

BRIDGE COURSE Class:VII Sub:CHEMISTRY

SYMBOLS AND FORMULAE

In this chapter we will learn

- * What is a Symbol?
- Rules for assigning symbols
- * Atomic number & Electronic configuration
- * Bohr Bury formula
- * Valency
 - i) Positive valency
 - ii) negetive valncy
- * What is Formula?
- Criss Cross method
- Molecular weight,
- * Atomicity
- * Iso Electronic Species

Symbol:

As you denote '+' is a symbol to addition and ' - ' is a symbol for division in math ematics similarly each element is denoted by a symbol in chemistry.

Definition:

Short hand notation of an element is called Symbol.

Symbols can be denoted by the single letter, two letters & three letters. Many elements have their symbol derived from either the first letter (H for Hydrogen) or the first two letterrs (He for Helium) of their names.

Rules for assigning symbols:

- 1). An element is represented with the first letter in capital of the english name of the element.
 - **H** Hydrogen, **N** Nitrogen, **C** Carbon, **O** Oxygen.
- 2). When the names of two or more elements begins with the same initial letter, the letter followed by the next letter is used to represent the element.
 - He Helium, Ca calcium, Si Silicon.
- 3). A few elements have symbols derived from their latin names.

Common Name	Latin Name	Symbol
Sodium	Natrium	Na
potassium	kalium	K
Copper	Cuprum	Cu
Iron	Ferrum	Fe
Gold	Aurum	Au
Silver	Argentum	Ag
Mercury	Hydragyrum	Hg
lead	plumbum	Pb
Tin	Stanum	Sn
Antimony	Stibium	Sb
Tungstun	Wolfram	W

4). Elements named after scientists.

Common Name	Scientist Name	Symbol
Bohrium	Niels bohr,	Bh
Einsteinium	Albert Einstein,	En
Mendelevium	Dmitri Mendeleev,	Md
Rutherfordium	Ernest Rutherford.	Rf
Curium	Pierre and Marie Curie	Cm
Nobelium	Alfred Nobel	Nb
Lawrencium	Ernest lawrence	Lr

5). Some elements are named after planets.

Element Name	Planet Name
Mercury	Mercury
Uranium	Uranus
Neptunium	Neptune
Tellurium	Earth
Cerium	Ceres

Palladium The asteroid Pallas

Atomic number:

The number of protons is considered as atomic number and in case of neutral atom, electron number is also considered as atomic number.

Atomic number(Z)= protons number (or) electrons number

Orbit or Shell:

The path of rotation of electron is called as orbit. The maximum number of electrons revolving in one orbit is equal to 2n² where n= 1,2,3..... proposed by Bohr - Bury. The outermost orbit is also known as valence orbit. And the number of electrons in that orbit are known as valence electrons.

Stability:

If any atom contains eight electrons in its outermost { octet nature} is considered as stable atom. So every atom tries to acquire eight electrons in the outermost orbit. This is called as *octet rule*.

In this process some atoms lose its electron and some atoms gain electrons to form stable ions.

Electronic Configuration: The systematic arrangement of electrons in an orbit or shell is called electronic configuration.

Electrons revolves around the nucleus in circular orbits, these orbits are named as follows

- (n = 1) 1st orbit is named as K shell,
- (n = 2) 2nd orbit is named as L shell,
- (n = 3) 3rd orbit is named as M shell,
- (n = 4) 4th orbit is named as N-shell,

Bohr - Bury Formula

To understand electronic configuration a scheme was proposed by two scientists. Bohr - Bury.

Points:

- 1. The maximum number of electrons that can be present in any shell or orbit of an atom is given by the formula is $2n^2$.
- Octet rule determines the actual no. of electrons present in a shell. If an elment has 8 electrons in the valency shell configuration then it becomes stable (Octet). Except if atom has only one shell which can have two electrons (duplet).

TEACHINGTASK -I

		<u> </u>	<u> </u>	
I.	Single answer t	ype questions		
1.	Number of the va	alence orbit in case o	of potassium	
	A) 4	C) 3	C) 2	D) 1
2.	Number of valen	ce electrons present	in carbon	
	A) 1	B) 2	C) 3	D) 4
3.	Maximum numbe	er of valence electror	ns present in the a	tom from the following
	A) Nitrogen	B) Oxygen	C) Carbon	D) Chlorine
4.	The electronic co	onfiguration of an ele	ment X is 2, 8.	
	A) O_2	B) H_2	C) Cl	D) Ne
5.	Find the no. of ne	eutrons in sulphur		
	A) 36	B) 16	C) 18	D) 20

6.	The stable atom is					
	A) O_2	B) H_2		C) CI	D) N	le
7.	The maximum of ele	ectrons which ca	n be prese	nt in any shel	l of an atom is gi	iven by
	A) 2n B) 2	$2n^2$	C) 3n	D)	n	
8.	The electrons in the protons these electrons A) valency electrons	rons are called			•	
9.	Distribution of electr	•	•		•	
	A) electronegativity	•	ro positivity			
	C) electorn effinity	D) elect	ronic config	guration		
II.	Multi correct answ	ver type				
10.	Which of the followi A)mercury - Hg C) potassium - K	B)sodium - S	3	e correct?		
11.	Which of the followi A)sodium	•	lowing latin		mercury	
12.	The orbits present i A)k-shell	• •		C) M-shell	D) L- shell	
III.	OOD one out					
13.	Sodium, Magresium	n, Hydrogen, Alu	ninium			
14.	Magensium, Berylium, caluium, potassium.					
15.	2, 8, 13, 18, 50.					
IV.	Write the True or Flase					
16.	The atomic number	of Neon is10.				
17.	Calcium electronic	configuration is 2	2,8,8,2			
18.	Magnesium having	2 valency e-				
19.	Number of neutrons	present in Argo	n are 22			
V.	Match the following	ıg				
20.	1) Oxygen	a)2,8,7				
	2) Neon	b)2,8,2				
	3)Magnesium 4) chlorin	c) 2,8				
21.	Element Name	d) 2,6 Valency ele	ctrons			
۷۱.	1) Fluorine	a) 2	Clions			
	2) Aluminium	b) 6				
	3)Sulphour	c) 3				
	4) Calcium	ď) 7				

LEARNER'S TASK

Beginners (LEVEL -1)

I. MCQs with only one option is correct.

1.	Maximum number of	electrons prese	ent in 3rd orbi	it of an ato	om	
	A) 3	B) 18	C) 8	D) 32		
2.	Configuration of calc	ium	,	·		
	A) 2, 8, 8	B) 2, 8, 2	C) 2, 8, 8, 2	D) 2, 8	3, 18	
3.	Magnesium will attai	n which elemen	t's configurati	ion for its	stability	
	A) He	B) Mg	C) Ne	D) Ar		
4.	Configuration of the					
	A) 2, 8, 3	B) 2, 2, 8, 1	•	•		
5.	How many electrons proton number is 7.			shell, of a	n neutral at	om, if its
	A) 7	B) 8	C) 18	D) 0		
6.	There are seven electric orbits according to B A) 7	ohr-Bury's form B) 17	nula. Then wh C) 18	at is the a	atomic num	
7.	Maximum number of			nodated in		
•	A) 2	B) 8	C) 18	100 1	D) 32	
8.	Which of the following	•		d 32 elec		
0	A) K	B) L	C) M		D) N	
9.	The symbol used to A) Z	B) A	C) Y		ID) K	
10.	The formula used to	find the no. of r	eutrons is			
	A) M - Z	B) A - Z	C) $2n^2$		D) None	
11.	The atomic number	of sodium elem	ent is			
	A) 11	B) 22	C) 14		D) 32	
12.	S_n is the symbol of					
	A) Tin	B) Antimony	C	() Sulphur		D) Ferrus
13.	The symbol H_2 means	ans				
	A) One atom of hydr	ogen	B) Two ator	ns of nasc	cent hydrog	en
	C) Two molecules of	hydrogen	D) One mole	ecule of h	ydrogen	
		<u>Achievers</u>	s (LEVEL -2)			
II.	Multi correct answ	er type				
14.	Which of the following	ng elements bel	ongs to L - Sh	nell		
	1) H	2) C	3) O		4) Ne
15.	The isotopes of hydr 1) ₁ P ¹	ogen are 2) ₁ D²	3) ₆ C ¹³		4) ₁ T ³
	•	•		•		•

III. OOD one out

- 16. 2,8 2,8,8 2,8,2 2.
- 17. Carbon, silicon, germanium, nitrogen
- 18. He, Ne, Ar, Na

IV. Write the True or Flase

- 19. Carbon name is comes from latin word carbon which mens charcoal.
- 20. Iodine name comes from greek work ioeides means violet.
- 21. Selenium name is based on moon.

V .Matching type

- - **Explorers (LEVEL -3)**

DESCRIPTIVE TYPE QUESTIONS

- 23. Define atomic number?
- 24. Define symbol and write the some symbols of elements upto 30 elements?
- 25. Explain Bohr Bury formula?

Researchers (LEVEL-4)

(Higher Order Thinking(H.O.T)

- 26. What is the valency shell, no of valency electrons and valency of atomic no' 16?
- According to Bohr and Bury formula the maximum no' of electrons present in O-shell?
- 28. 50,18,72,98,128,These numbers are releated to ----- concept.
- 29. Write the formula for to find the mass no of elements.----
- 30. The atomic no of the element is equal to ----- sub atomic particals of atom.
- 31. In the given below which of the following set have same no of valency electrons A)F,I,At,Cl B)N,As,P,Sb C)Be,Mg,Ca,Sr D)All the above

Valency:

The combining power of an element is know as "Valency"

The number of electrons donated or accepted by an atom of an element so as to have eight electrons in its outermost orbit, is called as valency.

Positive valency:

If the atom donates its electrons from its outermost orbit to get stability, the valency is called as positive valency and the that ion is called as cation.

If it donates one electron or two electrons or three electrons is called as monovalent positive valency or divalent positive valency or trivalent positive valency respectively.

Example: Na⁺, Ca²⁺, Al³⁺, NH₄⁺

Monovalent electropositive ions

Name of the cation	Symbol of the cation	Charge
Hydrogen	H+	+1
Lithium	Li+	+1
Sodium	Na+	+1
Potassium	K+	+1
Rubidium	Rb+	+1
Copper	Cu+ Cuprous or Copper (I)	+1
Silver	Ag+	+1
Gold	Au+ Aurous or gold (I)	+1
Mercury	Hg ⁺¹ Mercurous or Mercury (I)	+1
Ammonium	$\mathrm{NH}_{4}^{^{+}}$	+1
Phosphonium	PH_4^+	+1

Name of the cation	Symbol of the cation	Charge
Beryllium	$\mathrm{Be^{2+}}$	+2
Magnesium	Mg^{2+}	+2
Calcium	Ca ²⁺	+2
Strontium	Sr ²⁺	+2
Barium	Ba ²⁺	+2
Radium	Ra ²⁺	+2
Copper	Cu ²⁺ Cupric or Copper (II)	+2
Mercury	Hg ²⁺ Mercuric or Mercury (II)	+2
Iron	Fe ²⁺ Ferrous or Iron (II)	+2
Chromium	Cr ²⁺ Chromous	+2
Cobalt	Co ²⁺ Cobaltous of Cobalt (II)	+2
Nickel	$ m Ni^{2+}$	+2
Manganese	Mn ²⁺ Manganous or Manganese (II)	+2
Cadmium	Cd^{2+}	+2
Zinc	Zn^{2+}	+2
Lead	Pb ²⁺ Plumbous or lead (II)	+2
Tin	Sn ²⁺ Stannous or Tin (II)	+2

Name of the cation	Symbol of the cation	Charge
Iron	Fe³+ Ferric or Iron (III)	+3
Manganese	Mn ³⁺ Manganic or Manganese (III)	+3
Aluminium	A <i>[</i> 3+	+3
Gold	Au³+ Auric or gold (III)	+3
Antimony	Sb ³⁺ Antimonous or Antimony (III)	+3
Arsenic	As ³⁺ Arsenous or Arsenic (III)	+3
Chromium	Cr ³⁺	+3
Cobalt	Co ³⁺ Cobaltic or Cobalt (III)	+3
Boron	B ³⁺	+3

Name of the cation	Symbol of the cation	Charge
Platinum	Pt ⁴⁺ Platinic or Platinum (IV)	+4
Lead	Pb ⁴⁺ Plumbic or Lead (IV)	+4
Tin	Sn ⁴⁺ Stannic or Tin (IV)	+4

Variable electropositive valency:

It has been found that sometimes an atom of a metallic element can lose electrons from the inner orbits in addition to losing electrons from the outermost orbit. For example an atom of iron lose two electrons from its outermost orbit to form iron ion (Fe²⁺). However, under special conditions, it can lose one more electron from the last but one orbit. Thus it forms Fe³⁺. In such situations, the element is said to exhibit variable valency.

In this for lower valency is pronounced with a suffix **-ous**, and for higher a suffix**ic** is attached at the end.

Examples: Fe²⁺or Fe(II) - Fe³⁺ or Fe(III), Cu⁺ - Cu²⁺, Ag⁺ - Ag²⁺.

Negative valence:

Non metals tend to take electrons from other elements so as to have eight electrons in their outermost orbit. The number of electrons accepted by an atom of an element is its negative valency.

An ion or radical formed by the acceptance of one electron or two electrons or three electrons for its stability is called as monovalent negative ion or divalent negative ion or trivalent negative ion respectively.

Example:
$$CI^-, O^{2-}, N^{3-}, SO_4^{2-}, O_2^{2-}$$

Monovalent electronegative ions				
Name of the anion	Symbol	Charge		
Acetate	CH ₃ COO- or C ₂ H ₃ O ₂ -	-1		
Formate	HCOO- or CHO ₂ -	-1		
Bicarbonate or Hydrogen Carbonate	HCO ₃	-1		
Bisulphate	HSO_4^-	-1		
Bisulphite or Hydrogen Sulphite	$HSO_3^{\scriptscriptstyle{-}}$	-1		
Hydrogen Sulphide or Bisulphide	HS-	-1		
Fluoride	F-	-1		
Chloride	Ct	-1		
Bromide	Br-	-1		
Iodide	I-	-1		
Hypochlorite	C <i>1</i> O-	-1		
Iodate	IO_3^-	-1		
Nitrite	NO_2^-	-1		
Nitrate	NO_3^-	-1		
Hypophosphite or Dihydrogen phosphate	$\mathrm{H_2PO_2^-}$	-1		
Cyanide	$\mathrm{CN}^{\scriptscriptstyle{-}}$	-1		
Thiocyanate	SCN ⁻ Sulphocyanide	-1		
Permanganate	MnO_4^-	-1		
Hydride	H ⁻	-1		
Hydroxide	OH ⁻	-1		
Superoxide	$O_2^{\scriptscriptstyle{-}}$	-1		
Hydrogen peroxide	HO_2^-	-1		

Divalent electronegative ions			
Name of the anion	Symbol	Charge	
Iodate	IO_3^-	- 1	
Nitrite	NO_2^-	- 1	
Nitrate	NO_3^-	- 1	
Hypophosphite or Dihydrogen phosphite	$\mathrm{H_2PO_2^-}$	- 1	
Cyanide	CN ⁻	- 1	
Thiocyanate	SCN ⁻ Sulphocyanide	- 1	
Permanganate	MnO ₄	- 1	
Hydride	H⁻	- 1	
Hydroxide	OH-	- 1	
Superoxide	O_2^-	- 1	
Hydrogen peroxide	HO_2^-	- 1	
Carbonate	CO_3^{2-}	- 2	
Chromate	CrO ₄ ²⁻	- 2	
Dichromate	$\mathrm{Cr_2O_7^{2-}}$	- 2	
Manganate	MnO ₄ ²⁻	- 2	
Sulphide	S^{2-}	- 2	
Sulphite	SO_3^{2-}	- 2	
Sulphate	SO_4^{2-}	- 2	
Oxide	O^{2-}	- 2	
Peroxide	$O_2^{2 ext{-}}$	- 2	
Oxalate	$C_2O_4^{2-}$ or $\int_{COO^-}^{COO^-}$ or $\left[\left(COO\right)_2\right]^{2-}$	- 2	
Zincate	$\mathrm{ZnO}_2^{2^-}$	- 2	

Trivalent electronegative ions							
Name of the anion	Symbol	Charge					
Trivalent Aluminate	$\mathrm{A}\ell\mathrm{O}_3^{3-}$	- 3					
Arsenate	AsO_4^{3-}	– 3					
Boride	B^{3-}	- 3					
Borate	BO ₃ -	- 3					
Nitride	N^{3-}	- 3					
Phosphide	P^{3-}	- 3					
Phosphite	PO_3^{3-}	- 3					
Phosphate	PO ₄ ³⁻	- 3					
Ferricyanide	$\left[\operatorname{Fe}\left(\operatorname{CN}\right)_{6}\right]^{3-}\operatorname{Iron}\left(\operatorname{III}\right)$	- 3					

		TEA	CHING TAS	K-II					
l.	Single answer ty	pe questions							
1.	Fe ³⁺ will be prono	ounced as							
	A) Ferrous	B) Irum		C) Ferric	D) Ironic				
2.	Which of the follo		7	rge					
	A) Ammonium	B) nitrog		C) Oxide	D) Argon				
3.	What is valency		ectrons in nit	ride ion ?					
	A) 3, 5	B) 5, 8		C) 3, 8	D) 8, 8				
4.	Reason for varia								
		A) Outer orbit contains different electrons in different conditions							
	B) Along with valence electrons, inner electrons also participate under such condi-								
	tions								
	,	ge changes, so	attraction de	ecreases in certain	conditions				
_	D) All the above	_							
5.	Negative valency		. 5	.					
	•	A) Protons and neutrons are equal B) Atom lost electrons							
	C) Atom gained e	electrons	D) Motio	on number is more t	han electron number				
6.	The valency of h	ydrogen is one	in NH_3 . Wh	nat is the valency of	f nitrogen				
	A) 1	B) 2	C) 3	D) 4					
7.	The valency of p	hosphate radic	al is						
	A) 2	B) 3	C) 4	D) 5					
8.	The valency of n	itrogen is							
	A) 1	B) 3	C) 5	D) both B, C					

9.	what is the symbol ic	or the miliate io	II <i>!</i>			
	A) <i>NO</i> ⁻	B) <i>NO</i> ₂		C) NO_{3}^{-}		D) No_2^{3-}
10.	The valency of carbo					2
	A) 1	B) 2	C) 3	D) 4		
II. 11.	Muliti correct answer					
11.	The valency of coppe A)+1	B)+2		C)-1		D)-3
12.	Which of the following	,	ving valan	•		_, 0
	A)chromium	B)aluminium	•	C)nitrogen	D)phosp	horous
13.	valency is a	<i>D</i>)aiariiiiari		o)a ogo	<i>D</i> /p::00p	71101040
10.	A) no. of electrons ga	ined		B)no.of elec	trons lost	
	C) no.of electrons sh		D) valency e			
14.	which of the following			B) valority c		
	A) Sulphate	B)Phosphate	<i>3</i>	C)Ammoniu	m	D) Sodium
15.	which are divalent ele			<i>(),</i>		<i>2</i> , <i>3 3 3 3 3 3 3 3 3 3</i>
	A) Oxide	B) Sulphide		C)Zincate		D)sodium
III.	OOD one out					,
16.	Na ⁺ , Ca ²⁺ , Al ³⁺ , NH ₄ ⁺ .					
17.	Carbon, iron, nitroger	n, manganese				
18.	nitrite, nitrate, Hypoch		ate			
IV.	Write the True or FI					
19.	Atom can be converte	ed into anion by	v gaining e	electrons.		
20.	Valency and valency				q.	
21.	Noble gases are stab		_			
V.	Match the following					
22.	A) carbon	1) trivalent				
	B) hypochlorite	2) monovalen	ıt			
	C) sulphate	3) divalent				
	D) borate	4) tetravalent				
		<u>LEARN</u>	IER TASK	<u><</u>		
		<u>Beginners</u>	s (LEVEL	<u>-1)</u>		
	Qs with only one option					
1.	The valency of lead is		C) + 3	D/ V O E	2	
2.	A) +2 Which element occur	B) + 4 s in free state	,	D) A & E	ט	
	A) Fe	B) CO		C) Pt	D)	Ni
	•	,		•	,	

Symb	ols and Formulae		14		II 7	NEET/OL	YMPIAD	Foundation
	A) Octet configuration	1	В) є	energy	C)	Size	D) proton r	number
20.	Stability atom depend				_			
	A) ferric	B) m	anga	anic		C) Arsenic	D) Plum	nbic
19.	Which of the following			-				
	A) Sodium	B) A	mmc	nium		C) Mercurus	D) Plur	mbus
18.	Which of the following	g has s	same	e valency				
II.	Multi correct answe	r type)					
		<u>A</u>	chie	vers (LEVE	L -	<u>2)</u>		
	A) 3	B) 1			C)	2	D)	4
17.	water. The valency of				OH	i di dayyeni tu		ioicouic oi
17.	A) acetate Two atoms of hydrogen	B) oxi		with one at	,	zincate		Nitride
16.	Which of the following	g is mo	nova		,		•	•
10.	A) ferry cyanide		ro c	/anide	C)	carbide	D)	hydride
15.	A) Nitride Identify tetra valent ion	B) ph	osph	nade	C)	antimony	D)	Sulphate
14.	The bivalent ion amor	ng the	follo	_	6 '	2		т
	A) so_{4}^{2-}	B) s	o_3^{2-}			C) so_2^{2-}		D) SO ₄
13	Formula for sulphate					•		-
	A) 2, 1	B) 2,				C) 8, 2		D) 2, 8
12.	Valence electrons an	•	-		in c	•		,
	A) nitrate	B) su	_	•	an	C) oxide	9	D) carbide
11.	What is having the hi			tive valency	am		wina	5, 10
	A) +2	B) +		3.1.07 3113 1		C) 0		D) +3
10.	One valency of coppe	,	l. the	e other one i	s			-, •
	A) 2	B) 3	G I			C) 1		D) 0
9.	Valency of the positiv	,	•	mmonium		J /		- <i>,</i> ,
	A) Mc	B) H	a			C) Mr		D) My
8.	Symbol for mercury	_, 0						-, -
• •	A) +3	B) -3	}			C) +2		D) -2
7.	Valency of Nitride	, =:=	2 =		- /	2 - 3	- /	- 2
J .	A) Mn_2O_3	ну цое В) <i>М</i>		anganese n		Mn_2O_3		MnO_2
6.	A) monovalent In which of the followi	B) div			,	trivalent	,	None
5.	Ferrous ion is	,			•		•	
1.	A) Ag	B) Cu	J		C)	Na	D)	Fe
4.	A) As The volatile metal is	B) Na	l		C)	Au	D)	Fe
3.	The metalloid among			owing is	0 \		Ε,	_

- 21. Radicals are formed by
 - A) single atoms only
 - C) two atoms of different elements
- B) two atoms of same element
- D) loosing or gaining of electrons

III. Pick odd one out and give your reason

- 22. Platinum, lead, tin, Boron
- 23. Ferrous, barium, cupric, chromous.

IV. Correct the sentence if it is correct otherwise rewrite the sentence.

- 24. peroxide ion is O_2^{-2}
- 25. Sodium is a divalent mtallic ion.
- 26. alluminium is having 3 valency electrons.
- 27. nitrogen can vgain 3 valency electrons to get stable.

V. Match the following:

Column - I

	Column - 1	Column - II
28.	a) carbide	1) one
	b) Ferric	2) two
	c) carbonate	3) three
	d) Chloride	4) four
29.	Column - I	Column - II
	a) Cation	1) NH ₄ ⁺
	a) Cation b) Anion	1) NH ₄ ⁺ 2) N ³⁻
	b) Anion	2) N ³⁻

Explorers (LEVEL -3)

Column - II

DESCRIPTIVE TYPE QUESTIONS

- 30. Explain variable valency with some examples?
- 31. Define electropostive electronegative valency?

Researchers (LEVEL-4)

Higher Order Thinking(H.O.T)

- 32. The name of anion present in H2C2O4.
- 33. Valency of Chlorine in 3rd excited state.
- 34. Valency of carbon in ground state.
- 35. In which of the following does manganese have an oxidation state of 1.
 - A) Mn_2O_3
- B) Mn_2O
- C) Mn_2O_3
- D) MnO_2

- 36. Write the total seven metalloids name in periodic table.
- 37. Which metalloids mostly used in Nano technology.
- 38. In the given below, which of the following are isoelectronic species. Ne,Al⁺³,Si⁺⁴,F⁻¹,O⁻²,N⁻³.

Formula:

Write the symbolic representation of one molecule of a compound representing the number of atoms of various elements present in it, is called formula of the compound.

Criss - cross Method:

Step I: Write the symbol of positive ion or radical to the left side and for the negative ion or radical to the right side.

Step II: Put the valency number of each radical or ion on its top right. Divide the valency numbers by highest common factor, if any, to get simple ratio. Now ignore (+) and (-) symbols. Interchange the valency numbers of radicals or ions as once superscript to others subscript and vice versa.

Step III: If the radicals receives a number more than one, enclose it within brackets. Donot enclose ions in brackets.

Information from the formula of a compound:

When a numeral is written on the left hand side before the formula, it represents number of molecules of the compound. Example: 2NaCl, 4ZnO etc.

When the numeral is written on the right bottom side of the symbol, it represents the number of atoms in one molecule of a compound . Example: $Al_2(SO_4)_3$. In this 2 atoms of aluminium , 3 atoms of sulphur and 12 atoms of oxygen are present.

It is able to calculate its molecular weight by looking at a molecular formula.

Molecular weight:

The weight of the molecule of the compound is called as its molecular weight. To calculate it add all atoms atomic weight. For example, to calculate $Al_2(SO_4)_3$ weight add the weight of 2 atoms of aluminium, weight of three atoms sulphur and weight of twelve atoms weight of oxygen.

$$((2 \times 27) + (3 \times 32) + (12 \times 16)) = (54 + 96 + 192) = 352$$
 units.

Atomicity:

Number of atoms present in a molecule of an element is called as atomicity.

Mono atomic molecules - All Noble gases[He,Ne, Ar, Xe, Kr, Rn]

Diatomic molecules - Hydrogen [H₂], Oxygen[O₂], Nitrogen[N₂],

 ${\sf Chlorine[Cl}_2], \ \ {\sf Bromine}, [{\sf Br}_2], {\sf Iodine[I}_2],$

Tri atomic molecules - $Ozone[O_3]$,

Tetra atomic molecules - phosphorous[P₄],

Octa atomic molecules - $Sulphur[S_8]$,

Isoelectronic:

Two or more molecules or ions or molecules and ions which contain same number of electrons is called as isoelectronic with each other.

of electrons is calle	ed as isoelectronic with e	each other.					
Ex: NH ₃ , CH ₄ , N	l ³⁻ .						
0 4	TEACHING T	TASK -III					
Single answer	type questions						
By using criss-o	cross method, the formu	la may obtain for oxide an	d potassium is				
A) $K_2 O_3$	B) K_2O_2	C) K ₂ O	D) <i>KO</i>				
Number of elec	trons present in ammon	ium ion are					
A) 9	B) 10	C) 11	D) 12				
Isoelectronic wi	ith $oldsymbol{o}^{2-}$ is						
A) CH ₄	B) Al^{3+}	C) Mg^{2+}	D) all				
To form a mole	cule of Aluminium nitride	e, how many aluminium and	d nitrogen atoms				
are required res	spectively						
A) 2, 3	B) 3, 2	C) 2, 2	D) 1, 1				
Formula for the	radicals magnesium an	d sulphide					
A) Mg_2S_3	B) MgS	C) Mg_3S_2	D) MgS_2				
	I of two elements X and	Y have three and five elec	trons respec-				
•	•						
			D) X V				
,	· Z	O/Λ_3I_4	$D) X_2 Y_3$				
_	- 0	C) 72	D) 68				
•	,	,	_,				
A) KO_2	B) K_2O	C) K_2O_2	D) KO				
Chemical formula	a for calcium sulphate is	CaSO ₄ . The formula for fe	erric sulphate will				
	Single answer By using criss-on A) K_2O_3 Number of elect A) 9 Isoelectronic with A) CH_4 To form a moletare required rest A) 2, 3 Formula for the A) Mg_2S_3 Outermost shell tively. If they combine A) XY Molecular weight A) 74 The chemical for A) KO_2	Ex: NH_3 , CH_4 , N^3 . TEACHING Single answer type questions By using criss-cross method, the formula A) K_2O_3 Number of electrons present in ammon A) 9 B) K_2O_2 Number of electrons present in ammon A) B Isoelectronic with O^{2-} is A) CH_4 B) AI^{3+} To form a molecule of Aluminium nitride are required respectively A) A ,	TEACHING TASK -III Single answer type questions By using criss-cross method, the formula may obtain for oxide an A) K_2O_3 B) K_2O_2 C) K_2O Number of electrons present in ammonium ion are A) 9 B) 10 C) 11 Isoelectronic with O^{2-} is A) CH_4 B) AI^{3+} C) Mg^{2+} To form a molecule of Aluminium nitride, how many aluminium and are required respectively A) 2, 3 B) 3, 2 C) 2, 2 Formula for the radicals magnesium and sulphide A) Mg_2S_3 B) MgS C) Mg_3S_2 Outermost shell of two elements X and Y have three and five electively. If they combine expected formula of the compound will be A) XY B) X_2Y C) X_3Y_4 Molecular weight of $MgCO_3$ A) Y_4 B) Y_2 C) Y_2 The chemical formula of photassium super oxide is				

B) Fe₄P₃O₁₄

A) $Fe_{2}(P_{2}O_{7})_{3}$

be:

C) $Fe_2(SO_4)_3$ D) Fe_3PO_4

10.	Select the cor	rect formula foi	r each of	the foll	owing comp	oounds:	
	i) Calcium carl	oonate ii) C	calcium h	ydroge	n carbonate)	
	(i)	(ii)			(i)	(ii)	
	A) Ca(OH) ₂	$CaCO_{\scriptscriptstyle 3}$		B)	CaCO ₃	$Ca(HCO_3)_2$	
	C) CaCO ₃	Ca(OH) ₂		D)	Ca(HCO ₃) ₂	Ca(OH) ₂	
11.	A metal M form	ıs a compound	M ₂ HPO ₄	. What v	will be the fo	rmula of the m	etal sulphate?
	A) M_2SO_4	B) $M_2(SO_4)$	3		C) MSO ₄	D) M($(SO_4)_3$
<i>II.</i>	MCQs with	more than or	ne answ	er:			
12.	In which of th	ne following co	mpounds	metal	is having va	alency 1?	
	A) NaCl	B) LiCl	C) Mg	Cl ₂	D) CsCl		
13.	which of the	following are d	i atomic	molecu	les?		
	A)Cl ₂	B)Br ₂	C)I ₂		D)O ₂		
III.	OOD one o	ut					
14.	Helium , Nec	on , Argon, Pho	sphorous	S			
15.	N ⁻³ , O ⁻³ , O ⁻² ,	•					
IV.	Write the Tr	rue or Flase					
16.	Sulphur aton	nicity is 8.					
17.	The number	of electrons in	ammoni	a 10.			
18.	The atoms w	hich contain eig	ght electr	ons in tl	ne outermos	t configuration	are unstable.
19.	proton numb	er varies from	atom to	its ion.			
V.	Match the fo	ollowing					
20.	Column-l				Colum	n -II	
	a) Hg ₂ Cl ₂		1)	Manga	nous sulpha	ate	
	b) Ca(OH) ₂		2)	Sodiur	m dichroma	te	
	c) MnSO ₄		3)	Calciu	m hydroxide	e	
	d) Na ₂ Cr ₂ O ₇		4)	Mercu	rous chlorid	е	
	, 221		5)	Nickel	bisulphate		
					-14		
		_	<u>LEARN</u>				
_			<u>eginners</u>		<u>=L - 1)</u>		
I.		only one answ				. ,	
1.		lectrons transfe		place fr	om magnes	sium to oxyger	n in the
	formation of A) 4	magnesium ox B) 3			C) 2		D) 1
	, v, -				<u> </u>		<i>D</i> , 1

2.					form fro	om two	sodii	um atoms,	one ca	arbon atom	
		Sodium (xygen atom Ovide	15			B)	Sodium Ca	arhon f	riovida	
	,		Carbonate				,	Sodium Ca			
3.	•		ty of phosp	horous	is		٥,	oodidiii o		aiomao	
•	A) 4			B) 8			C)	2		D) 1	
4.	,		al formulae	of a co	mpound	d shows	,			,	
	•	•	nent of ator		-						
			atoms in ea								
	•		of atoms th			-				loculo	
5.	•		of atoms th eight of wa		been m	ixed pr	TySICa	ally mixed ii	n a mo	necule.	
J .	A) 2		cigiti oi wa	B) 18	C	8 (3	D)	None			
6.	,		r of oxygen	,			•				
0.	A) 2			B) 3	C)	J	D)	6			
7.	•		r of oxygen	,			,				
	A) 1		75	B) 2	(C)		D)				
8.	The	ratio of	hydrogen a	and oxyg	gen in wa	ater is					
	A) 1	1:2		B) 2:1		C) 4:1	1 D)	1:4			
9.	For	mula for	calcium ca	rbonate	e is						
	A) ($CaCO_3$		B) CaH	CO_3		C)	Na_2CO_3		D) CuC	0 ₃
10.	Tha	at symbo	of lead is								
	A) ,	Pb		B) <i>Cu</i>			C)	Ag		D) <i>Au</i>	
11.	A form	nula has	s:								
	A) Qu	ualitative	significand	e only				B) Quantit	ative s	ignificance o	only
	C) Bo	th qualit	ative and q	uantitati	ive signi	ficance	€.	D) None o	of these	Э	
12.	What	is the fo	ormula of h	ydrochlo	oric acid						
	A) HC	C/	Е	B) H ₂				C) Cl ₂		D) H ₂ SO ₄	
13.	The s	symbolic	representa	ation of	actual n	umber	of at	oms in mol	ecule i	is called	
		lency		B) Formi				C) Both 1			
14	,	•	formula of	•				,		,	
	A) H ₂			B) H ₂ O				C) O ₂		D) H _o	
15.	_	_	of tin in SnC	- 2	Α	ar	nd Sn	_		_	
		Α	В			a		B		 •	
	A)	2	4		B)	4		2			
	C)	1	1		D)	2		2			
	- /	•	•		- ,	_					

16.	Identify the right chemica	al formula for the	e following compounds	
	i) Calcium sulphate	ii) Ma	ignesium oxide iii)	Potassium nitrite
	i	ii	iii	
	A) $Ca(HSO_4)_2$	MgO	KNO ₃	
	B) CaSO ₄	MgO	KNO_2	
	C) CaS	Mg_2O_2	$KNO_{\scriptscriptstyle 3}$	
	D) None of the above			
17.	Sodium phosphate has the	he chemical for	mula	
	A) $Na_2P_2O_7$	B) Na ₃ PO ₄	C) $Na_4P_2O_7$ D) Na ₃ PO ₃
18.	Correct formula of a triva	lent metal nitrid	e is:	, ,
	A) M_3N_2	B) M_3N_3	C) MN D) B	oth 2 and 3
		Achieve	ers (LEVEL - 2)	
II.	MCQs with more than	one answer:		
19.	The information that yo	u can observe f	rom a formula	
	A) number of atoms E	B) shape of the i	molecule C) molecular	weight D) colour
20.	Identify the atoms that v	which can form	negative valencies	
	A) chlorine	B) beryliu	ım C) oxyger	n D) nitrogen
21.	Identify the elements wi		-	
	A) oxygen	B) coppe	•	D) Flourine
22.	Which contain same el		•	-,
		B) <i>He</i>	C) <i>Li</i> ⁺	D) <i>Na</i> ⁺
23.	The atoms that will don		•	
	A) <i>Na</i>	B) <i>Li</i>	C) <i>N</i>	D) <i>Ca</i>
24.	The compounds that ca	an form using tw	o carbons one oxygen	and six hydrogen
	from the following are			
	A) $C_2 H_5 OH$ B)	<i>CH</i> ₃ <i>CHO</i>	C) <i>CH</i> ₃ <i>CH</i> ₂ <i>O</i>	D) $CH_3 - O - CH_3$
25.	Which of the following	contain same va	alence electrons	
	A) Argon	B) Neon C) Magnesium ion [O) Oxide ion
26.	Which following contain	n same number	as valence orbit	
	A) Sulphur (16)	B) Oxygen (8)	C) Silicon (14)) D) Argon (18)
27.	Identify the correct stater	nent/s:	,	, , ,
	A) The representation of		substance (element or known as the formula.	compound) in terms
	B) Atoms of different eler	-		form a compound
	C) All chemical compoun			-
	•	us are represer	ned by their respective	ioiiiuiac.
	D) None of the above.			

28.	Which of the fo	ollowing formula	is having 2 ato	ms?				
	A) HC/	B) HgCl ₂	C) CaO	D) (CaCO ₃			
III.	Odd one out							
29.	H ₂ S, NaHSO ₄	, SiO ₂ , NaC <i>I</i> ₂						
30.	CaO , NaCl, H	lCl,CaCO₃						
IV.	True or False	e						
31.	A formula has	qualitative as we	ell as quantitativ	e significa	nce.			
32.	Quantitatively	it represents the	e actual numbe	r of atoms	of each element present in			
			e of the substar	nce.				
33.		of calcium carbo	•					
34.	The formula	of Sodium chlori	de is NaC <i>l</i> ·					
V.	Match the f	following:						
	Column-I		Column-					
35.	a) Mercurous		1) PbCrO ₄					
	b) Lead chromate		2) CaOCI ₂					
	c) Solid carbondioxide		3) CO ₂					
	d) Calcium oxy	ychloride	4) Hg ₂ C <i>I</i> ₂	2 2				
		_	5) H ₂ SO ₄					
VI.	Comprehensi	J .						
		ation of a molec own as formule.		ance in terr	ns of symbols & subscripts			
				nce (elemei	nt or compoun4) in terms of			
	•	subscript number		•	•			
36.	•	-			mula of the metal sulphate?			
		2) $M_2(SO_4)_3$	3) M					
37.	Chemical form	nula for sodium	sulphate is Na	SO, The	formula for trivalent metal			
	sulphate will be		•	2 4				
	1) M ₂ (P ₂ O ₇) ₃	2) M ₄ P ₃ O ₁₄	3) M	₂ (SO ₄) ₃	4) M ₃ PO ₄			
38.	The phosphate	e of a metal has	the formula MP	O ₄ . The for	rmula of its nitrate will be:			
	1) MNO ₃	2) $M_2(NO_3)_2$	3) M	$(NO_3)_2$	4) $M(NO_3)_3$			
			Explorers (LE	VEL - 3)				
I.	Descriptive	type questions	-					
39.	Write down t	he criss cross m	ethod for magi	nesium and	d sulphate?			
40.	Calculate the	e molecular weig	ht of Phosphor	ous molecι	ıle?			
41.	Write down t	he following in th	eir stable form	?				
	i) Na	ii) Ca	iii) Ar	iv) Li				
			. 1					

42.	A metal M form meatlsuphate?	s a compound M ₂ l	HPO₄.What will be	the formula of the	Э
43.	Formula of chromate	mic acid is H ₂ CrO ₄ ?	.What is the formu	ıla of its divalent	
		Researcher	s (LEVEL-4)		
Highe	r Order Thinkir	ıg(H.O.T)			
44.		ns a compound [C			redict the
45.	The formula of a criss cross met	a metal phosphate hod?	is MPO₄. The form	nula of its nitrate a	according to
46.	The atomicity of	f Ar is how much?			
47.	What is the mol	ecular weight of te	tra atomic phosph	orus & Octa atom	ic Sulphur
48.	Calculate the nu	umber of electrons	in NH ₃ ,CH ₄ & N ⁻³ s	species?	
49.	Write the electronic i) Hydrog	onic configuration c gen ii) Carbon		ments v) Neon	
50.	, ,	of electrons which c		,	m is given by
	A) 2n	B) $2n^2$	C) 3n	D)	n
51.	_	electrons in third o to Bohr-Bury's for B) 8		s the atomic num	
	,	•	Practice Bits		,
1.		nce electrons prese			D) 4
2.	A) 5 The electronic of	B) 3 configuration of an e	C) 7 element X is 2, 8,	7.	D) 4
	A) O_2	B) H_2	C) C	I	D) Ne
3.	Maximum numb	per of electrons pre B) 98		an atom D) 32	
4.	The formula use	ed to find the mass	no' of element is		
	A) A - Z	3) n+ Z	C) $2n^2$	D) None	
5	The valency of i	nert dases are			

C) zero

Symbols and Formulae

A) 8

A)S

1.

ARCHIVES

B) 2

The atoms that will accept electrons for their stability

B) F

D) Ca

D) none

C) N

3. W is the symbol of A) Tin B) Antimony C) Tungstun D) Ferrus The atomic number of Bromine element is 4. A) 41 B) 32 C) 34 D) 35 5. The no' of neutrons present in Iron. A) 40 B) 30 C)31 D) 35 6. Ferric ion is B) divalent C) trivalent D) None A) monovalent Molecular weight of C₆H₁₂O₆ 7. A) 180 C)172 D) 168 B) 184 KEY: Teaching task: 1-D 2-D 4-D 5-B 6-D 7-B 8-D 9-D 3-D 10-A,C,D 11-A,B,C,D 12-A,B,C 13-Hydrogen 14-Potasium 15-13 16-T 17-T 18-T 19-T 20-d,c,b,a 21-d,c,b,a Learner's task: 1-B 2-C 3-C 4-A 5-D 6-B 7-C 8-D 9-A 10-B 11-A 12-A 13-D 14-2,3,4 15-1.2.4 16-2.8.2 17-Nitrogen 18-Na 19-T 20-T 21-T 22-3,4,2,1 H.O.T: 26-3,6,2 27-50 28-Maximun no of electrons in shells (2n²) 29)A=n+Z 30-Proton and electrons 31-D Teaching Task:II 1-C 2-A 3-C 4-D 5-C 6-C 7-B 8-B 9-C 10-D 11-A,B 12-B,C,D 13-A,B 14-A,B,C 15-A,B,C 16-NH4+ 17-Nitrogen 18-Phosphate 19-T 20-F 21-T 22-4,2,3,1 Learner Task:II 1-B 2-D 3-A 4-C 5-B 6-D 7-B 8-B 9-C 10-A 12-B 11-D 13-A 14-D 15-C 16-A 17-B 18-A,B,C 19-A,B,C 20-A,C 21-B 22-Boron 23-Barium 24-T 25-F 26-T 27-T 28-4,3,2,1 29-1,3,2,4

35-B

 $32-C_2O_4^{-2}(Oxalate)$

38-AII

33-7

34-2

37-Si,Ge.

36-B,Si,Ge,As,Sb,Te,Po.

Teaching Task:III

1-C 2-D 3-D 4-D 5-B 6-A 7-B 9-C 10-B 11-A 8-A 12-15-O⁻³ 16-T A,B,D 13-A,B,C,D 14-Phosphorous 19-T 17-T 18-F 20-4,3,1,2.

Learner 's Task:III

1-C 2-C 3-A 4-C 5-B 6-D 7-B 8-B 9-A 10-A 11-C 12-A 13-B 14-B 15-A 16-B 17-B 18-D 19-A,C 20-A,C,D 21-B,C22-A,B,C 26-A,C,D 23-A,B,D 24-A,D 25-A,B,C,D 27-A,B,C 28-A,C 29-NaCl 30-CaCO₃ 32-T 34-T 35-4,1,3,2 31-T 33-F 36-2 37-3 38-4

Additional practice bits:

1-C 2-C 3-B 4-B 5-C

ARCHIVES

1-A,B,C 2-O-3 3-C 4-D 5-B 6-C 7-A