,c-3,d-4 no. of divisions 1) 100 2) 180 3) 212	D) a-4,b-1,c-3,d-2
I. M a 3.	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat c) Reaumur d) Kelvin A) a-1,b-4,c-2,d-3 B) a-3,b-1,c-2,d-4 Scale a) Celsius scale b) Fahrenheit scale c) Kelvin scale d) Reaumer scale	hermometer. ale. LFP and UFP 1) 32, 212 2) 0, 100 3) 0, 80 4) 273, 373 C) a-2,b-1,c-3,d-4 no. of divisions 1) 100 2) 180 3) 212 4) 80	, ,
I. M a 3.	A: There are 100 divisions in a celsius t R: There are 80 divisions in a kelvin sca atch the following. Scale a) centigrade b) Fahrein heat c) Reaumur d) Kelvin A) a-1,b-4,c-2,d-3 B) a-3,b-1,c-2,d-4 Scale a) Celsius scale b) Fahrenheit scale c) Kelvin scale	hermometer. ale. LFP and UFP 1) 32, 212 2) 0, 100 3) 0, 80 4) 273, 373 C) a-2,b-1,c-3,d-4 no. of divisions 1) 100 2) 180 3) 212 4) 80	, ,

PHYSIO V.	CS HEA Comprehension type questions:-
	For measuring temperature Celsius scale, Fahrenheit scale, Kelvin scale
	and Reaumur scale may be used.
) The scale on which ice point is taken as 0 and steam point is taken as 100 is
	Á) Celsius scale B) Fahrenheit scale C) Kelvin scale D) Reaumur scale
	II) The scale on which ice point is taken as 32 and steam point is taken as 212.
	A) Celsius scale B) Fahrenheit scale C) Kelvin scale D) Reaumur scale
I	III) The scale on which ice point is taken as 273 and steam point is taken as 373.
ŀ	A) Celsius scale B) Fahrenheit scale C) Kelvin scale D) Reaumur scale
(ey: 1)	D, 2) B, 3) D, 4) D, 5) D, 6) D, 7) C, 8) C, 9) B, 10) I) A, II) B, III) C.
Fill in tl	he blanks:
l. ľ	If heat is the cause then temperature is its
2. F	Relation between centigrade scale and kelving scale is
3. 1	1º rise in kelvin scale is equl rise in Fahrenheit scale
I. 7	The temperature scale which doesnot have negative readings is
5. L	LFP of Fahrenheit scale is
(ey: 1)	effect, 2) K = C + 273, 3) 1.8° , 4) kelvin, 5) 32° F
	• HI • EXPLORERS (Level - 1) • HI •
Solve t	he following
	The temperature at which the reading of Fahrenheit thermometer will be double
t	that of a centigrade thermometer
	Temperature of human body on Fahrenheit scale is 98.4 ⁰ . Corresponding reading
C	on centigrade scale is
3. / 1. 7 5. /	A difference of temperature of 25° C is equivalent in Fahrenheit to a difference of
+. - /	Temperature of iron block is 140° F. Its temperature in Celsius scale is
	A mountain climber finds that water boils at 80 ⁰ C. The temperature of boiling point of water in ⁰ F is
; 7	The temperature of a freezing mixture is -18 ⁰ C. Its value in Fahrenheit scale is
	Numerical values of the temperature measured in Centigrade and Fahrenheit scales
	are the same at
	Oxygen boils at -183 ⁰ C. This temperature approximately equals to in Fahrenheit
S	scale is
). A	A faulty thermometer has L.F.P. at 4 ⁰ C and U.F.P. at 94 ⁰ C. Temperature at which it
S	shows correct reading is
10. <i>A</i>	A faulty thermometer has L.F.P. at 5° C and U.F.P. at 95° C. If the reading shown by
	that thermometer is 41 ⁰ , the correct reading if measured with correct centigrade the mometer is
	◆₽-₹◆ <u>EXPLORERS (Level - I)</u> ◆₽-₹◆
1. 1	The reading on Fahrenheit scale at which its reading is 3 times to that on Reaumur
•••	The reading of the internet could at million to reading to 0 times to that of the addition
,	scale is.
12. <i>A</i>	scale is A scientist wants to develop a new scale for measuring Temperature. When his
12. A t	A scientist wants to develop a new scale for measuring Temperature. When his thermometer is put in melting ice, the reading is 20 ⁰ and when put in steam, the
12. A t	

PHY	SICS
13.	Freezing point on a thermometer is marked as 20° and the boiling point as 150° . A
	temperature of 60 ⁰ C on this thermometer will be read as
14.	A thermometer has its fixed points marked as 5 and 95. What is the correct tempera 10° C when it mode 50 $^{\circ}$ C 2
15.	ture in 0 C, when it reads 59 0 C?
15.	The lower and the upper fixed points of a mercury thermometer were erroneously marked as 10 ⁰ C, and 90 ⁰ C, respectively. Calculate the correct temperature corre
	sponding to a temperature of 58 ⁰ C with this thermometer.
16. 	The temperature at which the reading of Fahrenheit thermometer is 2 times to that of centigrade thermometer is
 /	4 + 4 + 6 + 0 = -2 + 4 + 0 = -4 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 +
ncey: 	1) 160 ^o C, 2) 36.9 ^o C, 3) 45 ^o F, 4) 60 ^o C, 5) 176 ^o F, 6) -0.4 ^o F, 7) - 40 ^o , 8) -297 ^o F, 9) 40 ^o C, 10) 40 ^o C, 11) 128 ^o C, 12) 57 ^o , 13) 98 ^o , 14) 60 ^o C. 15) 60 ^o C, 16) 160 ^o C.
Heat	capacity (or) Thermal capacity (C) :
	The amount of heat energy required to raise the temperature of a given mass of
	a substance through 1° C.
	Heat capacity = heat required to rise the temperature of the body through 1°C
İ	Mathematically, heat capacity = $\frac{\text{amount of heat}}{\text{Rise in temperature}} = \frac{Q}{\Delta t} \Rightarrow H = \frac{Q}{\Delta t}$.
I	Rise in temperature $\Delta t = \Delta t$
	Hence Thermal Capacity = mass × specific heat.
Units	s of heat capacity :
	S.I. unit of heat capacity is J K ⁻¹
 	CGS unit of heat capacity is cal °C ⁻¹
WAT	ER EQUIVALENT:
	-Mass of water which has same thermal capacity as that of the substance is called water equivalent
l	i) It is numerically equal to heat capacity (ms)
	ii) The S.I unit is kg
	iii) The C.G.S unit is g
Facto	ors on which heat absorbed/given out by a body depends :
	i) directly proportional to the mass of the body.
	ii) directly proportional to change in temperature of the body .
	iii) depends upon the nature of body.
C	$Q = m.C. \Delta t$
Spec	ific heat capacity or specific heat : As Q = m.C. Δ t. If m = 1 unit ; Δ t = 1°C then Q = C, hence specific heat is the amount
l	of heat required to raise the temperature of unit mass of the substance through 1° C
	or 1K. Mathematically,
	quantity of heat
	Specificheat =
	$\Rightarrow C = \frac{Q}{m. \Delta t}$ mass of the substance ~ change in temperature
	m. Δt
Note	: 1.Of all known substances water has the highest specific heat capacity. It can absorb
l	a lot of heat without its temperature going up very much. It also cools down slower
	than other substances, as it has to lose more heat to cool down.
	2.The value of specific heat for a given substance is a constant quantity. However,
	CLASS 43

HEAT PHYSICS the specific heat capacity for different substances is different. Units of specific heat : S.I unit of specific heat = $J kg^{-1} K^{-1}$ CGS unit of specific heat is cal g⁻¹ °C⁻¹ Since 1cal = 4.18 J therefore 1 cal $g^{-1} \circ C^{-1} = 4180 \text{ J kg}^{-1} \text{ K}^{-1}$ Advantages of high specific heat capacity of water : i) Formation of wind cycles and weather. A) Sea Breeze, B) Land Breeze. ii) Use of water in hot water bottles. iii) Use of water as coolant in car radiators. iv) Use of water in the internal heating of buildings. Solved Examples: **Ex 1:** A lump of iron of mass 2kg is heated from $_{40^{\circ}C}$ to $_{1000^{\circ}C}$.If the heat supplied is 192 k cal find its thermal capacity. Find also the specific heat of iron. Sol: Heat supplied $\Delta Q = 192 \text{ k cal} = 192 \times 10^3 \times 4.2 \text{ J}; \text{ mass } \text{m} = 2 \text{ kg};$ rise in temperature $\Lambda t = 1000 - 40 = 960^{\circ} C$ Thermal caacity (H) = $\frac{Q}{\Delta t} = \frac{192 \times 10^3 \times 4.2J}{960}$ Specific heat of lump of iron = $\frac{\Delta Q}{m\Delta t} = \frac{840}{2} = 420 \text{ J/kgK}$ Two spheres of radii in the ratio 4.5 **Ex 2:** Two spheres of radii in the ratio 1:2, have specific heats in the ratio 2:3, The densities are in the ratio 3:4. Find the ratio of their thermal capacities. Sol: Thermal capacity of a body = ms The ratio of thermal capcities $=\frac{m_{1}s_{1}}{m_{2}s_{2}}=\frac{v_{1}\rho_{1}s_{1}}{v_{2}\rho_{2}s_{2}}=\frac{\frac{4}{3}\pi r_{1}^{3}\rho_{1}s_{1}}{\frac{4}{2}\pi r_{2}^{3}\rho_{2}s_{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{3}\left(\frac{\rho_{1}}{\rho_{2}}\right)\left(\frac{s_{1}}{s_{2}}\right)$ Here, $\frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{1}{2}; \frac{\mathbf{s}_1}{\mathbf{s}_2} = \frac{2}{3}; \frac{\rho_1}{\rho_2} = \frac{3}{4}$ The ratio of thermal capcities $=\left(\frac{1}{2}\right)^2 \left(\frac{3}{4}\right) \left(\frac{2}{3}\right) = \frac{1}{16}$ **Ex 3:** The densities of two substances are in the ratio 5:6 and the specific heats are in the ratio 3:5 respectively. Find the ratio of their thermal capacities per unit volume. Sol: Given that the ratio of the densities = 5:6the ratio of the specific heats =3:5 then the ratio of the thermal capacites per unit volume =? $H = m.s = vol \times d \times s \implies H/_{U} = d.s \quad [:: d=m/v \implies m=v.d]$ $\frac{H_1/V_1}{H_2/V_2} = \frac{d_1s_1}{d_2s_2} = \frac{5}{6} \cdot \frac{3}{5} = \frac{1}{2}$ VI - CLASS 44

PHYSICS

Ex 4: Two lead spheres at the same temperature have radii in the ratio 1:2. What is the ratio of the their heat capacities. Sol: Given that the ratio of the radii of the lead spheres =1:2 then the ratio of the Heat capacity $(H_1: H_2) = ?$ we know that H=d.v.s $\Rightarrow H \propto v \quad \Rightarrow H \propto r^3 \quad \left[\because V = \frac{4}{3}\pi r^3\right] \text{(or)} \quad \frac{H_1}{H_2} = \left[\frac{r_1}{r_2}\right]^3 = \left[\frac{1}{2}\right]^3 = \frac{1}{8}$ **Ex 5:** The thermal capacity of 10 g of a substance is 8 calorie/⁰C. What is the specific heat. (J = 4.2J / cal) Sol: Given that mass of the substance (m) = 10gthermal capacity (H) = 8cal; J=4.2 J/cal $H = ms \Longrightarrow s = \frac{H}{m} \Longrightarrow \frac{8}{10} = \frac{4}{5} cal / g / C = \frac{4}{5 \times 10^{-3}} 4.2J / kgK$ $=\frac{16.8}{5\times10^{-3}}J/kgK = 3360J/kgK$ **TEACHING TASK** Single correct option questions: The ratio of densities of two substances is 2 : 3 and that of specific heats is 1 : 2. The ratio of thermal capacities per unit volume is **C**)1:3 B) 2:1 A) 1 : 2 D) 3:1 The density of a substance is 400 kgm⁻³ and that of another substance is 2. 600 kgm⁻³ The heat capacity of 40 c.c of first substance is equal to that of 30 c.c of second substance. The ratio of their specific heats is A) 1:6 C)9:8 D) 8:9 B) 6:1 A body absorbs 1000 calories of heat when it is heated from 20° C to 70° C. The water equivalent of the body is A) 10 g B) 15 g C) 20 g D) 25 g Two spheres of copper of diameters 10cm and 20 cm will have thermal capacities in the ratio mass one kilogram is C) 1/4 A) 1/8 B) 1/2 D) 1/6 The thermal capacity of 100g lead shot is (specific heat of lead is $0.03 \text{ cal/g/}^{\circ}\text{C}$) B) 30 cal/⁰C C) 300 cal/⁰C D) 0.3 cal/0C A) 3 cal/⁰C Two spheres have their radii in the ratio1:2 the densities of their materials are in the ratio 2:3 and their specific heats are in the ratio 3:4, then the ratio of their thermal capacities is A) 3:4 B)1:16 C) 2:3 D)1:1 The densities of two substances are in the ratio 3 : 4 and their specific heats are in the ratio 2 3. The ratio of thermal capacities per unit volume of these substances is A) 2:3 B) 3:4 C) 1 : 1 D) 1:2 Two liquids A and B of equal volumes have their specific heats in the ratio 2 : 3. If they ß. have same thermal capacity, then the ratio of their densities is B) 2:3 D) 5 : 6 A) 1:1 C) 3 : 2 VI - CLASS 45

HEAT

	SICS		HE		
. IVIC	changes the correct option questions				
•	Choose the correct statement(s).	to thermal conceits	v of 1 a of come substance		
	a) Specific heat of a substance is equal				
	b) Specific heat of a substance is produ				
	c) Specific heat of a substance does no		of the body		
	d) Heat capacity depends on mass of th				
~	A) a,b,c B) a,b	C) a,c,d	D) all		
0.	Choose the correct option				
	If specific heat of copper is 0.4 J/g ^o C, th				
	a) Thermal capacity of 10g of copper is				
	b) Thermal capacity of 10g of copper is				
	c) If Thermal capacity is 400J/°C then m				
	d) If Thermal capacity is 400J/°C then m	hass of copper take	en is 100g		
	A) a,c B) a,b	C) a,b,d	D) all		
sse	ertion - A and Reason - R:	rraat avalanation f	- m A		
	A) Both A and R are true and R is the co				
	B) Both A and R are true and R is not co				
	C) A is true but R is false.	D) A is false but			
1.	A: Specific latent heat of fusion of a sub				
	convert unit mass of the substance fi	rom solid to liquid s	tate, without any rise		
	temperature .				
	R: Specific latent heat of vapourisation of				
_	to convert unit mass of the substance		d state.		
2.	A: Unit of thermal heat capacity is cal g				
	R: Unit of thermal heat capacity is J K -	1			
_ .	ALEP' OF				
	h the following.				
3.	Column-I	Column-II			
	, , , , , , , , , , , , , , , , , , , ,	pends on mass			
	, , , ,	esn't depend on m			
		ws from hot body t			
	d) Heat		qual to thermal capacity		
	A) a-1,b-4,c-2,d-3 B) a-3,b-1,c-2,d-4	C)a-2,b-1,c-4,d-	-3 D) a-4,b-1,c-3,d-2		
	prehension type questions:				
4.	Heat capacity = heat required to rise the temperature of a given body through 1° C,				
	i.e., $H = mC$				
	i) Find the heat capacity of lead of mas				
	A) 10 cal/°C B) 12 cal/°C	C) 9 cal/ºC	D) 20 cal/ºC		
	ii) Find the heat capacity of hydrogen of	5			
	(sp.Heat of hydrogen = 3.5 cal/g				
	A) 500 cal/°C B) 1050 cal/°C	,	D) 200 cal/ºC		
	iii) If heat capacity of copper of mass 2	kg is 100 cal/ºC the	en specific heat capacity o		
	copper is				
	A) 0.1 cal/g ^o C B) 0.05 cal/g ^o C	C) 0.3 cal/g⁰C	D) 0.4 cal/gºC		
	n the blanks:				
5.	SI unit of specific heat is				
6.	The heat capacity of 10 g of water is				
	·				
	CLASS		40		

17.	1 cal/g ^o C = J/Kg K
18.	The SI unit of thermal capacity is
9.	The liquid with higher specific heat is
Key:	: 1) C, 2) C, 3) C, 4) A, 5) A, 6) B, 7) D, 8) C.9) C, 10) A, 11) C, 12) D, 13) C, 14) i)C, ii) B
-	iii) B, 15) J/Kg K, 16) 10 cal/ºC, 17) 4200 J/kg K, 18) J/K, 19) water
	LEARNER'S TASK
	Q's with single correct option questions:
1.	Four beakers contains same liquid as given below. Which of the following contains
	the more amount of heat energy.
	A) 80^{0} C, 100 cm ³ B) 90^{0} C, 60 cm ³ C) 50^{0} C, 250 cm ³ D) 70^{0} C, 150 cm ³
2.	A body having 1680 J of energy is supplied to 1000g of water. If the entire amount of
	energy is converted into heat, then rise in the temperature of water is (sp. heat of
	water = 4200 J/kg ⁰ C)
	A) $0.4^{\circ}C$ B) $40^{\circ}C$ C) $4^{\circ}C$ D) $44^{\circ}C$
	The ratio of thermal capacities of two aluminium spheres of radii 8 cm and 16 cm is
•	A) 4 : 1 B) 1 : 4 C) 1 : 8 D) 8 : 1
	How much heat is required to rise the temperature of 100 g of water from 5° C to
•	95°C
	A) 900 kcal B) 90 kcal C) 10 kcal D) 9 kcal
) .	How much heat is required to rise the tmeperature of 150 g of iron from 20° C to 25°
	(specific heat of iron = 480 J/kg ⁰ C)
	A) 350 J B) 345 J C) 360 J D) 330 J
) .	2000 cal of heat supplied to 200 g of water. Find the rise in temperature of water
	(specific heat of water = 1 cal/g ⁰ C)
	\dot{A}) 10 ⁰ C B) 20 ⁰ C C) 30 ⁰ C D) 40 ⁰ C
	How much amount of heat is required to rise the temperature of 100 g of water from
	30 [°] C to 100 [°] C.
	A) 25.5 kJ B) 29.4 kJ C) 30 kJ D) 40 kJ
-	500 g of hot water at 60° C is kept in the open till its tmeperature falls to 40° C.
•	Calculate the heat energy lost to the surroundings by the water.
	A) 2400 J B) 5000 J C) 40000 J D) 42000 J
)_	Find heat lost by the copper cube of mass 400 g when it cools from 100° C to 30° C.
•	(specific heat of copper 390 Jkg ^{-10} C ^{-1})
~	A) 50000 J B) 10000 J C) 10920 J D) 10900 J
0.	What quantity of heat would be given out by 200g of copper in cooling from 80° C
	to 20 ⁰ C (specific heat of copper 0.09 cal/g ⁰ C)
	A) 1080 cal B) 1000 cal C) 1500 cal D) 1100 cal
	◆ ⊪-∎ → <u>ACHIEVERS (Level - II)</u> ◆ ⊪-∎ →
. Mo	ore than one correct option questions
1.	Factors on which heat absorbed by a body depends
• • •	a) Mass of the body b) Change in temperature of the body
	c) Area of the body d) Nature of the material of the body
	A) a,b,c correct B) a,b correct C) a,b,d correct D) all correct

2.	Choose the correct optic	on			
	a) the S.I. unit of latent h				cal g ^{−1}
	c) the latent heat of subs	stance is der	noted with letter	'L'	
	d) the quantity of heat is	denoted wit	h letter 'Q'.		
	A) a,b,c B) a	a,b	C) a,b,d	D)a	
13.	Pick out the wrong optio	n	, , , , , , , , , ,		
	a) during change of state		bed or evolved	s given by Q=mL.	
	b) during raise of tempe				.C.∆t
	c) during change of state				C
	d) during raise of tempe			lved is given by $O = -$	
	Á) a,b,c B) a		C) c,d	D) all n	nΔT
	, , , , , , , , , , , , , , , , , , , ,		<i>, , ,</i>	7	
II. As	ssertion - A and Reason	- R:			
	A) Both A and R are true	and R is the	correct explanation	ation for A.	
	B) Both A and R are true				
	C) A is true but R is false		alse but R is true		
14.	A: Unit of specific heat				
	R: Unit of specific heat				
15.	A: Water has highest Sp		mong solids an	d liquids.	
	R: The amount of heat e				ss of a
	substance through 1				
V. M	atch the following.		inv.		
16.	Physical quantity		S.I unit		
	a) Specific heat		1) Jk^{-1}		
	b) Heat capacity		2) $J kg^{-1}$	k^{-1}	
	c) Water equivalent		3) kg	K	
	d) Heat lost or gained		4) J		
	A) a-1,b-4,c-2,d-3	2 PB)a-3,b-1,c-2,d-4	1	
	C) a-2,b-1,c-3,d-4) a-4,b-1,c-3,d-2	,)	
17.	Column-I	r D		_ lumn-ll	
17.	a) unit of specific heat c	anacity	1) Mass		
	b) unit of thermal capac		/	specific heat	
	, .	ity	z) riigitesi	specific field	
	Heat capacity	=	3) Jk^{-1}		
	c) Specific heat capac	ity	,		
	d) Water		4) $J kg^{-1}$	x^{-1}	
	A) a-1,b-4,c-2,d-3	B)a-3,b	-1,c-2,d-4		
	C) a-2,b-1,c-4,d-3	D) a-4,b	-3,c-1,d-2		
v. UC	omprehension type que				
18.	Specificheat =		quantity of h		
10.	mass of mass o	of the sub	stance × cha	nge in temperatu:	re
	i) If specific heat of copp				
		12 J/°C	C) 9 J/ºC	D) 20 J/°C	
	ii) Which among the follo				
		copper	C) Water	D) palm oil	
	iii) 2cal =J	copper	U) Waler		
		8.4	C) 2.1	D) none	

PHYSICS HEAT Key: 1) C, 2) A, 3) C, 4) D, 5) C, 6) A, 7) B, 8) D.9) C, 10) A, 11) C, 12) D, 13) C, 14) C, 15) B, 16) C, 17) D, 18) i) A, ii) C,iii) B. VI. Fill in the blanks: ١. Heat always flows from body at temperature to body at temperature 2. SI unit of water equivalent is ß. Specific heat capacity of ice cal/gºC 4. 1 cal = J 5. Specific heat capaicity of water is cal/gºC **Key:** 1) higher, lower, 2) kg, 3) 0.5, 4) 4.186, 5) 1 EXPLORERS (Level - II) . Solve the following: A body was supplied 3600 J of heat, express this amount in ergs. ί1. 2. A body was supplied 6300 J of heat, express this in kilocalories. b. How much heat is requird to rise the temperature of 100 g of water from 5° C to 95° C.(given specific heat of water 1 cal/g^oC) The specific heat of brass is 0.092 cal $q^{-1} C^{-1}$. Express this value in SI system. Ά. How much heat is required to rise the tmeperature of 150 g of iron from 20°C to 25°C Б. (specific heat of iron = 480 Jkg⁻¹⁰C⁻¹) 500 g of hot water at 60° C is kept in the open air till its temperature falls to 4° C. 6. Calculate its heat energy lost to the surroundings by the water. 500g of oil has a specific heat capacity 1.8J/g⁰C.What is the heat capacity of theoil. 7. 48.75 J of heat energy is supplied to 75 g of metal when its temperature rises by 8. 1°C. Calculate specific heat capacity of the metal. þ. The densities of two substances are in the ratio 1:2 and their specific heats in the ratio 2:3. Compare their thermal capacities, if their volumes are in the ratio 3:4. ◆ I+I → RESEARCHERS (Level - IV) < I+I →</p> 10. Two substance A and B have their densities, specific heats and volumes in the same ratio of 2:3. Find the ratio of the termal capacities. A metal block absorbs 4500 cal of heat when heated from 30⁰C to 80⁰C. Its thermal 11. capacity is A copper block A of mass 500 g and specific heat 0.1 cal/g/ 0 C is heated from 30 0 C and <u>12</u>. to 40° C. Another identical copper block B of same mass is heated from 35° C to 40° C. Ratio of their thermal capacities is.... Specific heat of mercury is 0.03 cal/g/⁰C. Its value in S.I. system is 113. There is a cuboid of dimensions I x b x h and thermal capacity k units. On doubling all the 44. dimensions of the cuboid find new thermal capacity. 1) 3600 x10⁷ erg, 2) 1.5 k cal, 3) 9 k cal, 4) 386.4 Jkg⁻¹K⁻¹, 5) 360 J, 6) 42000 J, Key: 7) 900 J/⁰C, 8) 0.65 J/g⁰C, 9) 1:4, 10) 8 : 27, 11) 90cal, 12) 1 : 1, 13) 126 J/kg⁰K, 14) 8 k.

VI - CLASS