Real numbers exercise 1.4

Question 1:

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: (i) 13/3125

(ii) 17/8(iii) 64/455(iv) 15/1600(v) 29/343(vi) $23/2^3 \times 5^2$ (vii) $129/2^2 \times 5^7 \times 7^5$ (viii) 6/15(ix) 35/50(x) 77/210Answer:

We know that for terminating decimal expansion of a rational number of form p/q, where q must be of the form $2^m \times 5^n$.

S.no	Rational Number	Denominator Factorization	Terminating/Non-terminating
i)	13/3125	Factorize the denominator we get 3125 =5 \times 5 \times 5 \times 5 \times 5 \times 5 = 5 ⁵	As denominator is in form of 5 ^m so it is terminating.
ii)	17/8	Factorize the denominator we get 8 = $2 \times 2 \times 2 = 2^3$	As denominator is in form of 2 ^m so it is terminating.
III)	64/455	Factorize the denominator we get 455 =5 × 7 × 13	There are 7 and 13 also in denominator so denominator is not in form of 2 ^m × 5 ⁿ . so it is not terminating.
iv)	15/1600	Factorize the denominator we get $1600 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 = 2^{6} \times 5^{2}$	As denominator is in form of 2 ^m × 5 ⁿ Hence it is terminating
V)	29/343	Factorize the denominator we get $343 = 7 \times 7 \times 7 = 7^3$	There are 7 also in denominator so denominator is not in form of 2 ^m × 5 ⁿ Hence it is non-terminating
vi)	23/ (2 ³ × 5 ²)		Denominator is in form of 2 ^m × 5 ⁿ Hence it is terminating.
vii)	129/ (2 ² × 5 ⁷ × 7 ⁵)		Denominator has 7 in denominator, so denominator is not in form of 2 ^m × 5 ⁿ Hence it is none terminating.
viii)	6/15	divide nominator and denominator both by 3 we get 2/5	Denominator is in form of 5 ^m so it is terminating.
ix)	35/50	divide denominator and nominator both by 5 we get 7/10 Factorize the denominator we get 10=2 × 5	So, denominator is in form of 2 ^m × 5 ⁿ so it is terminating.
X)	77/210	Simplify it by dividing nominator and denominator both by 7 we get 11/30 Factorize the denominator we get $30=2 \times 3 \times 5$	Denominator has 3 also in denominator so denominator is not in form of 2 ^m × 5 ⁿ Hence it is none terminating.

Question 2:

Write down the decimal expansions of those rational numbers in Question 1 above which have terminating decimal expansions.

Answer:

(i) **13/3125** = $13/5^5 = 13 \times 2^5/5^5 \times 2^5 = 416/10^5 = 0.00416$

```
(iii) 17/8 = 17/2^3 = 17 \times 5^3/2^3 \times 5^3 = 17 \times 5^3/10^3 = 2125/10^3 = 2.125

(iv) 15/1600 = 15/2^4 \times 10^2 = 15 \times 5^4/2^4 \times 5^4 \times 10^2 = 9375/10^6 = 0.009375

(vi) 23/2^35^2 = 23 \times 5^3 \times 2^2/2^3 \times 5^2 \times 5^3 \times 2^2 = 11500/10^5 = 0.115

(viii) 6/15 = 2/5 = 2 \times 2/5 \times 2 = 4/10 = 0.4

(ix) 35/50 = 7/10 = 0.7.
```

Question 3

The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form p/q you say about the prime factors of q?

- (i) 43.123456789
- (ii) 0.120120012000120000...
- (iii) **43**. <u>123456789</u>

Answer:

- (i) **43.123456789** : Since this number has a terminating decimal expansion, it is a rational number of the form p/q, and q is of the form $2^m \times 5^n$.
- (ii) **0.120120012000120000...**

The decimal expansion is neither terminating nor repeating. Therefore, the given number is an irrational number.

(iii)43.123456789 : Since the decimal expansion is non-terminating but repeating, the given number is a rational number of the form p/q, and q is not of the form $2^m \times 5^n$.