ALGEBRAIC EXPRESSIONS

ALGEBRAIC EXPRESSION

<u>§§</u> <u>Algebraic Expression :</u> A combination of constants and variables, connected by any or all of the four fundamental operations $+, -, \times$ and \div is called an *algebraic expression*.

Ex: 2x - 3y + 4, $6xy + 2y + \frac{7}{2}$, etc.

§§ Various types of algebraic expressions :

a) Monomial: An algebraic expression which contains only one term is called a monomial.

Ex: $5x, 4, 7x^3, -\frac{3x^2}{2}$ etc.

b) Binomial : An algebraic expression which contains two terms is called a binomial.

Ex: 4-3x, 5+7x, $b+\frac{1}{b}$, 2a+3b etc.

c) Trinomial : An algebraic expression which contains three terms is called a trinomial.

Ex: 2a + 3b - 4c, x - 5y + z, $\frac{2}{2} + x - y$ etc.

d) Multinomial: An algebraic expression containing two or more terms is called a multinomial.

<u>§§</u> <u>**Constant term:**</u> A term of the expression having no literal factor is called the constant term.

Ex : In the expression $2x - 3y + \frac{3}{2}$, the constant term is $\frac{3}{2}$

§§ <u>Like terms :</u> Terms which have the same literal or variable factors are called *like* or *similar terms*. Otherwise they are called *unlike terms*.

Ex: (i) 2xy, -4xy, 7xy are like terms. (ii) $2a^2$, 30a are unlike terms.

§§ <u>Power of a variable :</u> When a variable is multiplied by itself 'n' number of times, the product is called the n^{th} power of that variable

Product	Written as	Read as	Base	Exponent
<i>x</i> x <i>x</i>	χ^2	x squared	x	2
<i>x</i> x <i>x</i> x <i>x</i>	<i>x</i> ³	x cubed	x	3
x x x x x x x x x x	<i>x</i> ⁵	x raised to the power 5	x	5
a x a x a x a x a x a	a^6	a raised to the power 6	а	6
<i>x</i> x <i>x x xn</i> times	x^n	x raised to the power n	x	n

VII - CLASS

ALGEBRAIC EXPRESSIONS

<u>S</u> **Polynomial :** An algebraic expression involving two or more variables with non - negative integral powers is called a polynomial in these variables.

Ex:
$$2x^3 + y^2 + 2z^2 + xy$$
, $\frac{2}{5}ab + a^2b - 7 - a^2$

Note : A Polynomial should not have a term with a variable in its denominator.

Ex: $2x^2 + \frac{3}{x} + 7y + 8$ not a polynomial

<u>§§</u> <u>Degree of a polynomial :</u> A polynomial with only one variable is known as a polynomial in one variable.

Ex: 2x+3, x^2+3x-4 , a^3-3a^2+a+5

The degree of a polynomial in **one variable** is the greatest exponent of its variable.

Polynomial in one variable	Variable with greatest exponent	Degree
$5x^3 + 7$.x ³	3
19 <i>x</i> – 6	<i>x</i> ¹	1
$a^3 - 3a^2 + a$	a ³	3

The degree of a monomial with **more than one** variable is the sum of the exponents of its literals.

Monomial in more than one variable	Sum of exponents of variables	Degree
б <i>xyz</i>	1 + 1 + 1	3
$-5x^3y^2z$	3 + 2 + 1	6
$2a^5b^3z$	5 + 3 + 1	9

The degree of a polynomial with more than one variable is the degree of the term with the highest degree.

Polynomial with more than one variable	Degree of terms respectively	Term with highest degree	Degree of Polynomial
$2x^2y+5x^2$	3 and 2	$2x^2y$	3
$\overline{3x^3y^2z + 3x^3y^3 + 4z^2}$	6, 6 and 2	$3x^3y^2z$ and $3x^3y^3$	6
$a^3b^3 - 2c^4 + 3a^2b^2 - 7$	6, 4, 4 and 0	a^3b^3	6

VII - CLASS

Note :

i) The degree of an algebraic expression with only constants is '0'

Ex: 1)
$$3 = 3 \times 1 = 3 \times a^{\circ}$$

2)
$$4+5 = (4 \times 1) + (5 \times 1)$$

$$= (4. x^{\circ}) + (5 \times x^{\circ})$$

(ii) An algebraic expression P(x) of the form

P(x) = $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, where $a_0, a_1, a_2, \dots, a_n$, $a_n \neq 0$ are real numbers and n

is a positive integer is called a polynomial in x over real numbers.

(a) $a_0, a_1x, a_2x^2, \dots, a_nx^n$ are called the terms of the polynomial.

(b) $a_0, a_1, a_2, \dots, a_n$ are called coefficients of the respective terms.

(c) If a_0, a_1, \dots, a_n are integers, then P(x) is called a polynomial with integer coefficients.

(d) If a_0, a_1, \dots, a_n are rational numbers, then P(x) is called a polynomial with rational coefficients.

<u>§§</u> <u>Types of Polynomials :</u>

(i) Zero polynomial : If $a_0 = a_1 = a_2 = \dots a_n = 0$, the polynomial is called a zero polynomial. (: $P(x) = 0 + 0.x + 0.x^2 + \dots + 0.x^n = 0$)

(ii) Linear Polynomial : If n = 1, then $P(x) = a_0 + a_1 x$, $a_1 \neq 0$ is called a linear polynomial or polynomial of first degree.

Ex: 4x + 3, 2 - 3x etc.

(iii) Quadratic polynomial : If n = 2, then $P(x) = a_0 + a_1x + a_2x^2$, $a_2 \neq 0$ is called a quadratic polynomial or polynomial of second degree.

Ex: $x^2 - x + 3$, $2x^2 + 5x + 6$ etc.

(iv) Cubic Polynomial : If n = 3, then P(x) = $a_0 + a_1x + a_2x^2 + a_3x^3$, $a_3 \neq 0$ is called a cubic polynomial (or) polynomial of third degree.

Ex: $x^3 + 3x^2 - 2x + 5$, $2y^2 + 3y^3 - 2y + 8$ etc.

(v) Biquadratic polynomial : If n = 4, then $a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$, $a_4 \neq 0$ is called a biquadratic polynomial or fourth degree polynomial.

Ex: $x^4 + 7x^3 + 2x + 3$, $3x^4 - 2x$

(vi) **Zero of a polynomial :** The number for which the value of a polynomial is zero, is called zero of the polynomial.

VII - CLASS

Ex : Let P(x) = x - 2If we substitute x = 0, 1, 2, 3 in P(x), we get P(0) = 0 - 2 = -2P(1) = 1 - 2 = -1P(2) = 2-2 = 0P(3) = 3-2 = 1If x = 2, then P(2) = 0 \therefore We say 2 is a zero of the polynomial P(x) Note : a) A linear polynomial has one and only one zero b) A constant polynomial has no zero c) A zero polynomial has infinite number of zeroes. d) Every real number is a zero of the zero polynomial P(x) = 0. e) 0 can be a zero of a polynomial. §§ Homogeneous expression : If all the terms in a compound expression have same , sneous 2021-22 degree, then that expression is called Homogeneous expression. **Ex**: $4x^2 + 5xy + 7y^2$, $5x^2y + 3xy^2$ **¶¶** Algebraic identities **i.** $(a+b)^2 = a^2 + 2ab + b^2$ **ii.** $(a-b)^2 = a^2 - 2ab + b^2$ **iii.** $a^2 - b^2 = (a + b)(a - b)$ **iv.** $(x + a)(x + b) = x^2 + (a + b)x + ab$ **V.** $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$ **Vi.** $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3 + 3ab(a+b)$ **vii.** $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 = a^3 - b^3 - 3ab(a-b)$ **viii.** $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ **ix.** $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ **X.** $a^{2} + b^{2} = (a + b)^{2} - 2ab = (a - b)^{2} + 2ab$ §§ **Exponential form :** If 'x' is any number and m is any natural number, then we have $x \times x \times x \timesm$ times = x^m . This is called an exponential form. Here, x is called **base** and 'm' is called the **exponent** or **index** or **power** of the exponential expression x^m.

VII - CLASS

§§ Laws of Exponents or Laws of Indices : For positive integral values of *m* and *n* **Law 1** : $a^m \times a^n = a^{m+n}$ **Ex**: $2^2 \times 2^3 = 2^{(2+3)} = 2^5 = 32$ **Law 2 :** $\frac{a^m}{a^n} = a^{m-n}$, where *m* > *n* Ex: $\frac{4^5}{4^3} = 4^{(5-3)} = 4^2 = 16$ Law 3: $\frac{a^m}{a^n} = \frac{1}{a^{n-m}}$, where m < n $\begin{array}{l}
 - \cdot a^{-n} = \frac{1}{a^{n}} \\
 Ex : 2^{-3} = \frac{1}{2^{3}} \\
 Law 6 : a^{0} = 1 \\
 Ex : 3^{0} = 1, \left(-\frac{1}{9}\right)^{0} = 1 \text{ etc.} \\
 Vc^{4}
\end{array}$ **Note** : If *a* and *b* are two different numbers, then (i) $(ab)^n = a^n \cdot b^n$ (ii) $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$, where 'n' is a positive integer. **Note** : The reciprocal of $\left(\frac{x}{y}\right)^k = \left(\frac{y}{x}\right)^k$, where k is a natural number. §§ Factorisation : The process of writing an expression as the product of two or more expressions is called factorisation. **Ex** : Factorize $3x^2 - 6xy$. **Sol** : The terms of the expression $3x^2 - 6xy$ have a common factor 3x. $\therefore 3x^2 - 6xy = 3x(x - y)$ Factors of multinomial : If the product of two or more Algebraic expressions is equal <u>§§</u> to **VII - CLASS** 37

ALGEBRAIC EXPRESSIONS

the given multinomial, then those expressions are called factors of the given multinomial.

Ex: Let $P(x) = x^2 - 2x = x(x - 2)$

 $\therefore x$, x - 2 are called the factors of P(x)

Note : H.C.F of monomials = (H.C.F of numerical cofficients) x (H.C.F of variable cofficients)

<u>§§</u> Equation : A statement of equality involving one or more variables is called an equation

Ex: (i) 2x - 4 = 6 (ii) x + 2 = 3y - 4

<u>§§</u> <u>Linear equation :</u> An equation involving one variable with highest power 1, is called a linear equation in that variable.

Ex: (i) 2x + 5 = 7 (ii) 4y = 2

Solution of a linear equation : When the value of the variable satisfies the given equation then that value is called the solution (root) of the given equation.

<u> \S </u> <u>Linear inequation</u>: A statement of inequality between two expressions involving a single variable *x* with highest power 1, is called a *linear inequation*.

Ex: (i) x + 2 < 7 (ii) y - 3 > 4 (iii) $z \ge 4$

<u>§§</u> Properties of Inequations :

Property 1 : Adding the same number to each side of an inequation does not change the inequality.

Ex: $x - 3 < 7 \implies x - 3 + 4 < 7 + 4 \implies x + 1 < 11$

Property 2 : Subtracting the same number from each side of an inequation does not change the inequality.

Ex: $2x + 3 < 9 \Rightarrow 2x + 3 - 4 < 9 - 4 \Rightarrow 2x - 1 < 5$

Property 3 : Multiplying each side of an inequation by the same positive number does not change the inequality.

Ex: $(2x+3) < 7 \implies (2x+3) \times 4 < 7 \times 4$

Property 4 : Multiplying each side of an inequation by the same negative number reverses the inequality.

Ex: (i) $x < 2 \implies -x > -2$ (ii) $x > -3 \implies -x < 3$

Property 5: Dividing each side of an inequation by the same positive number does not change the inequality.

Ex:
$$2x < 14 \Rightarrow \frac{2x}{2} < \frac{14}{2} \Rightarrow x < 7$$

Property 6 : Dividing each side of an inequation by the same negative number reverses the

VII - CLASS

inequality.

Ex: $2x < 14 \Rightarrow \frac{2x}{-2} > \frac{14}{-2} \Rightarrow -x > -7$

<u>Square of a monomial :</u> A monomial which can be written as the square of another monomial is called a "perfect" or "exact" square.

Ex : 1). $a \times a = a^2$ is read as " *a* square' (or) "square of *a*"

2). $3xy \times 3xy = 9x^2y^2$

 $\therefore 9x^2y^2$ is called the square of 3xy.

It is written as $(3xy)^2$.

§§ Square root of a monomial : If a monomial is a perfect square, then it can be expressed as a product of two equal factors. In such a case each of the equal factors is called a "square root" of the given monomial.

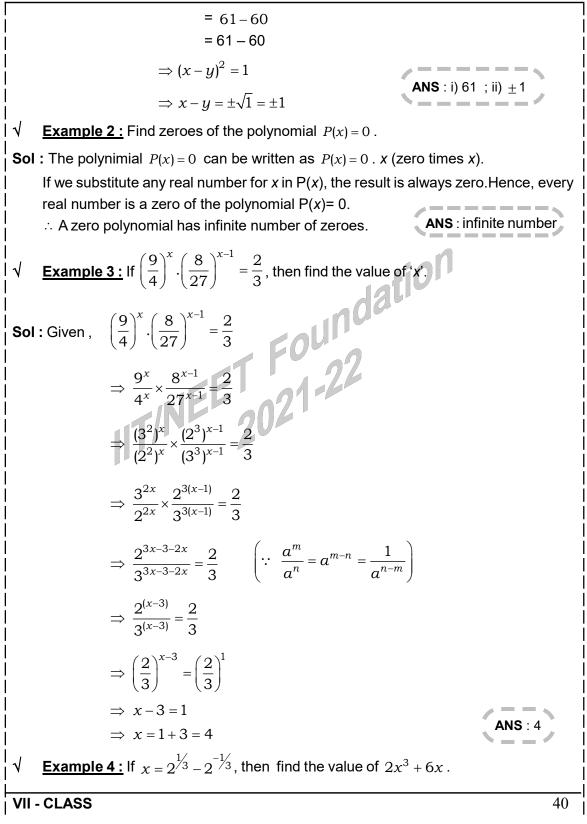
bressed as a product of two equal factors. In such a case each of t
ed a "square root" of the given monomial.
Ex : 1)
$$36a^2b^2 = 6ab \times 6ab$$

∴ Square root of $36a^2b^2$ is $6ab$
Ex : 2) $\frac{25}{16}x^4y^2 = \frac{5}{4}x^2y \times \frac{5}{4}x^2y$
∴ Square root of $\frac{25}{16}x^4y^2$ is $\frac{5}{4}x^2y$
EXAMPLES

Example 1 : If x + y = 11 and xy = 30, find the value of (i) $x^2 + y^2$ (ii) x - y $\sqrt{}$ **Sol** : (i) Given x + y = 11

Squaring on both sides, $(x + y)^2 = 11^2$

$$\Rightarrow x^{2} + y^{2} + 2xy = 121$$


$$\Rightarrow x^{2} + y^{2} + 2 \times 30 = 121$$
 (:: $xy = 30$)

$$\Rightarrow x^{2} + y^{2} = 121 - 60$$

$$\Rightarrow x^{2} + y^{2} = 61$$

(ii) we know that $(x - y)^{2} = x^{2} + y^{2} - 2xy$

$$= 61 - 2(30)$$

VII - CLASS

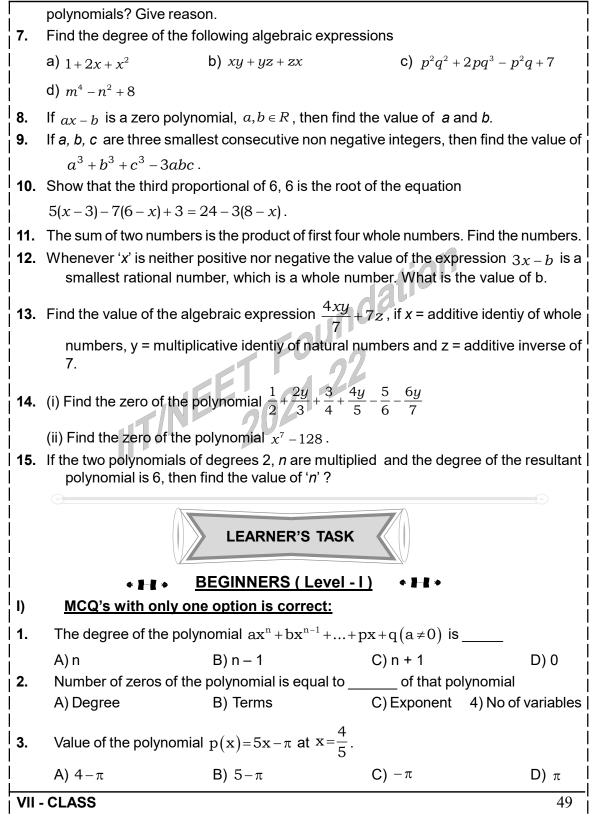
Sol : Let
$$2^{\frac{1}{3}} = a$$
, then $2^{-\frac{1}{3}} = \frac{1}{2^{\frac{1}{3}}} = \frac{1}{a}$
Now, we have $x = a - \frac{1}{a}$
Now $2x^3 + 6x = 2\left(a - \frac{1}{a}\right)^3 + 6\left(a - \frac{1}{a}\right)$
 $= 2\left[a^3 - \frac{1}{a^3} - 3a \times \frac{1}{a}\left(a - \frac{1}{a}\right)\right] + 6\left(a - \frac{1}{a}\right)$
 $= 2\left[a^3 - \frac{1}{a^3} - 3\left(a - \frac{1}{a}\right) + 3\left(a - \frac{1}{a}\right)\right]$
 $= 2\left[a^3 - \frac{1}{a^3}\right]$
 $= 2\left[2 - \frac{1}{2}\right]$
 $\begin{bmatrix} \cdot a^3 = \left(2\frac{3}{2}\right)^3 = 2 \end{bmatrix}$
 $\begin{bmatrix} 2 - \frac{1}{2} \\ 3 \end{bmatrix}$
 $\sqrt{\frac{2}{2}}$
Example 5: Factorize $x^2 - ax + bx - ab$.
Sol : Given expression $x^2 - ax + bx - ab$.
Sol : Given expression $x^2 - ax + bx - ab$.
Noticing that the first two terms contain a common factor x, and the last two terms contain a common factor b.
We arrange the first two terms in one bracket, and the last two in another. Thus, $x^2 - ax + bx - ab = (x^2 - ax) + (bx - ab)$
 $= x(x - a) + b(x - a)$
 $= (x - a) taken x times plus $(x - a)$ taken b times
 $= (x - a) taken (x + b) times$
 $= (x - a) (x + b)$
 $\sqrt{\frac{2}{2}}$
Example 6: Prove that $(a + b)^3 - (a - b)^2(a + b) = 4ab(a + b)$.
VII - CLASS
 $41$$

Sol: L.H.S = $(a+b)^3 - (a-b)^2(a+b)$ $= a^{3} + b^{3} + 3ab(a+b) - (a-b)^{2}(a+b)$ $= (a+b)(a^2 - ab + b^2) + 3ab(a+b) - (a-b)^2(a+b)$ $(::a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ = $(a+b) \left[(a^2 - ab + b^2) + 3ab - (a-b)^2 \right]$ = $(a+b)\left[a^2-ab+b^2+3ab-a^2-b^2+2ab\right]$ = (a+b)[4ab]**ANS** : $(a + b)^3 - (a - b)^2(a + b) = 4ab(a + b)$ = R.H.S $\int \underline{\text{Example 7:}} \text{ If } x + \frac{1}{x} = 7 \text{ , find the value of :} \quad (i) \left(x^2 + \frac{1}{x^2}\right) \qquad (ii) \left(x^4 + \frac{1}{x^4}\right)$ Sol : (i) We have, $x + \frac{1}{x} = 7$ Squaring on both sides, we get $\left(x + \frac{1}{x}\right)^2 = 7^2$ ∴ L.H.S = R.H.S $\Rightarrow x^2 + 2 \times x \times \frac{1}{x} + \frac{1}{x^2} = 49$ $\Rightarrow \qquad x^2 + 2 + \frac{1}{x^2} = 49$ \Rightarrow $x^2 + \frac{1}{x^2} = 49 - 2$ $x^2 + \frac{1}{x^2} = 47$ -----(1) \Rightarrow (ii) Again squaring both sides of (1) we get : $\left(x^2 + \frac{1}{x^2}\right)^2 = (47)^2$ $x^4 + 2 \times x^2 \times \frac{1}{r^2} + \frac{1}{r^4} = 2209$ \Rightarrow **VII - CLASS**

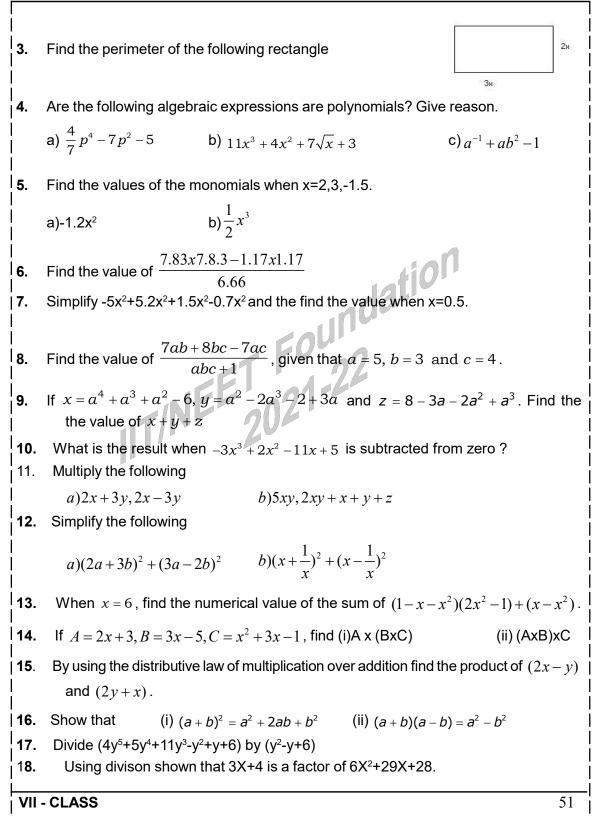
 $x^4 + 2 + \frac{1}{x^4} = 2209$ \Rightarrow $x^4 + \frac{1}{x^4} = 2209 - 2$ **ANS** : $x^{2} + \frac{1}{x^{2}} = 47$ and $x^{4} + \frac{1}{x^{4}} = 2207$ \Rightarrow $\sqrt{}$ **Example 8:** Solve $-2 \le x \le 2, x \in Z$ **Sol**: Given problem contains two inequations, namely $-2 \le x$ and $x \le 2$ Now, $-2 \le x \implies x \ge -2$ \therefore Any integer ≥ -2 is the solution $\therefore x = -2, -1, 0, 1, 2, 3...$ is the solution of $x \ge -2$ ------(1) $x \le 2$ \therefore Any integer ≤ 2 is the solution Now $x \le 2$ $\therefore x = 2, 1, 0, -1, -2, -3, \dots$ is the solution of $x \le 2$ ------(2) From (1) & (2) the solutions of $-2 \le x \le 2$, $x \in z$ are the common numbers in (1) & (2) $\therefore x = -2, -1, 0, 1, 2$ are the solutions. **ANS** : x = -2, -1, 0, 1, 2**Example 9 :** Solve x - 40% of x = 12 $\sqrt{}$ **Sol**: x - 40% of x = 12 $\Rightarrow x - \frac{40}{100}x = 12$ $\Rightarrow x - \frac{2}{5}x = 12$ $\Rightarrow \frac{5x-2x}{5} = 12$ \Rightarrow 5x - 2x = 12 × 5 (Multiplying both sides with 5) $\Rightarrow 3x = 12 \times 5$ $\Rightarrow x = \frac{12 \times 5}{3}$ (Dividing both sides by 3) **ANS** : 20 \therefore x = 20 is the solution of the given equation. $\sqrt{}$ **Example 10:** The numbers x, y, z are proportional to 2, 3, 5. The sum of x, y and z is 100. If **VII - CLASS** 43

number y is given by the equation y = ax - 10, then find the value of 'a'. **Sol**: Given, the numbers *x*, *y*, *z* are proportional to 2, 3, 5. $\Rightarrow \frac{x}{2} = \frac{y}{3} = \frac{z}{5}$ Let $\frac{x}{2} = \frac{y}{3} = \frac{z}{5} = k$ $\Rightarrow x = 2k, y = 3k, z = 5k$ Given condition is x + y + z = 100 $\Rightarrow 2k + 3k + 5k = 100$ ax - 10 $\Rightarrow 30 = 20a - 10$ $\Rightarrow 20a = 40$ $\Rightarrow a = \frac{40}{20} = 2$ a = 2If kx^3 $\Rightarrow 10k = 100$ $\therefore x = 20, y = 30, z = 50$ Given equation is y = ax - 10ANS: 2 $\sqrt{}$ **Example11:** If $kx^3 + 9x^2 + 4x - 10$ divided by x + 3 leaves a remainder 5, then find the value of k. **Sol** : Given devidend = $kx^3 + 9x^2 + 4x - 10$ divisor = x + 3remainder = 5x+3 $kx^{3}+9x^{2}+4x-10$ $kx^{2}+x(9-3k)+(9k-23)$ $kx^{3} + 3kx^{2}$ _____ $0 + x^2(9 - 3k) + 4x$ $x^{2}(9-3k)+3x(9-3k)$ x(9k-23)-10**VII - CLASS**

ALGEBRAIC EXPRESSIONS


x(9k-23) + 3(9k-23)59 - 27kSince remainder = 5 \Rightarrow 59 – 27k = 5 $\Rightarrow 27k = 54$ **ANS** : 2 $\Rightarrow k = \frac{54}{27} = 2$ $\therefore k = 2$ $\sqrt{}$ **Example 12 :** Fifteen years ago, Ramu was three times as old as his son. But now he is two times as old as his son. What is Ramu's age today ? x - 15 = 3y - 45 x - 3y = -30 -----(1)Also we have x = 2y x - 2y = 0 ----(2)Now $(1) - (2) \Rightarrow -y = -30 \Rightarrow m$ Son's age todaw: Rami **Sol**: Let the Ramu's age today be 'x' \therefore Ramu's age today is 60 years. ANS : Ramu's age = 60 Yr, His son's age = 30 Yr **TEACHING TASK** I) MCQ's with Only One Option: Degree of the polynomial $\frac{x^3 + x^4 - x^6}{x^2}$ is _____ 1. A) 1 B) 2 C) 3 D) 4 The degree of the constant polynomial is 2. A) 1 B) 2 C) 3 D) 0 Degree of the polynomial is $(3x - x^2)^2$ is 3. A)6 B) 5 C) 4 D) 3 **VII - CLASS** 45

ALGEBRAIC EXPRESSIONS


4. The difference of the degree of the polynomials $3x^2y^3 + 5xy^7 - x^6$ and $3x^5 - 4x^3 + 2$ is A) 2 B) 3 D) 0 C) 1 How much is $a^4 + 4a^2b^2 + b^4$ more than $a^4 - 8a^2b^2 + b^4$? 5. A) 12ab B) 12a²b D) 12a²b² C) 12ab² 6. How much is $a^4 - 4a^2b^2 + b^4$ less than $a^4 + 8a^2b^2 + b^4$? A) 12ab B) 12a²b D) 12a²b² C) 12ab² 7. What must be added to $x^3 + 3x - 8$ to get $3x^3 + x^2 + 67$ A) $2x^3 + x^2 - 3x + 14$ B) $2x^2 + x^2 + 14$ D) $2x^3 + x^2 - 14$ C) $2x^3 + x^2 - 6x - 14$ What must be subtracted from $x^3 - 3x^2 + 5x - 1$ to get $2x^3 + x^2 - 4x + 27$ 8. B) $x^3 + 4x^2 - 9x + 3$ A) $-x^3 + 4x^2 - 9x + 3$ C) $x^3 - 4x^2 + 9x - 3$ D) $-x^3 - 4x^2 + 9x - 3$ 9. If $(3x-4)(5x+7)=15x^2-ax-28$ then a = A) 1 B) -1 D) 4 The value of the product $(3x^2-5x+6)$ and $(-8x^3)$ when x = 0 is 10. A) $\frac{1}{2}$ B) 2 D) 0 11. $(x^2y - 1)(3 - 2x^2y)$ is A) $5x^2y + 2x^4y^2 + 3$ B) $5x^2y - 2x^4y^2 - 3$ C) $5x^2y^2 - 2x^4y^2 - 3$ D) $5x^2y^4 2x^4y^4 - 3$ $\frac{1}{3}(6x^2+15y^2)(6x^2-15y^2)$ is 12. The simplified form of B) $12y^2 - 75x^4$ A) $12x^2 - 75v^2$ C) $12x^4 - 75y^4$ $D)5v^{6} - 12x^{4}$ If $x - \frac{1}{r} = \sqrt{6}$ then $x^2 + \frac{1}{r^2} = \dots$ 13. C)6 A)2 D)8 B)4 14. If 2x+y=5, then 4x+2y=..... B)8 C)9 D)10 A)5 If divisor, quotient and remainder are $2x^2 - 6x + 7$, 3x - 2 and -6x + 5 then the 15. dividend..... A) $6x^3 + 22x^2 + 27x + 9$ B) $6x^3 + 22x^2 - 27x + 9$ C) $6x^3 - 22x^2 + 27x - 9$ D) $6x^3 - 22x^2 + 27x + 9$ If $x^2 + 2x - 63$ is exactly divided by a divisor and quotient is x-7 then the divisor..... 16. D) x + 3 A) x – 9 B) x – 7 C) x + 9 **17.** The multiplication of $2xy^2$, $(-3x^2y)$ is equal to [NIMO-2016] B) x^3y^3 A) 6 C) $-6x^{3}y^{3}$ D) $6x^{3}y^{3}$ **VII - CLASS** 46

MATHEMATICS ALGEBRAIC EXPRESSIONS 18. If X = $3x^3+3x^2+3x+3$ and Y = $3x^2-3x+3$ then x-y = [c.v.raman-2016] A) 3x³ B) $3x^3+6x^2+6x+6$ $C)6x^{2}+6x+6$ D) $3x^{3}+6x$ **19.** The sum of three expressions is $x^2+y^2+z^2$. If two of them are $4x^2-5y^2+3z^2$ and $-3x^2+4y^2-2z^2$, then the third expression is [NTSE - 2015] A) $2X^2 + 2Z^2$ C) $2x^2+2y^2$ B) 2y² D) $2y^2+2z^2$ **20.** The value of $(a^3 - 2a^2 + 4a - 5) \cdot (-a^3 - 8a + 2a^2 + 5)$ is [NTSE - 2016] A) $2a^3 + 7a^2 + 6a - 10$ B) $2a^3 + 7a^2 + 12a - 10$ C) $2a^3 - 4a^2 + 12a - 10$ D) $2a^3 - 4a^2 + 6a - 10$ II) MCQ'S WITH ONE OR MORE THAN ONE OPTION This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D),out of which ONE or MORE is correct. Choose the correct options Value of the polynomial $\frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$ at n = 4 is 1. C) 110 B) Divisible by 2 A) 100 D) Divisible by 4 The product of – 5x²y, $\frac{-2}{.3}$ xy²z, $\frac{8}{15}$ xyz² and $\frac{-1}{.4}$ z is 2. A) $\frac{-5}{9}x^4y^4z^4$ B) $\frac{-4}{9}x^2$ C) $\frac{-4}{9}(xyz)^4$ D) $-(\frac{2}{3}x^2y^2z^2)^2$ $\frac{(4ab)^2}{6a^2} \div \frac{(-a^3b)^2}{2b^2}$ 3. A) $\frac{4b^2}{3a^2}$ C) $\frac{-16b^2}{3a^4}$ D) $\frac{-16}{3}(\frac{b}{a^2})^2$ B) $\frac{-16}{3a^2}$ 4. If $16x^3 + 12x^2 + 18x + 8$ is divided by 4x + 2 then the remainder and the quotient is A) 1 B) 0 C) $4x^2 - x + 4$ D) $4x^2 + x + 4$ III) **COMPREHENSION TYPE:** 4 This section contains certain number of questions. Each question contains Statement - 1 (Assertion) and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option. 1. If x = -1.5 then find (i) the value of $-2x^2+5x$ is B) -11 C) -10 A) -12 D) -9 (ii) the value of 1.2x³ C) -405 D) -0.405 A) -40.5 B) -4.05 (iii) the value of -5x²+5.2x²+1.5x²-0.7x² is **VII - CLASS** 47

IVIA	THEMATICS		ALGEDINAN	S EXPRESSIONS
	A) 2.525	B) 2.225	C) 2.25	D) 2.55
2.	If the polynomial 9x ³ -	12x ² -6x+6 is divided by	(x-2) then	,
	(i) the quotient is	-		
	A) 9x ² +6x+6	B) 9x ² -6x+6	C) 6x ² +9x+6	D) 6x²-9x+6
	(ii) the remainder is	,	-,	,
	A) 12	B) 18	C) 6	D) 3
	(iii) the degree of quo	,	0,0	2,0
	A) 0	B) 1	C) 2	D) 3
IV)	MATRIX MATCHING	,	0)2	
		<u>.</u> polynomials with (x+2)		
1.		polynomials with (x+z)		
	(i) X-2		P) $x^{3}+3x^{2}+4x^{2}$	+4
	(ii) $x^2 - x + 2$		Q) $x^{2}-4x+4$	
	(iii) x ² +x-2		R) x ³ +x ² +4	
	(iv) x ² +x+2		S) x²-4	
			T) x ³ +3x ² -4	
	A) i-S, ii-R, iii-T, iv-P		B) i-R, ii-S, iii	
	C) i-S, ii-T, iii-R, iv-P		D) i-S, ii-P, iii-	T, iv-R
2.	Subtract the following	polynomials from x ³ +	3x²+4x+4	l
	COLUMN - I		COLUM	N - II
	(i) 2X-3		P) x ³ +2x ² +8x	+8
	(ii) x ² -x+4	EP and	Q) x ³ -3x ² -4x+	4
	(iii) x ² -4x-4	r alle	$(R)^{2} x^{3}+2x^{2}+5x$	
	(iv) -X ³ +4X-3	EE7 2021-	S) $x^3+3x^2+2x^4$	+1 I
			T) $2x^3+3x^2+7$	
	A) i-S, ii-Q, iii-T, iv-R		B) i-S, ii-R, iii	-P. iv-T
	C) i-P, ii-Q, iii-T, iv-R		D) i-S, ii-Q, iii	
V)	SOLVE THE FOLLOW		- / · · · , · · · · · · · · ·	.,
•)				
1.	If $(2008 + x + 2008)$	$)^{2008-2006+2007} = (20)^{2008-2006+2007}$	$(008 - x - 2008)^{20}$	^{07–2006+2008} , find
	the value of 'x'.		,	
2		vorossion 7 7	(7torma) at	
∠ .	Find the value of the e	$x \mu = 2 \sin(1 \pi x) + 7 x$	+ (<i>r</i> terms) at y	
	form.	• · · · · ·		İ
3.	Find the sum of the ze	roes of the polynomia	ls	İ
	(2007x + 2008) and	(2007x - 2008).		I
			• • <i>•</i> • • • •	, I
4.	Find the product of the	e zeroes of the polynor	mials $(ax+b)$ and	(bx-a).
5.	Write the polynomial	$r^{7} - 2r^{6} + 3r - 8r^{3} + 4r$	$r^{5} - 3r^{4} + 7$ in the st	andard form
	•••		$J_{\lambda} = J_{\lambda} + I = I = I = SI$	
6.	Are the algebraic expr	essions		
	<u>, 4</u> <u> </u>			
l	a) $\frac{4}{7}p^4 - 7p^2 - 5$	b) $11x^3 + 4x^2 + 7\sqrt{x}$	+ 3 C	$2x^{3} + \frac{4}{x^{2}} + 9$
\//-				
VII ·	- CLASS			48

VII -	CLASS			50
	$a)1 + 2x + x^2$	b)xy + yz + zx	$c)m^4 - n^2 +$	
2.		e following algebraic exp		0
_	a)3a, 4xy, -yz, 2zy		$(2p, 3p \ c)m^2n^2, 2m^0m$	$n^2, 3m^2n, -9m^2n^2$
1.	2		00	2 - 2 - 2 2
<u>SOL</u> 1.	VE THE FOLLOWIN	<u>IG∶</u> ⊨like terms in each of the	following groups	
<u></u>				
		2,00 . 10	c, ou 10	
14.	lf (5a³b – 7ab³) ÷ al A) 5a² – 7b²	b= Β) 5a² + 7b²	C) – 5a ² – 7b ²	D) 5a ² – 7b ²
14	A) – 7 ax^2	B) 7a²x	C) – 7a²x	D) 7ax ²
13.	lf (84a⁵x³) ÷ (– 12a	,		
	A) –180	B) –170	C) –160	D) –150
12.	, .	$x = 0.23y^2$ C (-8 is divided by x - 3 the formula of the compared by x - 3 the compar	, .	, .
11.	$(0.5x - y) \times (0.5x + A) = 0.5x^2 - y^2$	y) = B) $x^2 - 0.25y^2$ C) $0.5x = 0.25y^2$	D)0.25x ² -y ²
	C) a ³ + b ³	104°	D) $a^3 + b^3 - 3a^2$	$b-3ab^2$
	A) a ³ – b ³	1EE' 201"	B) $(a-b)^3 + 3ab$	b(a-b)
10.	lf (a + b) (a² – ab +	b ²) =	26	
	C) –11x²y	E FOU	D) –12x²y	
	A) $2y^3 - 8x^2y + 3xy^2$		B) 2x ³ – 8xy ² + x	x²y – 2y³
9.	,	5x²y – y³ from –y³ – 6x²y		
	C) $2a^3 + 4a^2 + 12a$		D) $2a^3 - 4a^2 + 1$	
	A) $2a^3 - 4a^2 + 12a$	-10	B) $2a^3 - 4a^2 - 1$	2a+10
8.	$(a^3 - 2a^2 + 4a - 5)$ -	$-(-a^3+2a^2-8a+5) = $		
	A) -2x ² +3x+1	B) -(2x ² -3x-1)	C) A and B	D)-2x ² +3x-1
7.	The additive Invers	,	- / -	_, .
υ.	Additive identity for A) 0	B) 1	C) 2	D) 3
6.	A) $-x^2 + x - 2$	B) $x^2 + x + 2$	C) $-x^2 - x + 2$	D) $-x^2 + x + 2$
5.	Additive inverse of			
	A) $\frac{-c}{d}$	B) $\frac{-d}{c}$	C) $\frac{c}{d}$	D) $\frac{d}{c}$
			C	d
4.	Zero of any polynor	mial $p(x) = cx + d$ is		

MA	THEMATICS		ALGEBRAIC E	XPRESSIONS
19.	Find the remainder	r when 9x³-12x²-6x+6 is divi	ded by 3x+2.	
I)		EXPLORERS (Level - OR MORE THAN ONE C		<u>-</u>
*		nultiple choice questions. Eac NE or MORE is correct. Choos		
1.		nial $p(x)=x^2-2x$ is/are		
2.	A) 0 Which of the followir	B) 1 ng is/are not polynomials ?	C)2	D) 2, 3
	A) $x + \frac{1}{x}$	B) $x^2 + 2x + 1$	C) $x - \frac{1}{x}$	D) $x^{2} + \frac{1}{x} + 2$
3.		bles in the expression $3x^{\frac{5}{2}}$		
	A) x	B) y C) z	D) only x	
4.	On multiplication of	$\left(3x - \frac{4}{5}y^2x\right)$ by $\frac{1}{2}$ xy, the	result is	
	A) $\frac{3}{2}x^2y + \frac{5}{2}x^2y^3$	EE1 21-24	B) $x^2y(\frac{3}{2} - \frac{2}{5}y^2)$ D) $\frac{5}{2}x^2y + \frac{3}{2}yx^2$	
	C) $\frac{3}{2}x^2y - \frac{2}{5}x^2y^3$	204	D) $\frac{5}{2}x^2y + \frac{3}{2}yx^2$	
5.	$ f 8x^3 + 6x^2 - 4x - 12 $	is divided by 2x – 2 then the	quotient and remai	nder is
	A) $4x^2 - 7x + 5$	B) -2	C) 4x ² + 7x + 5	D) 2
II)	<u>COMPREHENSION</u>	I TYPE:		
*	have to be answered	s paragraph. Based upon eac . Each question has 4 choices ose the correct option.		
1.		e following polynomials		
	Á) 2 (ii) 2x²+3xy²+4y²	B) 1	C) 0	D) 7
	A) 4	B) 3	C) 2	D) 1
	(iii) 8x²+9xy+7y² A) 4	B) 3	C) 2	D) 1
2.	lf 4x+2y = 10 then (i) 2x+y =		·	,
VII -	CLASS			52

MATHEMATICS ALGEBRAIC EXPRESSIONS C) 20 A) 5 B) 15 D) 29 (ii) $8x^2 + 8xy + 2y^2 = \dots$ B) 50 C) 45 A) 25 D)100 (iii) $16x^2 + 16xy + 4y^2 = \dots$ A)25 B)50 C) 100 D) 75 III) **MATRIX MATCHING:** This section contains Matrix-Match Type questions. Each question contains statements ٠ given in two columns which have to be matched. Statements (A, B, C, D) in Column-I have to be matched with statements (p, q, r, s) in **Column–II**. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows: 1. Find the additive inverse of the following COLUMN - I **COLUMN - II** (i) $-x^2+x-2$ P) $x^{2}+x+2$ Q) -x²-x-2 (ii) x²+x-2 R) -x²-x+2 (iii) $-x^2 - x + 2$ S) x²-x+2 (iv) -x²-x-2 FOUL T) $x^{2}+x-2$ A) i-S, ii-R, iii-T, iv-P B) i-R, ii-S, iii-T, iv-P D) i-S, ii-P, iii-T, iv-R C) i-S, ii-T, iii-R, iv-P 2. Divide the following polynomials with (x-2) and then find the remainder COLUMN - I **COLUMN - II** (i) x²-4 P) 16 (ii) X³-4X²+16 Q) 12 (iii) $x^{2}+4x+4$ R) 8 (iv) X³-4X+4 S) 0 T) 4 A) i-S, ii-Q, iii-T, iv-R B) i-S, ii-R, iii-P, iv-T C) i-P, ii-Q, iii-T, iv-R D) i-S, ii-Q, iii-P, iv-R **KEY** $\Phi\Phi$ TEACHING TASK : I) 1. D 2. D 3. C 4. B 5. D 6. D 7.A 8. D 9. B 10. D 11. B 12. C 13.D 15. C 16. C 18. D 14.D 17.C 19. B 20. C **II)** 1. A,B,C 2. B,C,D 3. C,D 4. B,D III) 1. i-A, ii-B, iii-C 2. i-A, ii-B, iii-C **IV)** 1. A 2. B 5) $x^7 - 2x^6 + 4x^5 - 3x^4 - 8x^3 + 3x + 7$ **IV)**1)–2008 4)–1 7) a) 2 **VII - CLASS** 53

(b) 2 (c) 4 (d) 4 8) α = 0, b = 0 9) 9 12) 0 13) 49 14) (i) - $\frac{525}{768}$ (ii) 2 15) 4 Φ0 TEACHING TASK: BEGINNERS: 1.A 2.A 3.A 4.B 5.A 6.A 7.A 8.A 9.C 10.C 11.D 12.B 13.A 14.A EXPLORERS: 1) 1.A.C 2.A.C.D 3.A.B.C 4.B.C 5.C.D II) 1. i-A, ii-B, ii-C 2. i-A, ii-B, ii-C III) 1.A 2.B		
<u>ΦΦ TEACHING TASK:</u> BEGINNERS: 1.A. 2.A. 3.A. 4.B. 5.A. 6.A. 7.A. 8.A. 9.C. 10.C. 11. D. 12.B. 13.A. 14.A EXPLORERS: I)1.A,C. 2.A,C,D. 3.A,B,C. 4.B,C. 5.C,D II)1.I-A, II-B, III-C. 2.I-A, II-B, III-C. III)1.A. 2.B		
<u>ΦΦ TEACHING TASK:</u> BEGINNERS: 1.A. 2.A. 3.A. 4.B. 5.A. 6.A. 7.A. 8.A. 9.C. 10.C. 11. D. 12.B. 13.A. 14.A EXPLORERS: I)1.A,C. 2.A,C,D. 3.A,B,C. 4.B,C. 5.C,D II)1.I-A, II-B, III-C. 2.I-A, II-B, III-C. III)1.A. 2.B	13) 49 14) (i) - $\frac{525}{768}$	$\frac{5}{8}$ (ii) 2 15) 4
■ BEGINNERS: 1.A 2.A 3.A 4.B 5.A 6.A 7.A 8.A 9.C 10.C 11.D 12.B 13.A 14.A ■ EXPLORERS: 1)1.A,C 2.A,C,D 3.A,B,C 4.B,C 5.C,D 1)1.1-A, ii-B, ii-C 2.1-A, ii-B, ii-C 10)1.A 2.B		0
E EXPLORERS: I)1.A,C 2.A,C,D 3.A,B,C 4.B,C 5.C,D I)1.I-A,II-B,III-C 2.I-A,II-B,III-C III)1.A 2.B		4. B 5. A 6. A 7. A 8. A 9. C 10. C
I) 1. F.A, IFB, IFC 2. F.A, IFB, IFC III) 1.A 2.B		
IT/NEE2021-22		
	II) 1. i-A, ii-B, i	iii-C 2. i-A, ii-B, iii-C III) 1. A 2. B
		i otion
		dau
		FOUND
		1 · 22
		201-
		204
	J P	
VII-CLASS 54		
VII-CLASS 54		
VII-CLASS 54		
VII - CLASS 54		
VII - CLASS 54		
VII - CLASS 54		
VII - CLASS 54		
VII - CLASS 54		
VII - CLASS 54		
VII - CLASS 54		
VII - CLASS 54		
VII - CLASS 54		
VII - GLASS 54	<u></u>	
	VII - CLASS	54