Maths

SOLVED EXAMPLES

Ex. 1 The sum of first four terms of an A.P. is 56 and the sum of it's last four terms is 112. If its first term is 11 then find the number of terms in the A.P.

Sol. a + a + d + a + 2d + a + 3d = 564a + 6d = 5644 + 6d = 56(as a = 11)6d = 12hence d = 2Now sum of last four terms. a + (n-1)d + a + (n-2)d + a + (n-3)d + a + (n-4)d = 1124a + (4n - 10)d = 11244 + (4n - 10)2 = 112⇒ \Rightarrow 4n - 10 = 34⇒ n = 11⇒

Ex.2 Find the sum of all the three digit natural numbers which on division by 7 leaves remainder 3. ATERIAL All these numbers are 101, 108, 115,, 997 Sol.

997 = 101 + (n-1)7n = 129⇒ 120

So
$$S = \frac{129}{2} [101 + 997] = 70821.$$

If $a_1, a_2, a_3, \dots, a_n$ are in A.P. where $a_1 > 0$ for all i, show that **Ex.3**

$$\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} + \frac{(n-1)}{\sqrt{a_1} + \sqrt{a_n}}$$
L.H.S.
$$= \frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}}$$

$$= \frac{1}{\sqrt{a_2} + \sqrt{a_1}} + \frac{1}{\sqrt{a_3} + \sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_n} + \sqrt{a_{n-1}}}$$

$$= \frac{\sqrt{a_2} - \sqrt{a_1}}{(a_2 - a_1)} + \frac{\sqrt{a_3} - \sqrt{a_2}}{(a_3 - a_2)} + \dots + \frac{\sqrt{a_n} - \sqrt{a_{n-1}}}{a_n - a_{n-1}}$$

Let 'd' is the common difference of this A.P.

then
$$a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1} = d$$

Now LHS

Now L.H.S.

Sol.

$$=\frac{1}{d}\left\{\sqrt{a_{2}}-\sqrt{a_{1}}+\sqrt{a_{3}}-\sqrt{a_{2}}+\ldots+\sqrt{a_{n-1}}-\sqrt{a_{n-2}}+\sqrt{a_{n}}-\sqrt{a_{n-1}}\right\}=\frac{1}{d}\left\{\sqrt{a_{n}}-\sqrt{a_{1}}\right\}$$

$$=\frac{a_{n}-a_{1}}{d(\sqrt{a_{n}}+\sqrt{a_{1}})}=\frac{a_{1}+(n-1)d-a_{1}}{d(\sqrt{a_{n}}+\sqrt{a_{1}})}=\frac{1}{d}\frac{(n-1)d}{(\sqrt{a_{n}}+\sqrt{a_{1}})}=\frac{n-1}{\sqrt{a_{n}}+\sqrt{a_{1}}}=R.H.S.$$

Series and Sequence

- If n > 0, prove that $2^n > 1 + n\sqrt{2^{n-1}}$ Ex. 7
- Using the relation A.M. \geq G.M. on the numbers 1, 2, 2², 2³,..., 2ⁿ⁻¹, we have Sol.

$$\frac{1+2+2^2+\ldots+2^{n-1}}{n} > (1.2, 2^2, 2^3, \ldots, 2^{n-1})^{1/n}$$

Equality does not hold as all the numbers are not equal.

$$\Rightarrow \qquad \frac{2^{n}-1}{2-1} > n \left(2^{\frac{(n-1)n}{2}}\right)^{\frac{1}{n}}$$
$$\Rightarrow \qquad 2^{n}-1 > n \cdot 2^{\frac{(n-1)}{2}}$$
$$\Rightarrow \qquad 2^{n} > 1 + n \cdot 2^{\frac{(n-1)}{2}}$$

Ex. 8

Sol.

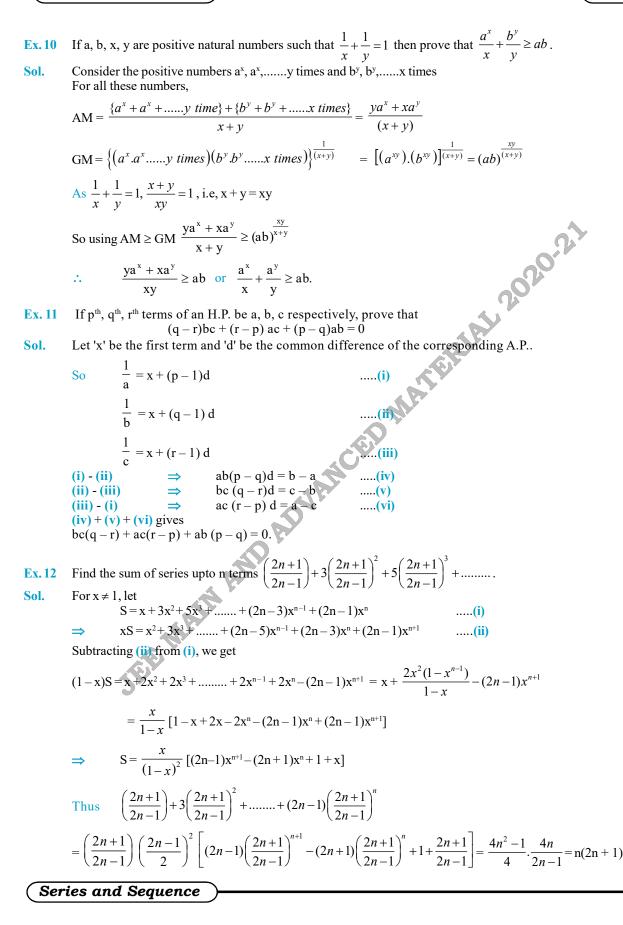
$$\Rightarrow 2^{n}-1 > n \cdot 2^{\frac{(n-1)}{2}}$$

$$\Rightarrow 2^{n} > 1 + n \cdot 2^{\frac{(n-1)}{2}}$$
Ex.8 If $a_{1} > 0^{n}$ i î N such that $\prod_{i=1}^{n} a_{i} = 1$, then prove that $(1 + a_{i})(1 + a_{i})..., (1 + a_{n})^{3} 2^{n}$
Sol. Using A.M. \geq GM.
 $1 + a_{1}^{-3} 2\sqrt{a_{1}}$
 $1 + a_{2}^{-3} 2\sqrt{a_{2}}$
 \vdots
 $1 + a_{n}^{-3} 2\sqrt{a_{n}} \Rightarrow (1 + a_{1})(1 + a_{2})..., (1 + a_{n})^{3} 2^{n}(a_{1}a_{2}a_{3}....a_{n})^{1/2}$
As $a_{1}a_{2}a_{3}....a_{n} = 1$
Hence $(1 + a_{1})(1 + a_{2})....(1 + a_{n})^{3} 2^{n}$.
Ex.9 Sum to n terms of the series $\frac{1}{(1 + x)(1 + 2x)} + \frac{1}{(1 + 2x)(1 + 3x)} + \frac{1}{(1 + 3x)(1 + 4x)} +$
Sol. Let T_{r} be the general term of the series
 $T_{r} = \frac{1}{(1 + ix)(1 + (r + 1)x)}$
 $T_{r} = \frac{1}{x} \left[\frac{(1 + (r + 1)x) - (1 + rx)}{(1 + rx)(1 + (r + 1)x)} \right] = \frac{1}{x} \left[\frac{1}{1 + rx} - \frac{1}{1 + (r + 1)x} \right]$
 $T_{r} = f(r) - f(r + 1)$
 $\therefore S = \Sigma T_{r} = T_{r} + T_{r} + T_{r} + + T_{r}$

$$= \frac{1}{x} \left[\frac{1}{1+x} - \frac{1}{1+(n+1)x} \right] = \frac{n}{(1+x)[1+(n+1)x]}$$

Series and Sequence

Maths



Maths

Ex. 13 Sum to n terms of the series
$$\frac{4}{1.2.3} + \frac{5}{2.3.4} + \frac{6}{3.4.5} + \dots$$

Sol. Let $T_r = \frac{r+3}{r(r+1)(r+2)} = \frac{1}{(r+1)(r+2)} + \frac{3}{r(r+1)(r+2)}$
 $= \left[\frac{1}{r+1} - \frac{1}{r+2}\right] + \frac{3}{2} \left[\frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)}\right]$
 $\therefore S = \left[\frac{1}{2} - \frac{1}{n+2}\right] + \frac{3}{2} \left[\frac{1}{2} - \frac{1}{(n+1)(n+2)}\right]$
 $= \frac{5}{4} - \frac{1}{n+2} \left[1 + \frac{3}{2(n+1)}\right] = \frac{5}{4} - \frac{1}{2(n+1)(n+2)} [2n+5]$

- Ex. 14 The series of natural numbers is divided into groups (1), (2, 3, 4), (5, 6, 7, 8, 9) and so on. Show that the sum of the numbers in n^{th} group is $n^3 + (n 1)^3$
- **Sol.** The groups are (1), (2, 3, 4), (5, 6, 7, 8, 9)

The number of terms in the groups are 1, 3, 5.....

:. The number of terms in the n^{th} group = (2n - 1) the last term of the n^{th} group is n^2

If we count from last term common difference should be -1

So the sum of numbers in the nth group =
$$\left(\frac{2n-1}{2}\right)\left\{2n^2 + (2n-2)(-1)\right\}$$

$$= (2n-1)(n^2 - n + 1) = 2n^3 - 3n^2 + 3n - 1 = n^3 + (n-1)^3$$

Ex. 15 Find the natural number 'a' for which $\sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$, where the function f satisfied f(x+y) = f(x). f(y) for all

natural number x,y and further f(1)=2. It is given that

Sol.

$$f(x+y) = f(x) f(y) \text{ and } f(1) = 2$$

$$f(1+1) = f(1) f(1)$$

$$\Rightarrow \quad f(2) = 2^{2}, f(1+2) = f(1) f(2) \quad \Rightarrow \quad f(3) = 2^{3}, \quad f(2+2) = f(2) f(2)$$

$$\Rightarrow \quad f(4) = 2^{4}$$
Similarly $f(k) = 2^{k} \text{ and } f(a) = 2^{a}$
Hence, $\sum_{k=1}^{n} f(a+k) = \sum_{k=1}^{n} f(a)f(k) = f(a)\sum_{k=1}^{n} f(k) = 2^{a}\sum_{k=1}^{n} 2^{k} = 2^{a}\{2^{1} + 2^{2} + \dots + 2^{n}\}$

$$= 2^{a}\left\{\frac{2(2^{n} - 1)}{2 - 1}\right\} = 2^{a+1}(2^{n} - 1)$$
But $\sum_{k=1}^{n} f(a+k) = 16(2^{n} - 1)$
 $\therefore \quad 2^{a+1}(2^{n} - 1) = 16(2^{n} - 1)$
 $\therefore \quad 2^{a+1} = 2^{4}$
 $\therefore \quad a = 3$

Series and Sequence

JE	EE MAIN & ADVANCE	<i>D</i>		Maths)
E	xercise # 1		[Single Correct Choice	e Type Questions]
1.	If $ln(a+c)$, $ln(c-a)$, l	(a + b) are in A		
1.	(A) a, b, c are in A.P. (C) a, b, c are in G.P.	$\ln(a-20+c)$ are $\ln A$	(B) a^2, b^2, c^2 are in A. (D) a, b, c are in H.P.	Р
2.	The quadratic equation $2x^2 - 3x + 5 = 0$ is -	tion whose roots a	are the A.M. and H.M. bet	ween the roots of the equation,
	(A) $4x^2 - 25x + 10 = 0$ (C) $14x^2 - 12x + 35 = 0$		(B) $12x^2 - 49x + 30 = 0$ (D) $2x^2 + 3x + 5 = 0$	
3.	If a, b and c are three co (A) a curve that interse (B) entirely below the x (C) entirely above the x (D) tangent to the x-axi	ets the x-axis at two -axis. -axis.	erms of a G.P. then the graph of distinct points.	$y = ax^2 + bx + c$ is
4.	If $x \in R$, the numbers $(A) [1, 5]$	$5^{1+x} + 5^{1-x}$, a/2, $25^{x} + $ (B) [2, 5]	- 25 ^{-x} form an A.P. then 'a' mus (C) [5, 12]	t lie in the interval: (D) $[12, \infty)$
5.	If a, b, c are distinct pos	sitive real in H.P., the	n the value of the expression, $\frac{b}{b}$	+a + b + c is equal to
	(A) 1	(B) 2	(C) 3	-a b-c (D) 4
6.	The maximum value of t (A) 325	the sum of the A.P. 50, (B) 648	48, 46, 44, is - (C) 650	(D) 652
7.	Let s_1, s_2, s_3 and t	$_{1}, t_{2}, t_{3}$ are two a	arithmetic sequences such that s ₁	$t_1 = t_1 \neq 0; s_2 = 2t_2 \text{ and } \sum_{i=1}^{10} s_i = \sum_{i=1}^{15} t_i.$
	Then the value of $\frac{s_2}{t_2}$ - (A) 8/3	$\frac{s_1}{t_1}$ is		
	(A) 8/3	(B) 3/2	(C) 19/8	(D) 2
8.	For a sequence $\{a_n\}$, a (A) $\frac{20}{2} [4+19 \times 3]$	$a_{1} = 2$ and $\frac{a_{n+1}}{a_{n}} = \frac{1}{3}$	Then $\sum_{r=1}^{20} a_r$ is	
	(A) $\frac{20}{2}$ [4+19×3]	(B) $3\left(1-\frac{1}{3^{20}}\right)$	(C) $2(1-3^{20})$	(D) none of these
9.	The interior angles of a Find the number of side			120° & the common difference is 5°.
	(A) 9	(B) 16	(C) 12	(D) none of these
10.	The sum $\sum_{k=1}^{100} \frac{k}{k^4 + k^2 + 1}$	is equal to		
	(A) $\frac{4950}{10101}$	(B) $\frac{5050}{10101}$	(C) $\frac{5151}{10101}$	(D) none
11.	Consider an A.P. with	first term 'a' and the	common difference 'd'. Let S _k	denote the sum of its first K terms.
	If $\frac{S_{kx}}{S_{x}}$ is independent	of x, then		
	(A) $a = d/2$	(B) a = d	(C) $a = 2d$	(D) none of these
		_		
(Se	ries and Sequence	e		

- 12. If $a_1, a_2, a_3, \dots, a_n$ are positive real numbers whose product is a fixed number c, then the minimum value of $a_1 + a_2 + a_3 + \dots + a_{n-1} + 2a_n$ is (A) $n(2c)^{1/n}$ (B) $(n+1) c^{1/n}$ (C) $2nc^{1/n}$ (D) $(n+1)(2c)^{1/n}$
- 13. The first term of an infinitely decreasing G.P. is unity and its sum is S. The sum of the squares of the terms of the progression is -

(A)
$$\frac{S}{2S-1}$$
 (B) $\frac{S^2}{2S-1}$ (C) $\frac{S}{2-S}$ (D) S^2

14. The sum of the first n-terms of the series $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + \dots$ is $\frac{n(n+1)^2}{2}$, when n is even.

When n is odd, the sum is

(A) $\frac{n(n+1)^2}{4}$ (B) $\frac{n^2(n+2)}{4}$ (C) $\frac{n^2(n+1)}{2}$

15. If p, q, r in harmonic progression and p & r be different having same sign then the roots of the equation $px^2+qx+r=0$ are -(A) real and equal (B) real and distinct (C) irrational (D) imaginary

16. The arithmetic mean of the nine numbers in the given set {9, 99, 999, 999999999} is a 9 digit number N, all whose digits are distinct. The number N does not contain the digit
(A) 0
(B) 2
(C) 5
(D) 9

17. A particle begins at the origin and moves successively in the following manner as shown, 1 unit to the right, 1/2 unit up, 1/4 unit to the right, 1/8 unit down, 1/16 unit to the right etc. The length of each move is half the length of the previous move and movement continues in the 'zigzag' manner indefinitely. The co-ordinates of the point to which the 'zigzag' converges is -

(A)
$$(4/3, 2/3)$$

(A) $(4/3, 2/3)$
(B) $(4/3, 2/5)$
(C) $(3/2, 2/3)$
(D) $(2, 2/5)$
(B) $(4/3, 2/5)$
(C) $(3/2, 2/3)$
(D) $(2, 2/5)$
(E) $(3/2, 2/3)$
(D) $(2, 2/5)$
(E) $(3/2, 2/3)$
(E) $(2, 2/5)$
(E) $(2, 2/5)$
(E) $(2, 2/5)$
(E) $(2, 2/5)$
(E) $(3/2, 2/3)$
(E) $(2, 2/5)$
(E) $(2, 2/5)$
(E) $(2, 2/5)$
(E) $(3/2, 2/3)$
(E) $(2, 2/5)$
(E) $(2, 2/5)$
(E) $(2, 2/5)$
(E) $(2, 2/5)$
(E) $(3/2, 2/3)$
(

19. If A, G & H are respectively the A.M., G.M. & H.M. of three positive numbers a, b, & c, then the equation whose roots are a, b, & c is given by: (A) $x^3 - 3Ax^2 + 3G^3x - G^3 = 0$ (B) $x^3 - 3Ax^2 + 3(G^3/H)x - G^3 = 0$ (C) $x^3 + 3Ax^2 + 3(G^3/H)x - G^3 = 0$ (D) $x^3 - 3Ax^2 - 3(G^3/H)x + G^3 = 0$

Series and Sequence

162

20.	If $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots +$	to $\infty = \frac{\pi^4}{90}$, then $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{3^4}$	$\frac{1}{5^4}$ + + to ∞ is equals to	-
	(A) $\frac{\pi^4}{96}$	(B) $\frac{\pi^4}{45}$	(C) $\frac{89\pi^4}{90}$	(D) none of these
21.				$x^2 - 12x + b = 0$ and numbers
	(A) $a = 3, b = 12$	form an increasing G.P., the (B) $a = 12, b = 3$	(C) $a = 2, b = 32$	(D) $a = 4, b = 16$
22.	If a, b, c are positive nun	nbers in G.P. and $\log\left(\frac{5c}{a}\right)$,	$\log\left(\frac{3b}{5c}\right)$ and $\log\left(\frac{a}{3b}\right)$ are	in A.P., then a, b, c forms the sides
	of a triangle which is - (A) equilateral	(B) right angled	(C) isosceles	(D) none of these
23.		.P. & $ a , b , c < 1$. If $a \ge 2 = 1 + c + c^2 + \dots$ to $a \ge 2$		22
	(A) A.P.	(B) G.P.	(C) H.P.	(D) none
24.	$\frac{1}{2.4} + \frac{1.3}{2.4.6} + \frac{1.3.5}{2.4.6.8} + \frac{1}{2}$	$\frac{1.3.5.7}{2.4.6.8.10}$ + is	equal to	
	(A) $\frac{1}{4}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) 1
25.	If a, b, c, d are positive (A) $0 \le M \le 1$	real numbers such that $a + (B)$ $1 \le M \le 2$	b + c + d = 2, then M = (a (C) 2 \le M \le 3	(b) $(c + d)$ satisfies the relation: (b) $3 \le M \le 4$
26.	The sum to n terms of th	the series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{5}{1^2 + 2^2}$		
	(A) $\frac{3n}{n+1}$	(B) $\frac{6n}{n+1}$	(C) $\frac{9n}{n+1}$	(D) $\frac{12n}{n+1}$
27.			d all whose terms are non-ze	ro. If n approaches infinity, then the
	$ sum \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \dots $	$+\frac{1}{a_na_{n+1}}$ will approach		
	$(A) \frac{1}{1}$	(B) $\frac{2}{a_1 d}$ (B) $\frac{2}{a_1 d}$ (B) 5	(C) $\frac{1}{2}$	(D) a ₁ d
	a ₁ d	a ₁ d	$2a_1d$	
28.	If $3 + \frac{1}{4}(3+d) + \frac{1}{4^2}(3+d)$	$+2d$) ++ upto $\infty = 8$,	then the value of d is:	
	(A) 9	(B) 5	(C) 1	(D) none of these
29.	If the $(m+1)^{th}$, $(n+1)^{th}$ & to the first term of the Al	$(r+1)^{m}$ terms of an AP are 1	n GP & m, n, r are in HP, the	n the ratio of the common difference
	(A) $\frac{1}{n}$	(B) $\frac{2}{n}$		(D) none of these
30.		$\frac{\text{terms}}{\text{terms}} = \frac{20}{7 \log_{10} x} \text{ and } n =$	$\log_{10} x + \log_{10} x^{\frac{1}{2}} + \log_{10} x^{\frac{1}{2}}$	$x^{\frac{1}{4}} + \log_{10} x^{\frac{1}{8}} + \dots + \infty$, then x is
	equal to (A) 10^3	(B) 10 ⁵	(C) 10 ⁶	(D) 10 ⁷
Ser	ries and Sequence)		163

Maths

Exercise # 2 Part # I [Multiple Correct Choice Type Questions]

- 1. Let a, b, g be the roots of the equation $x^3 + 3ax^2 + 3bx + c = 0$. If a, b, g are in H.P. then b is equal to -(A) - c/b (B) c/b (C) - a (D) a
- 2. x_1, x_2 are the roots of the equation $x^2 3x + A = 0$; x_3, x_4 are roots of the equation $x^2 12x + B = 0$, such that x_1, x_2, x_3, x_4 form an increasing G.P., then (A) A = 2 (B) B = 32 (C) $x_1 + x_3 = 5$ (D) $x_2 + x_4 = 10$
- 3. If $a_1, a_2, \dots, a_n \in \mathbb{R}^+$ and $a_1, a_2, \dots, a_n = 1$ then the least value of $(1 + a_1 + a_1^2)(1 + a_2 + a_2^2), \dots, (1 + a_n + a_n^2)$ is -(A) 3^n (B) $n3^n$ (C) 3^{3n} (D) data inadequate
- 4. If sum of the infinite G.P., p, 1, $\frac{1}{p}$, $\frac{1}{p^2}$, $\frac{1}{p^3}$,..... is $\frac{9}{2}$, then value of p is

5. If a, a_1, a_2, \dots, a_{10} , b are in A.P. and a, g_1, g_2, \dots, g_{10} , b are in G.P. and h is the H.M. between a and b, then $a_1 + a_2 + \dots + a_{10}$, $a_2 + a_3 + \dots + a_9$, $a_5 + a_6$

$$\frac{1}{g_{1}g_{10}} + \frac{2}{g_{2}g_{9}} + \dots + \frac{5}{g_{5}g_{6}} \text{ is -}$$
(A) $\frac{10}{h}$ (B) $\frac{10}{h}$ (C) $\frac{30}{h}$ (D) $\frac{5}{h}$

(B) $\frac{2}{3}$ **(C)** $\frac{3}{2}$

6. Let a_1, a_2, a_3 and b_1, b_2, b_3 be arithmetic progressions such that $a_1 = 25$, $b_1 = 75$ and $a_{100} + b_{100} = 100$. Then (A) the difference between successive terms in progression 'a' is opposite of the difference in progression 'b'. (B) $a_n + b_n = 100$ for any *n*. (C) $(a_1 + b_1), (a_2 + b_2), (a_3 + b_3), \dots$ are in A.P.

(D)
$$\sum_{r=l}^{100} (a_r + b_r) = 10000$$

- 7. For the A.P. given by a_1, a_2, \dots, a_n , with non-zero common difference, the equations satisfied are-(A) $a_1 + 2a_2 + a_3 = 0$ (B) $a_1 - 2a_2 + a_3 = 0$ (C) $a_1 + 3a_2 - 3a_3 - a_4 = 0$ (D) $a_1 - 4a_2 + 6a_3 - 4a_4 + a_5 = 0$
- 8. If (1+3+5+...+a) + (1+3+5+...+b) = (1+3+5+...+c), where each set of parentheses contains the sum of consecutive odd integers as shown such that (i) a + b + c = 21, (ii) a > 6If $G = Max\{a, b, c\}$ and $L = Min\{a, b, c\}$, then -(A) G - L = 4 (B) b - a = 2 (C) G - L = 7 (D) a - b = 2

9. The pth term T_p of H.P. is q(q+p) and q^{th} term T_q is p(p+q) when p > 1, q > 1, then -(A) $T_{p+q} = pq$ (B) $T_{pq} = p+q$ (C) $T_{p+q} > T_{pq}$ (D) $T_{pq} > T_{p+q}$

10. If a, b and c are distinct positive real numbers and $a^2 + b^2 + c^2 = 1$, then ab + bc + ca is -(A) equal to 1 (B) less than 1 (C) greater than 1 (D) any real number

Series and Sequence

11.	If $\sum_{r=1}^{n} r(r+1) (2r+3) = an^4 + bn^3 + cn^2 + dn + e$, then				
	(A) $a + c = b + d$		(B) $e = 0$		
	(C) $a, b - 2/3, c - 1$ are	in A.P.	(D) c/a is an integer		
12.	Let a_1, a_2, \dots, a_{10} be in .	A.P. & h_1, h_2, \dots, h_{10} be in H	I.P If $a_1 = h_1 = 2 \& a_{10} = h_{10} =$	= 3 then $a_4 h_7$ is -	
	(A) 2	(B) 3	(C) 5	(D) 6	
13.	If first and $(2n-1)^{\text{th}}$ term (A) $a + c = 2b$	ns of an A.P., G.P. and H.P. $(\mathbf{B}) a \ge b \ge c$	are equal and their n^{th} terms (C) $a + c = b$	are a, b, c respectively, then - (D) $b^2 = ac$	
14.	If the roots of the equation (A) $p + q = 0$ (C) one of the roots is u		m an increasing G.P. where p (B) $p \in (-3, \infty)$ (D) one root is smaller th	o and q are real, then nan 1 and one root is greater than 1	
15.	If x, $ x + 1 $, $ x - 1 $ are the (A) 180	nree terms of an A.P., then (B) 350	its sum upto 20 terms is – (C) 90	(D) 720	
16.	Let a, x, b be in A.P.; a,	y, b be in G.P. and a, z, b be	in H.P. If $x = y + 2$ and $a = 52$	z then -	
	$(\mathbf{A}) \mathbf{y}^2 = \mathbf{x}\mathbf{z}$	(B) $x > y > z$	(C) $a=9, b=1$	(D) $a = \frac{9}{4}, b = \frac{1}{4}$	
17.	If the arithmetic mean	of two positive numbers a	& b (a > b) is twice their g	eometric mean, then a: b is:	
	(A) $2 + \sqrt{3} : 2 - \sqrt{3}$	(B) $7 + 4\sqrt{3} : 1$	1:7-4 $\sqrt{3}$	(D) 2: $\sqrt{3}$	
18.	If $sin(x - y)$, $sin x$ and si	n (x + y) are in H.P., then sir	$\frac{y}{2} =$		
	(A) 2	(B) √2	(C) $-\sqrt{2}$	(D) -2	
19.	The sum of the first 100 t	erms common to the series 1	7, 21, 25, and 16, 21, 2	26,is -	
	(A) 101100	(B) 111000	(C) 110010	(D) 100101	
20.	a, b, c are three distinct r		a P. and $a + b + c = xb$, then -		
	(A) $x < -1$	(B) $-1 < x < 2$	(C) $2 < x < 3$	(D) x>3	
21.	1 2 01	stinct terms of an A.P., the			
	(A) $a_1 + 2a_2 + a_3 = 0$ (C) $a_1 + 3a_2 - 3a_3 - a_4 = 0$	= 0	(B) $a_1 - 2a_2 + a_3 = 0$ (D) $a_1 - 4a_2 + 6a_3 - 4a_4$	$+ a_5 = 0$	
22.			$q + 5r = 12$ then $p^3 + q^4 + r^5$	5	
	(A)2	(B) 6	(C) 3	(D) none of these	

J	EE MAIN & ADVANCED Maths
	Part # II [Assertion & Reason Type Questions]
	 These questions contains, Statement I (assertion) and Statement II (reason). (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I. (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I. (C) Statement-I is true, Statement-II is false. (D) Statement-I is false, Statement-II is true.
1.	Statement-I: The sum of the first 30 terms of the sequence 1, 2, 4, 7, 11, 16, 22, is 4520. Statement-II: If the successive differences of the terms of a sequence form an A.P., then general term of sequence is of the form an ² + bn + c.
2.	 Statement-I: nth term (T_n) of the sequence (1, 6, 18, 40, 75, 126,) is an³ + bn² + cn + d, and 6a + 2b - d is = 4. Statement-II: If the second successive differences (Differences of the differences) of a series are in A.P., then T_n is a cubic polynomial in n.
3.	Statement-I: 1, 2, 4, 8, is a G.P., 4, 8, 16, 32 is a G.P. and $1+4, 2+8, 4+16, 8+32,$ is also a G.P. Statement-II: Let general term of a G.P. (with positive terms) with common ratio r be T_{k+1} and general term of another G.P. (with positive terms) with common ratio r be T'_{k+1} , then the series whose general term $T''_{k+1} = T_{k+1} + T'_{k+1}$ is also a G.P. with common ratio r.
4.	Statement-I : For $n \in N$, $2^n > 1 + n(\sqrt{2^{n-1}})$ Statement-II : G.M. > H.M. and (AM) (HM) = (GM) ²
5.	Statement-I : Circumradius and inradius of a triangle can not be 12 and 8 respectively. Statement-II : Circumradius ≥ 2 (inradius)
6.	Statement-I: Minimum value of $\frac{\sin^3 x + \cos^3 x + 3\sin^2 x + 3\sin x + 2}{(\sin x + 1)\cos x}$ for $x \in \left[0, \frac{\pi}{2}\right]$ is 3 Statement-II: The least value of a sin q + b cosq is $-\sqrt{a^2 + b^2}$
7.	Statement-I : The format of n th term (T_n) of the sequence (ln2, ln4, ln32, ln1024) is an ² + bn + c. Statement-II : If the second successive differences between the consecutive terms of the given sequence are in G.P., then $T_n = a + bn + cr^{n-1}$, where a, b, c are constants and r is common ratio of G.P.
8.	Statement-1: If 27 abc $\ge (a + b + c)^3$ and $3a + 4b + 5c = 12$ then $\frac{1}{a^2} + \frac{1}{b^3} + \frac{1}{c^5} = 10$;
	where a, b, c are positive real numbers. Statement-II : For positive real numbers A.M. \geq G.M.
9.	Statement-I : The series for which sum to n terms, S_n , is given by $S_n = 5n^2 + 6n$ is an A.P. Statement-II : The sum to n terms of an A.P. having non-zero common difference is a quadratic in n, i.e., $an^2 + bn$.
10.	Statement-I : In any $\triangle ABC$, maximum value of $r_1 + r_2 + r_3 = \frac{9R}{2}$.
	Statement-II : In any $\triangle ABC$, $R \ge 2r$.

Series and Sequence

11. Statement-I : If a, b, c are three distinct positive number in H.P., then $\left(\frac{a+b}{2a-b}\right) + \left(\frac{c+b}{2c-b}\right) > 4$ Statement-II : Sum of any number and it's reciprocal is always greater than or equal to 2.

- Statement-I: 3, 6, 12 are in G.P., then 9, 12, 18 are in H.P.
 Statement-II: If three consecutive terms of a G.P. are positive and if middle term is added in these terms, then resultant will be in H.P.
- 13. Statement-I : If $x^2y^3 = 6(x, y > 0)$, then the least value of 3x + 4y is 10

Statement-II : If $m_1, m_2 \in N$, $a_1, a_2 > 0$ then $\frac{m_1 a_1 + m_2 a_2}{m_1 + m_2} \ge (a_1^{m_1} a_2^{m_2})^{\frac{1}{m_1 + m_2}}$ and equality holds when $a_1 = a_2$.

14. Statement-I: The difference between the sum of the first 100 even natural numbers and the sum of the first 100 odd natural numbers is 100.

Statement-II: The difference between the sum of the first *n* even natural numbers and sum of the first *n* odd natural numbers is *n*.

15. Statement-I: If a, b, c are three positive numbers in G.P., then $\left(\frac{a+b+c}{2}\right) \cdot \left(\frac{3abc}{ab+bc+ca}\right) = \left(\sqrt[3]{abc}\right)^2$

Statement-II : (A.M.) (H.M.) = (G.M.)² is true for any set of positive numbers.

Series and Sequence

Exercise # 3 Part # I [Matrix Match Type Questions]

Following questions contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with **one** statement in **Column-II**.

1.		Column-I	Colum	n-II
	(A)	If a_1 's are in A.P. and $a_1 + a_3 + a_4 + a_5 + a_7 = 20$, a_4	(p)	21
		is equal to		
	(B)	Sum of an infinite G.P. is 6 and it's first term is 3.	(q)	4
		then harmonic mean of first and third terms of G.P. is		۸.
	(C)	If roots of the equation $x^3 - ax^2 + bx + 27 = 0$, are in G.P.	(r)	24
		with common ratio 2, then $a + b$ is equal to		3 ´`
	(D)	If the roots of $x^4 - 8x^3 + ax^2 + bx + 16 = 0$ are	(5)	6/5
		positive real numbers then a is	P	
2.	Colum	n-l	Colum	n-11
	(A)	If $\log_x y$, $\log_z x$, $\log_y z$ are in G.P., $xyz = 64$ and x^3, y^3, z^3	(p)	2
		positive real numbers then a is n-I If $\log_x y$, $\log_z x$, $\log_y z$ are in G.P., $xyz = 64$ and x^3, y^3, z^3 are in A.P., then $\frac{3x}{y}$ is equal to $\frac{1}{y} = \frac{1}{y}$		
	(B)	The value of $2^{\frac{1}{4}} \cdot 4^{\frac{1}{8}} \cdot 8^{\frac{1}{16}} \infty$ is equal to	(q)	1
	(C)	If x, y, z are in A.P., then	(r)	3
		(x+2y-z)(2y+z-x)(z+x-y) = kxyz,		
	-	where $k \in N$, then k is equal to		
	(D)	There are m A.M. between 1 and 31. If the ratio of the	(s)	4
		7^{th} and $(m-1)^{\text{th}}$ means is 5:9, then $\frac{m}{7}$ is equal to		
3.		Column – I	Colum	n–II
	(A)	If $\log_{5}(2^{x}-5)$ and $\log_{5}(2^{x}-7/2)$ are in A.P.,	(p)	6
		then value of 2x is equal to	d /	
	(B)	Let S_n denote sum of first n terms of an A.P. If $S_{2n} = 3S_n$,	(q)	9
		then $\frac{S_{3n}}{S_n}$ is		
	(C)	Sum of infinite series $4 + \frac{8}{3} + \frac{12}{3^2} + \frac{16}{3^3} + \dots $ is	(r)	3
				_
	(D)	The length, breadth, height of a rectangular box are in G.P. The	(s)	1
		volume is 27, the total surface area is 78. Then the length is		

4.	Colum	n-I	Colum	n-II
	(A)	n th term of the series 4, 11, 22, 37, 56, 79,	(p)	$2n^2 + n$
	(B) $ 1^2 - 2^2 + 3^2 - 4^2$ 2n terms is equal to (C) sum to n terms of the series 3, 7, 11, 15, is		(q)	$2n^2 + n + 1$
			(r)	$-(n^2 + n)$
	(D)	coefficient of x^n in $2x(x-1)(x-2)$ $(x-n)$ is	(s)	$\frac{1}{2}(n^2+n)$

Part # II

[Comprehension Type Questions]

Comprehension # 1

There are 4n + 1 terms in a sequence of which first 2n + 1 are in Arithmetic Progression and last 2n + 1 are in Geometric Progression the common difference of Arithmetic Progression is 2 and common ratio of Geometric Progression is 1/2. The middle term of the Arithmetic Progression is equal to middle term of Geometric Progression. Let middle term of the

sequence is T_m and T_m is the sum of infinite Geometric Progression whose sum of first two terms is $\left(\frac{5}{4}\right)^2$ n and ratio

of these terms is $\frac{9}{16}$.

1.	Number of terms in the given sequence is equal to -			
	(A) 9	(B) 17	(C) 13	(D) none
2.	Middle term of the given see	quence, i.e. T _m is equal to		
	(A) 16/7	(B) 32/7	(C) 48/7	(D) 16/9
3.	First term of given sequence			
	(A) -8/7, -20/7	(B) -36/7	(C) 36/7	(D) 48/7
4.	Middle term of given A. P. is	s equal to -		
	(A) 6/7	(B) 10/7	(C) 78/7	(D) 11
5.	Sum of the terms of given A	. P. is equal to -		
	(A) 6/7	(B) 7	(C) 3	(D) 6

Comprehension # 2

In a sequence of (4n + 1) terms the first (2n + 1) terms are in AP whose common difference is 2, and the last (2n + 1) terms are in GP whose common ratio 0.5. If the middle terms of the AP and GP are equal, then

1. Middle term of the sequence is

(A)
$$\frac{n \cdot 2^{n+1}}{2^n - 1}$$
 (B) $\frac{n \cdot 2^{n+1}}{2^{2n} - 1}$ (C) $n \cdot 2^n$ (D) None of these

2. First term of the sequence is

(A) $\frac{4n+2n \cdot 2^n}{2^n-1}$ (B) $\frac{4n-2n \cdot 2^n}{2^n-1}$ (C) $\frac{2n-n \cdot 2^n}{2^n-1}$ (D) $\frac{2n+n \cdot 2^n}{2^n-1}$

3. Middle term of the GP is

(A)
$$\frac{2^{n}}{2^{n}-1}$$
 (B) $\frac{n \cdot 2^{n}}{2^{n}-1}$ (C) $\frac{n}{2^{n}-1}$ (D) $\frac{2n}{2^{n}-1}$

Series and Sequence

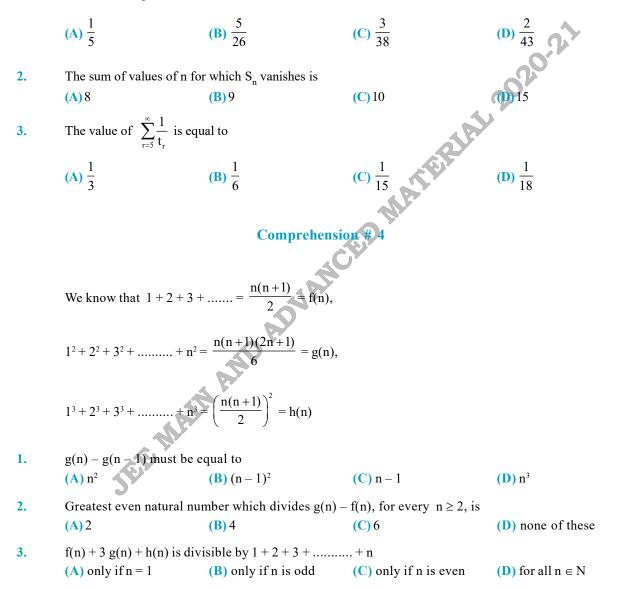
169

Comprehension # 3

Let a_m (m = 1, 2,,p) be the possible integral values of a for which the graphs of $f(x) = ax^2 + 2bx + b$ and $g(x) = 5x^2 - 3bx - a$ meets at some point for all real values of b.

Let
$$t_r = \prod_{m=1}^{p} (r - a_m)$$
 and $S_n = \sum_{r=1}^{n} t_r$, $n \in N$.

1. The minimum possible value of *a* is



Comprehension # 5

If $a_i > 0$, i = 1, 2, 3, ..., n and $m_1, m_2, m_3, ..., m_n$ be positive rational numbers, then

$$\left(\frac{m_1a_1 + m_2a_2 + \dots + m_na_n}{m_1 + m_2 + \dots + m_n}\right) \ge \left(a_1^{m_1} a_2^{m_2} \dots a_n^{m_n}\right)^{1/(m_1 + m_2 + \dots + m_n)} \ge \frac{(m_1 + m_2 + \dots + m_n)}{\frac{m_1}{a_1} + \frac{m_2}{a_2} + \dots + \frac{m_n}{a_n}}$$

is called weighted mean theorem

 $G^* = \left(a_1^{m_1}a_2^{m_2}\dots a_n^{m_n}\right)^{1/(m_1+m_2+\dots+m_n)} = \text{Weighted geometric mean}$ $A^* = \frac{m_1 a_1 + m_2 a_2 + \dots + m_n a_n}{m_1 + m_2 + \dots + m_n} = \text{Weighted arithmetic mean}$ where FRIM $H^* = \frac{m_1 + m_2 + \dots + m_n}{\frac{m_1}{a_1} + \frac{m_2}{a_2} + \dots + \frac{m_n}{a_n}} = Weighted harmonic mean$ and i.e., $A^* \geq G^* \geq H^*$ Now, let $a+b+c=5(a,\,b,\,c>0)$ and $x^2y^3=243(x>0,\,y$ > 0)ADVAN The greatest value of ab³c is -**(B)** 9 (A) 3 (C) 27 **(D)** 81 Which statement is correct - $\frac{1}{25} \ge \frac{1}{\frac{1}{a} + \frac{9}{b} + \frac{1}{c}} \qquad (C) \frac{1}{5} \ge \frac{1}{\frac{1}{a} + \frac{9}{b} + \frac{1}{c}} \qquad (D) \frac{1}{25} \ge \frac{1}{\frac{1}{a} + \frac{6}{b} + \frac{1}{c}}$ (A) $\frac{1}{5} \ge \frac{1}{\frac{1}{a} + \frac{3}{b} + \frac{1}{c}}$ The least value of $x^2 + 3y + 1$ is -(A) 15 (B) greater than 15 **(C)** 3 (D) less than 15 Which statement is correct -(A) $\frac{2x+3y}{5} \ge 3 \ge \frac{5}{\frac{3}{x}+\frac{2}{y}}$ **(B)** $\frac{2x+3y}{5} \ge 3 \ge \frac{5xy}{3x+2y}$

(C)
$$\frac{2x+3y}{5} \ge 3 \ge \frac{5xy}{3x+4y}$$
 (D) $\frac{2x+3y}{5} \ge 3 \ge \frac{5xy}{2x+3y}$

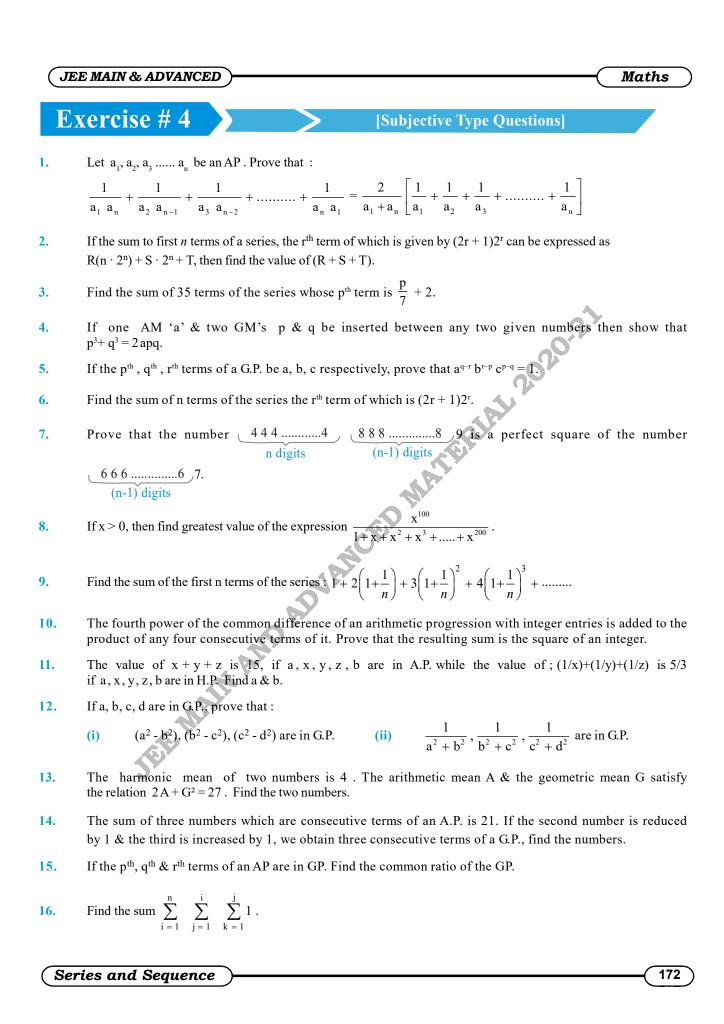
Series and Sequence

1.

2.

3.

4.



J	EE MAIN & ADVA	NCED			- Maths
F	xercise # :	5 Part # I) [P	revious Year Question	nsl [AIEEE/.IEE-	MAINI
1.	If 1, $\log_3 \sqrt{3^{1-x}} + $	$\overline{2}$, $\log_3(4.3^x - 1)$ are in A.P.	then x equals.		[AIEEE 2002]
	(A) log ₃ 4	(B) $1 - \log_3 4$	(C) $1 - \log_4 3$	(D) log ₄ 3	
2.	Sum of infinite n	umber of terms in G.P. is 20	and sum of their square is	s 100. The common	ratio of G.P. is-
	(h) =				[AIEEE 2002]
	(A) 5	(B) 3/5	(C) 8/5	(D) 1/5	
3.	Fifth term of a G	P. is 2, then the product of	ts 9 terms is-		[AIEEE 2002]
	(A) 256	(B) 512	(C) 1024	(D) None of	these
4.	The sum of the s	eries $1^3 - 2^3 + 3^3 - \dots + 9$	3 ₌	22	[AIEEE 2002]
	(A) 300	(B) 125	(C) 425	(1) 0	
5.	Let T _r be the rth	term of an A.P. whose first ter	m is a and common differ	rence is d. If for som	e positive integers
		$=\frac{1}{n}$ and $T_n = \frac{1}{m}$, then a		Y	[AIEEE 2004]
	,, <i>,</i> , , m	n m m		1 1	[]
	(A) 0	(B) 1	(C) $\frac{1}{mn}$	(D) $\frac{1}{m} + \frac{1}{n}$	
6.	If AM and GM c	of two roots of a quadratic eq	uation are 9 and 4 respec	tively, then this quad	
	(A) $x^2 - 18x + 16$	$6 = 0$ (B) $x^2 + 18x - 16 =$	0. (C) $x^2 + 18x + 16 =$	$= 0$ (D) $x^2 - 18x$	[AIEEE 2004] -16 = 0
		18			
7.	Ifaaa	a _n , are in G.P. then the	$\log a_n$	$\log a_{n+1} \log a_{n+2}$	determinant, is-
· •	$11 a_1, a_2, a_3, \ldots$	a_n , are in 0.1, men ur	$\log a_{n+3}$	$\log a_{n+4}$ $\log a_{n+5}$ $\log a_{n+7}$ $\log a_{n+8}$	determinant, 15-
		AL A			[AIEEE 2004]
	(A) 0	(B) 1	(C) 2	(D) –2	
	$\sum_{n=1}^{\infty} n$	(B) 1 (b) 1 (b) 1 (c) $\sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} b^n$	\sim^n		
8.	If $x = \sum_{n=0}^{\infty} a^n$	$y = \sum_{n=0}^{b^n} b^n$, $z = \sum_{n=0}^{b^n} b^n$	where a, b, c ar	e in A.P. and a	< 1, b < 1,
	c < 1 then x, y,				[AIEEE 2005]
	(A) HP			eometric Progression	
	(C) AP		(D) GP		
9.	Let a ₁ , a ₂ , a ₃ ,	be terms of an A.P. If $\frac{a_1}{a_1}$	$\frac{a_2 + a_2 + \dots + a_p}{a_2 + \dots + a_q} = \frac{p^2}{q^2}, p$	\neq q then $\frac{a_6}{a_{21}}$ equa	ls- [AIEEE-2006]
	(A) $\frac{2}{7}$	(B) $\frac{11}{41}$	(C) $\frac{41}{11}$	(D) $\frac{7}{2}$	
10.	If a ₁ , a ₂ ,, a ₂ a	are in H.P., then the expression	$a_1a_2 + a_2a_2 + \dots + a_n$	a_1a_2 is equal to-	[AIEEE-2006]
	(A) $\operatorname{na}_1 a_n$	(B) $(n-1)a_1a_n$		(D) $(n-1)(a)$	

Series and Sequence

(B) √5

(A) $\frac{1}{2}\sqrt{5}$

11. In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then [AIEEE-2007] the common ratio of this progression equals-

(C) $\frac{1}{2}(\sqrt{5}-1)$ (D) $\frac{1}{2}(1-\sqrt{5})$

A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving 15. increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after :-[AIEEE-2011]

18 months

(D) 19 months

16. Let a_n be the nth term of an A.P. If $\sum_{r=1}^{100} a_{2r} = \alpha$ and $\sum_{r=1}^{100} a_{2r-1} = \beta$, then the common difference of the A.P. is:

(B) 21 months

(A)
$$\frac{\alpha - \beta}{200}$$
 (B) a - b (C) $\frac{\alpha - \beta}{100}$ (D) b - a [AIEEE-2011]

Statement-1: The sum of the series $1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + \dots + (361 + 380 + 400)$ is 8000. 17.

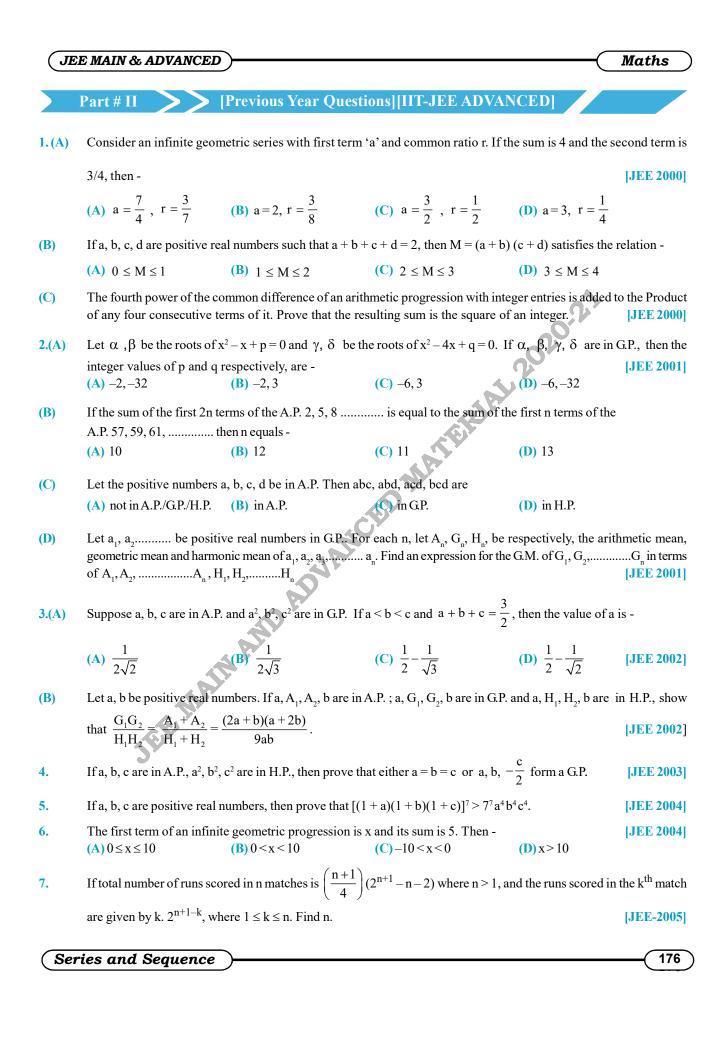
Statement-2:
$$\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3$$
, for any natural number n. [AIEEE-2012]

- (A) Statement-1 is true, Statement-2 is false.
- **(B)** Statement–1 is false, Statement–2 is true.
- (C) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (D) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

If 100 times the 100th term of an A.P. with non-zero common difference equals the 18. 50 times its 50th term, then the 150th term of this A.P. is : [AIEEE-2012] (C) 150 times its 50th term (A) zero **(B)**-150**(D)** 150

Series and Sequence

The sum of first 20 terms of the sequence 0.7, 0.77, 0.777,, is : 19. [**JEE-MAIN 2013**] (A) $\frac{7}{81}(179-10^{-20})$ (B) $\frac{7}{9}(99-10^{-20})$ (C) $\frac{7}{81}(179+10^{-20})$ (D) $\frac{7}{9}(99-10^{-20})$ Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value 20. of $|\alpha - \beta|$ is [**JEE Main 2014**] (A) $\frac{\sqrt{61}}{2}$ **(B)** $\frac{2\sqrt{17}}{2}$ (C) $\frac{\sqrt{34}}{9}$ **(D)** $\frac{2\sqrt{13}}{9}$ Three positive numbers from an increasing G.P. If the middle term in this G.P. is doubled, the new numbers are 21. [JEE Main 2014] in A.P. Then the common ratio of the G.P. is : **(D)** $2 + \sqrt{3}$ (C) $2 - \sqrt{3}$ (A) $\sqrt{2} + \sqrt{3}$ **(B)** $3 + \sqrt{2}$ If $(10)^9 + 2(11)^1(10)^8 + 3(11)^2(10)^7 + \dots + 10(11)^9 = k(10)^9$, then k is equal to 22. [**JEE Main 2014**] (C) 100 (A) $\frac{121}{10}$ **(B)** $\frac{441}{100}$ **(D)** 110 The sum of first 9 terms of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ is : [JEE Main 2015] 23. **(B)** 192 (C) 71 (A) 142 **(D)**96 24. If m is the A.M. of two distinct real numbers l and n(l, n > 1) and G_1, G_2 and G_3 are three geometric means between l and n, then $G_1^4 + 2G_2^4 + G_3^4$ equals. [JEE Main 2015] **(B)** $4 l^2 m^2 n^2$ (A) $4 lmn^2$ (C) $4 l^2$ mn (**D**) $4 lm^2n$ 25. The mean of the data set comprising of 16 observations is 16. If one of the three new observations valued 3, 4 and 5 are added to the data, then the mean of the resultant data, is : [JEE Main 2015] (A) 15.8 **(B)** 14.0 **(D)** 16.0 (\mathbf{x}) (C) 16.8 If the 2nd, 5th and 9th terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is : **26**. (A) 4/3 **(B)**1 (C) 7/4 (D) 8/5[**JEE Main 2016**] If the sum of the first ten terms of the series $\left(1\frac{3}{5}\right)^2 + \left(2\frac{2}{5}\right)^2 + \left(3\frac{1}{5}\right)^2 + 4^2 + \left(4\frac{4}{5}\right)^2 + \dots$, is $\frac{16}{5}$ m, then m is equal to : 27. (A) 101 **(B)** 100 (C)99 **(D)** 102 [**JEE Main 2016**]



In quadratic equation $ax^2 + bx + c = 0$, if a, b are roots of equation, $\Delta = b^2 - 4ac$ and a + b, $a^2 + b^2$, $a^3 + b^3$ are in G.P. 8. then [**JEE 2005**] (D) $\Delta = 0$ (C) $\chi \Delta = 0$ **(B)** $\beta \Delta = 0$ (A) $\Delta \neq 0$

9. If
$$a_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \dots (-1)^{n-1} \left(\frac{3}{4}\right)^n$$
 and $b_n = 1 - a_n$ then find the minimum natural number n_0 such that $b_n > a_n \forall n \ ^3 n_0$ [JEE 2006]

Comprehension Based Question

Comprehension #1

Let V_r denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r - 1).

Let
$$T_r = V_{r+1} - V_r - 2$$
 and $Q_r = T_{r+1} - T_r$ for $r = 1, 2,$
10. The sum $V_1 + V_2 + ... + V_n$ is :
(A) $\frac{1}{12}n(n+1)(3n^2 - n + 1)$
(B) $\frac{1}{12}n(n+1)(3n^2 + n + 2)$
(C) $\frac{1}{2}n(2n^2 - n + 1)$
(D) $\frac{1}{3}(2n^3 - 2n + 3)$
11. T_r is always :
(A) an odd number
(C) a prime number
(D) a composite number
(D) a composite number
12. Which one of the following is a correct statement ?
(JEE 2007]

Which one of the following is a correct statement? 12. (A) Q_1, Q_2, Q_3, \dots are in A.P. with common difference 5 **(B)** Q_1, Q_2, Q_3, \dots are in A.P. with common difference 6 (C) Q_1, Q_2, Q_3, \dots are in A.P. with common difference 11 **(D)** $Q_1 = Q_2 = Q_3 = \dots$

Comprehension #2

13.

Let A₁, G₁, H₁ denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $n \ge 2$, let A_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_n , G_n , H_n respectively: Which one of the following statements is correct? [**JEE 2007**]

(A)
$$G_1 > G_2 > G_3 > \dots$$

(B) $G_1 < G_2 < G_3 < \dots$
(D) $G_1 = G_2 = G_3 = \dots$
(D) $G_1 < G_2 < G_3 < \dots$ and $G_4 > G_5 > G_6 > \dots$

Which one of the following statements is correct ? 14. [**JEE 2007**] (A) $A_1 > A_2 > A_3 > \dots$ (B) $A_1 < A_2 < A_3 < \dots$ (C) $A_1 > A_3 > A_5 > \dots$ and $A_2 < A_4 < A_6 < \dots$ (D) $A_1 < A_3 < A_5 < \dots$ and $A_2 > A_4 > A_6 > \dots$

Which one of the following statements is correct ? 15. [**JEE 2007**]

16. Suppose four distinct positive numbers a_1, a_2, a_3, a_4 are in G.P. Let $b_1 = a_1, b_2 = b_1 + a_2, b_3 = b_2 + a_3$ and $b_4 = b_3 + a_4$. Statement -I : The numbers b₁, b₂, b₃, b₄ are neither in A.P. nor in G.P. **Statement -II**: The numbers b_1 , b_2 , b_3 , b_4 are in H.P. [**JEE 2008**] (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.

- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.

Series and Sequence

Maths

[**JEE 2007**]

17.

18.

19.

(A) $\frac{n(4n^2-1)c^2}{6}$ (B) $\frac{n(4n^2+1)c^2}{3}$ (C) $\frac{n(4n^2-1)c^2}{3}$ (D) $\frac{n(4n^2+1)c^2}{6}$ Let $S_k, k = 1, 2, \dots, 100$, denote the sum of the infinite geometric series whose first term is $\frac{k-1}{k!}$ and the common ratio is $\frac{1}{k}$. Then the value of $\frac{100^2}{100!} + \sum_{k=1}^{100} |(k^2 - 3k + 1)S_k|$ is [**JEE 2010**] Let a₁,a₂,a₃,....,a₁₁ be real numbers satisfying $a_1 = 15, 27 - 2a_2 > 0$ and $a_k = 2a_{k-1} - a_{k-2}$ for $k = 3, 4, \dots, 11$.

If
$$\frac{a_1^2 + a_2^2 + \dots + a_{11}^2}{11} = 90$$
, then the value of $\frac{a_1 + a_2 + \dots + a_{11}}{11}$ is equal to [JEE 2010]
20. The minimum value of the sum of real numbers a^{-5} , a^{-4} , $3a^{-3}$, 1, a^8 and a^{10} with $a > 0$ is [JEE 2014]

If the sum of first n terms of an A.P. is cn², then the sum of squares of these n terms is

21. Let
$$a_1, a_2, a_3, \dots, a_{100}$$
 be an arithmetic progression with $a_1 = 3$ and $S_p = \sum_{i=1}^{p} a_i, i \le p \le 100$. For any integer n with $1 \le n \le 20$, let $m = 5n$. If $\frac{S_m}{S_n}$ does not depend on n, then a_2 is [JEE 2011]

Let a_1, a_2, a_3, \dots be in harmonic progression with $a_1 = 5$ and $a_{20} = 25$. The least positive integer n for which $a_n < 0$ is 22. [**JEE 2012**] (A) 22 **(B)**23 **(D)**25

23. Let
$$S_n = \sum_{k=1}^{4n} (-1)^{\frac{k(k+1)}{2}} k^2$$
. Then S_n can take value(s) [JEE-Ad. 2013]
(A) 1056 (B) 1088 (C) 1120 (D) 1332

- A pack contains n cards numbered from 1 to n. Two consecutive numbered cards are removed from the pack 24. and the sum of the numbers on the remaining cards is 1224. If the smaller to the numbers on the removed cards is k, then k - 20 =[JEE-Ad. 2013]
- Let a, b, c be positive integers such that $\frac{b}{a}$ is an integer. If a, b, c are in geometric progression and the 25.

arithmetic mean of a, b, c is b + 2, then the value of
$$\frac{a^2 + a - 14}{a + 1}$$
 is [JEE Ad. 2014]

- 26. Suppose that all the terms of an arithmetic progression (A.P.) are natural numbers. If the ratio of the sum of the first seven terms to the sum of first eleven terms is 6:11 and the seventh term lies in between 130 and 140, then the common difference of this A.P. is. [JEE Ad. 2015]
- Let $b_i > 1$ for i = 1, 2, ..., 101. Suppose $\log_{e} b_1, \log_{e} b_2, ..., \log_{e} b_{101}$ are in Arithmetic Progression (A.P) with the common 27. difference $\log_e 2$. Suppose a_1, a_2, \dots, a_{101} are in A.P. such that $a_1 = b_1$ and $a_{51} = b_{51}$. If $t = b_1 + b_2 + \dots, + b_{51}$ and $s = a_1 + a_2 + \dots, a_{51}$, then [JEE Ad. 2016] (A) s > t and $a_{101} > b_{101}$ **(B)** s > t and $a_{101} < b_{101}$ **(D)** s < t and $a_{101} < b_{101}$ (C) s < t and $a_{101} > b_{101}$

Series and Sequence

178

Maths

[**JEE 2009**]

J	EE MAIN & ADVA	NCED		Maths
			MOCK TEST	
		SECTION - I :	STRAIGHT OBJECTIVE 1	ГҮРЕ
1.	(1) (2003) + (2) (20		+(2003)(1) = (2003)(334)(x)., th	
2	(A) 2005	(B) 2004	(C) 2003	(D) 2001
2.	$S^n = R^n$. P^k , then k	-	nd sum of the reciprocais of	n terms of an increasing G.P. and
	(A) 1	(B) 2	(C) 3	(D) none of these
3.	The common diffe	erence 'd' of the A.P. in	n which $T_7 = 9$ and $T_1 T_2 T_7$ is lea	ist, is
	(A) $\frac{33}{2}$	(B) $\frac{5}{4}$	(C) $\frac{33}{20}$	(D) none of these
4.	Let a_n be the n^{th} to	erm of an A.P. If $\sum_{r=1}^{100}$ a	1-1	he common difference of the A.P. is
	(A) $\alpha - \beta$	(B) β – α	(C) $\frac{\alpha - \beta}{2}$	(D) none of these
5.		st terms; 1, 3, 5 are $_{2} + S_{3} + + S_{p}$ is equal		$S_3 \dots$ are sums of n terms of given p
	(A) $\frac{np(np+1)}{2}$	-		(D) $\frac{np(np-1)}{2}$
6.	If the sum to infinit	y of the series , $1 + 4x +$	$7x^2 + 10x^3 + \dots$, is $\frac{35}{16}$, where	$ \mathbf{x} < 1$, then 'x ' equals to :
	(A) 19/7	(B) 1/5	(C) 1/4	(D) none of these
7.	If a and b are p^{th} a	and q th terms of an AP,	then the sum of its $(p + q)$ term	is is
	(A) $\frac{p+q}{2}\left[a-b+\frac{1}{2}\right]$		(B) $\frac{p+q}{2} \left[a+b+\frac{a}{p} \right]$	$\frac{-b}{-q}$
	(C) $\frac{p-q}{2} \left[a+b+ \right]$	$\left[\frac{a+b}{p+q}\right]$	(D) none of these	
8.	If the length of sid	es of a right triangle are	in A.P., then the sines of the acut	te angles are
	(A) $\frac{3}{5}, \frac{4}{5}$	(B) $\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}$	(C) $\sqrt{\frac{\sqrt{5}-1}{2}}$, $\sqrt{\frac{\sqrt{5}+1}{2}}$	(D) $\sqrt{\frac{\sqrt{3}-1}{2}}$, $\sqrt{\frac{\sqrt{3}+1}{2}}$
9.	If $S_n = \sum_{r=1}^n t_r = \frac{1}{6}n$	$(2n^2 + 9n + 13)$, then	$\sum_{r=1}^{\infty} \frac{1}{r \cdot \sqrt{t_r}} \text{ equals}$	
	(A) 1	(B) 2	(C) $\frac{3}{2}$	(D) $\frac{1}{2}$

Series and Sequence

Let $a_1, a_2, a_3, \dots, a_8$ be 8 non-negative real numbers such that $a_1 + a_2 + \dots + a_8 = 16$ and 10. **S**₁: $P = a_1a_2 + a_2a_3 + a_3a_4 + \dots + a_7a_8$, then the maximum value of P is 64. If x, y, r and s are positive real numbers such that $x^2 + y^2 = r^2 + s^2 = 1$, then the maximum value of **S**₂: (xr + ys) is 2. If A.M. and G.M. between two positive numbers are respectively A and G, then the numbers are **S**₃: $A + \sqrt{A^2 - G^2}$, $A - \sqrt{A^2 - G^2}$ S_{4} : If p, q, r be three distinct real numbers in A.P. then $p^3 + r^3$ equals - 6 pqr (A) TTFF (B) FTFT (C) TFTF (D) FFTT **SECTION - II : MULTIPLE CORRECT ANSWER TYPI** The value of $\sum_{r=1}^{n} \frac{1}{\sqrt{a+rx} + \sqrt{a+(r-1)x}}$ is The value of $\sum_{r=1}^{n} \frac{1}{\sqrt{a+rx} + \sqrt{a+(r-1)x}}$ is (A) $\frac{n}{\sqrt{a} + \sqrt{a+nx}}$ (B) $\frac{n}{\sqrt{a} - \sqrt{a+nx}}$ (C) $\frac{\sqrt{a+nx} - \sqrt{a}}{x}$ (D) $\frac{\sqrt{a} + \sqrt{a+nx}}{x}$ 11. For the series $S = 1 + \frac{1}{(1+3)}(1+2)^2 + \frac{1}{(1+3+5)}(1+2+3)^2 + \frac{1}{(1+3+5+7)}(1+2+3+4)^2 + \dots$ 12. **B** 7th term is 18 (A) 7th term is 16 (D) sum of first ten term is $\frac{405}{4}$ (C) sum of first ten terms is $\frac{505}{4}$ If 1, $\log_y x$, $\log_z y$, $-15 \log_x z$ are in A.P., then 13. (A) $z^3 = x$ (C) $z^{-3} = y$ (D) $x = y^{-1} = z^3$ If $\sum_{r=1}^{n} r(r+1) = \frac{(n+a)(n+b)(n+c)}{3}$, where a < b < c, then (A) 2b = c (B) $a^3 - 8b^3 + c^3 = 8abc$ (C) c is prime number (D) $(a+b)^2 = 0$ 14. Let $a_n = \frac{(111...)}{...}$ 15. times (A) a_{912} is not prime **(B)** a_{951} is not prime **(C)** a_{480} is not prime **(D)** a_{91} is not prime

SECTION - III : ASSERTION AND REASON TYPE

16. Statement-I: If a, b, c are non zero real numbers such that $3(a^2+b^2+c^2+1)=2(a+b+c+ab+bc+ca)$, then a, b, c are in A.P. as well as in G.P.

Statement-II: A series is in A.P. as well as in G.P. if all the terms in the series are equal and non zero.

Series and Sequence

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 17. Statement-I: Equations $x^2 4x + 1 = 0$ and $x^2 ax + b = 0$, where a, b are rational numbers, have at least one common root, then a = 4 and b = 1

Statement-II: If two equations $ax^2 + bx + c = 0$ and $a_1x^2 + b_1x + c_1 = 0$, where a, b, c, a_1 , b_1 , c_1 are

non-zero rational numbers, have common irrational root, then $\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1}$.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- Statement-I: The sum of the first 30 terms of the sequence 1, 2, 4, 7, 11, 16, 22,..... is 4520.
 Statement-II: If the successive differences of the terms of a sequence form an A.P., then general term of sequence is of the form an² + bn + c.
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True
- 19. Statement-I: Let a, b, c be positive integers, then $a^{\frac{a}{a+b+c}} \cdot b^{\frac{b}{a+b+c}} \cdot c^{\frac{c}{a+b+c}} \ge \frac{1}{3}(a+b+c)$
 - **Statement-II :** Let a_1, a_2, \dots, a_n be positive numbers in A.P. If A & G are the arithmetic and the geometric means of a_1 and a_n respectively then, $G^n < a_1.a_2....a_n < A^n$
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
 - (C) Statement-Lis True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True
- 20. Statement-I: If one A.M. 'A' and two G.M.'s p and q be inserted between any two numbers, then $p^3 + q^3 = 2Apq$ Statement-II: If x, y, z are in G.P., then $y^2 = xz$
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True

SECTION - IV : MATRIX - MATCH TYPE

21. Match the column

22.

Colun	nn – I	Colum	n – II
(A)	Suppose that $F(n + 1) = \frac{2 F(n) + 1}{2}$ for	(p)	42
	n = 1, 2, 3, and $F(1) = 2$. Then $F(101)$ equals		
(B)	If a ₁ , a ₂ , a ₃ ,a ₂₁ are in A.P. and	(q)	1620
	$a_3 + a_5 + a_{11} + a_{17} + a_{19} = 10$ then the value of $\sum_{i=1}^{21} a_i$ is		•
(C)	10^{th} term of the sequence $S = 1 + 5 + 13 + 29 + \dots$, is	(r)	52
(D)	The sum of all two digit numbers which are not divisible	(s)	2045
	by 2 or 3 is	20	2+4+6++12
Match	the column		
Colun	m–I	Colum	n–II
(A)	The arithmetic mean of two positive numbers is 6 and their	(p)	$\frac{2}{7}$
	geometric mean G and harmonic mean H satisfy		
	the relation $G^2 + 3 H = 48$, then product of the two number is.		
(B)	The sum of the series $\frac{5}{1^2.4^2} + \frac{11}{4^2.7^2} + \frac{17}{7^2.10^2} + \dots$ is.	(q)	32
(C)	If the first two terms of a Harmonic Progression be $\frac{1}{2}$ and $\frac{1}{3}$,	(r)	$\frac{1}{3}$
	then the Harmonic Mean of the first four terms is		
(D)	Geometric mean of -4 and -9	(s)	6
	SECTION - V : COMPREHENSION TYPE	(t)	- 6

SECTION - V : COMPREHENSION TYPE

Read the following comprehension carefully and answer the questions. 23. Let A₁, A₂, A₃,, A_m be arithmetic means between -2 and 1027 and G₁, G₂, G₃,, G_n be geometric means between 1 and 1024. Product of geometric means is 2^{45} and sum of arithmetic means is 1025×171 . 1 The value of n is **(A)**7 **(B)**9 **(C)**11 (D) none of these The value of m is 2 **(A)** 340 **(B)** 342 **(C)** 344 **(D)** 346 3 The value of $G_1 + G_2 + G_3 + \dots + G_n$ is

(A) 1022 (B) 2044 (C) 512

Series and Sequence

(D) none of these

Maths

24.	Read the following comprehension carefully and answer the questions. There are two sets A and B each of which consists of three numbers in A.P. whose sum is 15 and where D and d are				
	the common differences such that $D - d = 1$. If $\frac{p}{q} = \frac{7}{8}$ where p and q are the product of the numbers respectively				
	and $d > 0$, in the two sets				
1.	Value of p is				
	(A) 100	(B) 120	(C) 105	(D) 110	
2.	Value of q is				
	(A) 100	(B) 120	(C) 105	(D) 110	
3.	Value of $D + d$ is			0.01	
	(A) 1	(B) 2	(C) 3		
25.	Read the following comp	rehension carefully and an			
			e of these numbers is equal	to the sum of the squares of the	
	other three numbers. Th	en			
1.	The smallest number is :		MA		
	(A) – 2	(B) 0	(C)+1	(D) 2	
2.	The common difference	of the four numbers is			
	(A) 2	(B) 1	(C) 3	(D) 4	
3.	The sum of all the four r	numbers is			
	(A) 10	(B) 8	(C) 2	(D) 6	
		SECTION - VI : 1	INTEGER TYPE		
26.	Find the sum to infinity	of a decreasing G.P. with th	he common ratio x such th	at $ \mathbf{x} < 1$; $\mathbf{x} \neq 0$. The ratio of the	
	fourth term to the secon	d term is $\frac{1}{16}$ and the ratio	o of third term to the squar	e of the second term is $\frac{1}{9}$	
27.	A man arranges to pay	off a debt of Rs. 3600 by	40 annual installments w	hich form an arithmetic series.	
	When 30 of the installments are paid he dies leaving a third of the debt unpaid. Find the value of the first installment.				
28.	If $(1^2 - a_1) + (2^2 - a_2) + (3^2 - a_3) + \dots + (n^2 - a_n) = \frac{1}{3}n(n^2 - 1)$, then find the value of a_7 .				
29.	The sum of first p-terms	of an A.P. is q and the sur	n of first q terms is p, find	the sum of first $(p + q)$ terms.	
30.		-		ouch each other. If the radius of	
	the first circle is R, then	tind the sum of the radii o	of the first n circles in term	is of R and α .	

Series and Sequence

Maths

ANSWER KEY

EXERCISE - 1

1. D 2. B 3. C 4. D 5. B 6. D 7. C 8. B 9. A 10. B 11. A 12. A 13. B 14. C 15. D 16. A 17. B 18. D 19. B 20. A 21. C 22. D 23. C 24. C 25. A 26. B 27. A 28. A 29. C 30. B

EXERCISE - 2 : PART # I

		EXERCISE - 2 :		A
1. A	2. ABCD 3. A	4. AC 5. C	6. ABCD 7. BD	8. AD 9. ABC
10. B	11. ABCD 12. D	13. BD 14. ACD	15. AB 16. ABC	17. ABC 18. BC
19. A	20. AD 21. BD	22. C		<u>∽</u>

PART - II

A 10. D 11. C 12. A 13. A 1. D 2. A 3. A 4. C 5. A 6. B 7. B 8. D 9. 14. A 15. C

EXERCISE - 3 : PART # I

1. $A \rightarrow q, B \rightarrow s, C \rightarrow p, D \rightarrow r$ **2.** $A \rightarrow r, B \rightarrow p, C \rightarrow s, D \rightarrow p$ **3.** $A \rightarrow p, B \rightarrow p, C \rightarrow q, D \rightarrow q$ 4. $A \rightarrow q, B \rightarrow p, C \rightarrow p, D \rightarrow r$

PART - II

3. B 4. A 5. D Comprehension #2:1. A 2. B 3. D Comprehension #1:1. C 2. C **Comprehension #3:1.** B **2.** C **3.** D Comprehension #4:1. A 2. A 3. D Comprehension #5: 1. C 2. C 3. B 4. B

EXERCISE - 5 : PART # I

 2. B
 3. B
 4. C
 5. A
 6. B
 7. A
 8. A
 9. B
 10. B
 11. C
 12. B
 13. D

 15. B
 16. C
 17. C
 18. A
 19. C
 20. D
 21. D
 22. C
 23. D
 24. D
 25. B
 26. A

 1. B 14. B 27. A PART - II

1. A D, **B** A **2. A** A, **B** C, **C** D, **D** $[(A_1, A_2, \dots, A_n) (H_1, H_2, \dots, H_n)]^{\frac{1}{2n}}$ **3.** $a \rightarrow D$ **6.** B **7.** (n=7) **8.** C **9.** 6 **10.** B **11.** D **12.** B **13.** C **14.** A **15.** B **16.** C 17. C **18.** 3 **19.** 0 **20.** 8 **21.** 9 or 3 22. D 23. A, D **24.** 5 25. 4 26. 9 27. B

Series and Sequence

Maths

MOCK TEST

1. A 10. ? 19. A	 B C AC AC AC AC A 	13. ABCD 14. ABC		
23. 1. B			22. R 7q, B 71, C 7p, B 7t 2. B 3. C 25. 1. C 2. B 3. C	С
26. 12	27. Rs. 51 28. 7	29. –(p + q)	30. $\frac{\mathrm{R}\left(1-\sin\frac{\alpha}{2}\right)}{2\sin\frac{\alpha}{2}}\left[\left(\frac{1+\sin\frac{\alpha}{2}}{1-\sin\frac{\alpha}{2}}\right)^{\mathrm{n}}-1\right]$	
			2020-21	
			ATERIAL	
		ANCE	D Mr.	
		ANDADW		
	JEEMAN		30. $\frac{R\left(1-\sin\frac{\alpha}{2}\right)}{2\sin\frac{\alpha}{2}}\left[\left(\frac{1+\sin\frac{\alpha}{2}}{1-\sin\frac{\alpha}{2}}\right)^{2}-1\right]$	