MOTION IN A PLANE

MOTION IN A PLANE

LEARNING OBJECTIVES

- What is Projectile motion
- Path followed by the projectile
- How velocity changes during projectile motion
- Time of ascent, time of decent, time of flight of projectile
- ٠ Maximum height, horizontal range
- Energy of projectile. ٠
- ٠ Horizontal projectile from a top of tower, velocity with which it hits the ground

Real life applications of Kinematics:

- Usefull in understanding the two dimentional motion in a simple way Φ
- Φ Usefull in fixing the target of missile and to track its path.
- ΙΦ Usefull in understanding the path follwed by the ball in foot ball, cricket, golf etc games.
- Φ Usefull in understanding motion of a bomb relesed from an areoplane in level flight, a
- bullet fired from a gun, an arrow released from a bow, a javelin thrown by an athlet.

* Important Formulae:

1)
$$u_x = u \cos \theta = \text{constant}, u_y = u \sin \theta$$
 (varies with time)

2)
$$u = \sqrt{u_x^2 + u_y^2}$$
, $v = \sqrt{v_x^2 + v_y^2}$

3)

1)
$$u_x = u \cos \theta = \text{constant}, u_y = u \sin \theta$$
 (varies with time)
2) $u = \sqrt{u_x^2 + u_y^2}, v = \sqrt{v_x^2 + v_y^2},$
3) Angle made with horizonal $\tan \alpha = (v_y / v_x)$
4) General equation $y = Ax - Bx^2$, where $A = \tan \theta$, $B = \frac{g}{2u^2 \cos^2 \theta}$

5)
$$t_a = t_d = \frac{u\sin\theta}{g}, T = t_a + t_d, H = \frac{u^2\sin^2\theta}{2g}, R = \frac{u^2\sin2\theta}{g}$$

The horinzontal projectile from to top of tower , Range $R = u \sqrt{\frac{2h}{g}}$, $t = \sqrt{\frac{2h}{g}}$ 6)

velocity with which it hits the ground $V = \sqrt{u^2 + 2gh} = \sqrt{u^2 + g^2t^2}$, 7)

8) angle at which is strikes the ground
$$\theta = \tan^{-1}\left(\frac{gt}{u}\right) = \tan^{-1}\left(\frac{\sqrt{2gh}}{u}\right)$$

<u>§§</u> PROJECTILE

Projectile is any body projected into the air at an angle othe than 90° with the horizontal near the surface of the earth. The path followed by a projectile is called its trajectory. The following assumptions are made in the projectile motion

- 1. The acceleration due to gravity 'g' is constant over the range of motion.
- 2. The air resistance is negligible.
- 3. The ground on which the projectile thrown is refernce level.

<u>§§</u> EQUATION OF THE PATH (TRAJECTORY)

Consider the motion of an object projected from the origin O of the co-ordinate system,

with the initial velocity "u" inclined at an angle α with the horizontal or the X-axis as shown in figure.

The motion of the object P can be studied by resolving its velocity "u" in the horizontal and the vertical directions as shown.

Horizontal component of the velocity is , $v_x = u \cos \alpha$

Vertical component of the velocity is $v_v = u \sin \alpha$

The horizontal comp onent of velocity is v_x^{y} . It shall remain constant as no acceleration is acting in the horizontal direction (a = 0)

The initial velocity in the vertical direction v_y shall go on decreasing because of the constant deceleration due to gravity (a = – g).

The object, therefore, is having horizontal and vertical motions simultaneously. The resultant motion would be the vector sum of these two motions and the path followed would be curvilinear.

Let P be the position of the object after a time "t" then distance travelled in the horizontal direction in time t, is $x = (u \cos a)t$ (4.1)

The distance travelled in the vertical direction in time *t* is

 $y = (u \sin a) t - \frac{1}{2} gt^2$ (4.2)

The equations (4.1) and (4.2) are the time displacement relations for the projectile.

Eliminating the time *t*, we can obtain a relationship between x and y or the equation of the path of the projectile.

From equation (4.1) we can write t = $\frac{x}{u \cos \alpha}$

On substituting the value of "t" in equation (4.2) we can write

The above equation is of the form $y = Ax + Bx^2$ and represents a parabola. Thus the path of a projectile is a parabola.

a) **Time of ascent :-** Time Taken to Reach Maximum Height. We let this time be denoted t_a . At the maximum height the vertical velocity is zero i.e., $V_v = 0$

$$u\sin\theta - gt_a = 0 \quad \therefore t_a = \frac{u\sin\theta}{g}$$

b) Time of Flight : - The total time spent by a projectile in air during the time of motion is called time of flight.

On substituting y = 0 and t = T in equation (4.3) we can write

MOTION IN A PLANE

$$R = \frac{u^{2} \sin 2(90^{\circ} - \theta)}{g} = \frac{u^{2} \sin(180 - 2\theta)}{g} = \frac{u^{2} \sin 2\theta}{g} = R$$
Thus, for a given velocity of projection, a projectile has the same range for angle of projection θ and $(90^{\circ} - \theta)$
Note : In the above case range of two projections is same but time of flights are different.
h) Relation between times of flights and range in case of projectiles having same range.
Time of flight for angle of projection θ .
T₁ = $\frac{2u \sin \theta}{g}$ and time of the flight for angle of projection $(90^{\circ} - \theta)$,
T₂ = $\frac{2u \sin (90^{\circ} - \theta)}{g} = \frac{2u \cos \theta}{g}$
Multiplying T, and T₂ we get
T₁T₂ = $\frac{2u \sin \theta}{g}$ (or) T₁T₂ = $\frac{2R}{g}$ $\frac{T_1}{T_2} = Tan\theta$
(i) If t₁ is the time taken by projectile to reach a point P at height h and t₂ is the time taken from point P to ground level, then
t₁ + t₂ = T = $\frac{2u \sin \theta}{g}$ or $u \sin \theta = \frac{g(t_1 + t_1)}{2}$
The height of point P, $h = u \sin \theta t_1 - \frac{1}{2}gt_1^2 = \frac{g(t_1 + t_2)}{2}t_1 - \frac{1}{2}gt_1^2$ or $h = \frac{1}{2}gt_1t_2$.

 $g=9.8ms^{-2}, \alpha=? \quad R=\frac{u_0^2\sin 2\alpha}{\alpha}$ $\sin 2\alpha = \frac{Rg}{u_0^2} \qquad \Rightarrow \alpha = 30^\circ \ or \ 60^\circ$ using, $T = \frac{2u_0 \sin \alpha}{g}$ When $\alpha = 30^{\circ}, T_1 = \frac{2 \times 240 \times 0.5}{9.8} = 24.5s$ When $\alpha = 60^{\circ}, T_2 = \frac{2 \times 240 \times 0.867}{9.8} = 42.46s$ <u>W.E -3:</u> The ceiling of a long hall is 20 m high. What is the maximum horizontal distance √ that a ball thrown with a speed of 40 $_{MS}^{-1}$ can go without hitting the ceiling of the hall $(g = 10ms^{-2})?$ **Sol.** : Here, H = 20 m, $u = 40ms^{-1}$. Suppose the ball is thrown at an angle θ with the horizontal. Now $H = \frac{u^2 \sin^2 \theta}{2g} \Rightarrow 20 = \frac{(40)^2 \sin^2 \theta}{2 \times 10} = \frac{(40)^2 \times 0.866}{10} = 138.56m$ or, $\sin \theta = 0.5 \Rightarrow \theta = 30^0$ Now $R = \frac{u^2 \sin 2\theta}{g} = \frac{(40)^2 \times \sin 60^0}{10}$ $\sqrt{W.E-4:}$ A ball projected with a velocity of 10m/s at angle of 30° with horizontal just clears two vertical poles each of height 1m. Find separation between the poles. P R 30° X **Sol.** $h = u_y t + \frac{1}{2}gt^2 = (10\sin 30^{\circ})t + \frac{1}{2}(-10)t^2$ $1 = 5t - 5t^2 \Longrightarrow t = 0.72s, 2.76s$ are the instants at which projectile crosses the poles. : separation between poles = OS - OQ $= u\cos\theta(t_2 - t_1) = 10\cos 30^{\circ}(2.76 - 0.72) = 17.7m$ <u>W.E -5</u>: A body is projected with velocity u at an angle of projection θ with the horizontal. The body makes 30° with horizontal at t = 2 second and then after 1 second it reaches the maximum height. Then find a) angle of projection b) speed of projection. Sol. During the projectile motion, angle at any instant t is such that $\tan \alpha = \frac{\text{usin}\theta - \text{gt}}{\text{ucos}\theta}$ For t = 2 seconds, $\alpha = 30^{\circ}$

 $\frac{1}{\sqrt{3}} = \frac{\text{usin}\theta - 2g}{\text{ucos}\theta} - \dots - 1$ For t = 3 seconds, at the highest point $\alpha = 0^{\circ}$ $0 = \frac{\text{usin}\theta - 3g}{\text{ucos}\theta}$ $usin\theta=3g$ -----(2) $u\cos\theta = \sqrt{3}g....(3)$ using eq. (1) and eq. (2) Eq. (2) \div eq.(3) give $\theta = 60^{\circ}$ squaring and adding equation (2) and (3) $u = 20\sqrt{3} m/s$. W.E-6: A particle is thrown over a triangle from one end of horizontal base and grazing the vertex falls on the other end of the base. If α and β are the base angles and θ be the angle of projection, prove that $\lim \beta = \frac{y}{x} + \frac{y}{R-x}$ $\tan \alpha + \tan \beta = \frac{yR}{x(R-x)} \qquad (1)$ But equation of trajectory is $y = x \tan \theta \left[1 - \frac{x}{R}\right] \qquad 0$ $\tan \theta = \left[\frac{yR}{x(R-x)}\right] - - - -(ii)$ From Eqs. (i) and (ii), $\tan \theta = \frac{yR}{x(R-x)}$ $\tan \theta = \tan \alpha + \tan \beta$. Sol.: The situation is shown in figure.From figure,we have A(x,y) <u>**W.E -7**</u>. The velocity of a projectile at its greatest height is $\sqrt{\frac{2}{5}}$ times its velocity, at half of its greatest height, find the angle of projection. Sol.: $u \cos \theta = \sqrt{\frac{2}{5}} \times u \sqrt{\frac{1 + \cos^2 \theta}{2}}$ Squaring on both sides $u^2 \cos^2 \theta = \frac{2}{5} u^2 \left(\frac{1 + \cos^2 \theta}{2} \right)$ $10\cos^2\theta = 2 + 2\cos^2\theta \implies 8\cos^2\theta = 2 \implies \cos^2\theta = \frac{1}{4} \implies \theta = 60^\circ$ W.E -8: A foot ball is kicked off with an initial speed of 19.6 m/s to have maximum range. Goal keeper standing on the goal line 67.4 m away in the direction of the kick starts running opposite to the direction of kick to meet the ball at that instant. What must his speed be if he is to catch the ball before it hits the ground? **Sol.:** $R = \frac{u^2 \sin 2\theta}{g} = \frac{(19.6)^2 \times \sin 90}{9.8}$ or R= 39.2 metre. Man must run 67.4 m -39.2m=28.2m in the time taken by the ball to come to ground Time taken by the ball. $t = \frac{2u\sin\theta}{g} = \frac{2 \times 19.6 \times \sin 45^{\circ}}{9.8} = \frac{4}{\sqrt{2}}$ **IX - CLASS** 95

MOTION IN A PLANE

v = 0; s = H_{max} =
$$\frac{u^2}{2g}$$
 ⇒ H_{max} = $\frac{(106.06)^2}{19.6}$ = 573.91m
V WE-15; The horizontal range of a projectile is 2√3 times its maximum height. Find the
angle of projection.
Sol: If u and a be the initial velocity of projection and angle of projection respectively, then
the maximum height attained, H_m = $\frac{u^2 \sin^2 \alpha}{2g}$
and horizontal range, R = $\frac{2u^2 \sin \alpha \cos \alpha}{g}$
According to the problem, we can write
 $\frac{2u^2 \sin \alpha \cos \alpha}{g} = 2\sqrt{3} \left(\frac{u^2 \sin^2 \alpha}{2g}\right)$
⇒ tan $\alpha = \left(\frac{2}{\sqrt{3}}\right) \Rightarrow \alpha$ = tan $\sqrt{\left(\frac{2}{\sqrt{3}}\right)}$
V WE-16; A stone is to be thrown so as to cover a horizontal distance of 3 m. If the velocity
of the projectile is 7 ms⁻¹, find (i) the angle at which it must be thrown,
(ii) the largest horizontal displacement that is possible with the projection speed of 7 ms⁻¹.
Sol: (a) Given that, u = 7 ms⁻¹, range (R) = 3m
R = $\frac{u^2 \sin 2\theta}{g}$ ⇒ $3 = \frac{(7)^2 \sin 2\theta}{9.8}$
⇒ sin 2q = 31° or 180° - 2q = 37°.
⇒ q = 18° 30° or q = 71° 30°.
Hence a range of 3 m is possible with two angles of projections.
(b) Range is maximum, if sin 2q is maximum.
i.e., for sin 2q = 1
⇒ 2q = 90° or q = 45°.
Hence for maximum range with a given velocity, the angle of projection, q = 45°
R_{max} = $\frac{(7)^2 \sin 2(45^4)}{9.8} = 5m$
V WE-17; A particle is projected from point *P* with velocity $5\sqrt{2}ms^{-1}$ perpendicular to the
surface of a hollow right angle cone whose axis is vertical. It collides at *Q* normally. The
time of the flight of the particle is
Sol: $t = \frac{u}{gsin0^2} = \frac{5\sqrt{2} \times \sqrt{2}}{10} = 1scc}$
V WE-18; If at point of projection, the velocity of a particle is "u" and is directed at an
angle $\frac{(10)}{2} = \frac{5\sqrt{2} \times \sqrt{2}}{10} = 1scc}$
Sol: Let "" be the time after which velocity becomes perpendicular to its initial direction.
As u and v are perpendicular, the angle between v and vertical will be a.

Now, the equation of trajectory is $y = x \tan q - \frac{1}{2}g \frac{x^2}{u^2 \cos^2 \theta}$ or $y = x \tan q \left[1 - \frac{gx}{2u^2 \cos^2 \theta \tan \theta} \right]$ or $y = x \tan q \left[1 - \frac{gx}{(2/g) u^2 \sin \theta \cos \theta} \right]$ or $y = x \tan q \left| 1 - \frac{x}{u^2 \sin 2\theta / g} \right|$ y = x tan q $\left[1 - \frac{x}{R}\right]$ or tan q = $\frac{y}{x} \times \frac{R}{(R-x)}$ or $=\frac{y}{x}\left[\frac{R-x+x}{R-x}\right] = \frac{y}{x} + \frac{y}{R-x} = Tan\alpha + Tan\beta$ $\tan q = \tan a + \tan b.$ W.E-25 : A hunter aims his gun and fires a bullet directly at a monkey on a tree. At the instant the bullet leaves the barrel of the gun, the monkey drops. Will the bullet hit the monkey? **Sol:** Suppose the gun situated at O directed towards the monkey at position M. Let bullet leaves the barrel of the gun with velocity u at an angle θ with the horizontal. Let bullet crosses the vertical line MB at A after time t. Horizontal distance travelled $OB = x = u \cos\theta t$ or $t = \frac{x}{u \cos\theta}$ For motion of bullet from O to B, the vertical height AB = $u \sin \theta t - \frac{1}{2}gt^2$ = $u \sin \theta \left(\frac{x}{u \cos \theta}\right) - \frac{1}{2}gt^2$ $= x \tan \theta - \frac{gt^2}{2}$(i) ucosθ Also $MB = x \tan \theta$ Now y = MA = MB - AB $=x \tan \theta - \left(x \tan \theta - \frac{gt^2}{2}\right) = \frac{1}{2}gt^2$ Thus, in time t the bullet passes through A a vertical distance $\frac{1}{2}gt^2$ below M. The vertical distance through which the monkey fall in time t. $s = \frac{1}{2}gt^2$ Thus, the bullet and the monkey will always reach at point A at the same time.

PHY	ISICS			MOTION IN A PLANE
		ТЕ		
			ACHING TASK	
Sing	gle Answer Type	<u>e:</u>		
1.	A particle is pro with the horizo horizontal dista is	pjected from groun ntal. It reaches a nce of 10m from th	nd with some initial ve height of 7.5 m above le point of projection.Th	elocity making an angle of 45° e the ground while it travels a ne initial speed of the projection
	1) 5 m/s	2) 10 m/s	3) 20 m/s	4) 40 m/s
2.	A particle is pro magnitude of a	jected from groun verage velocity in	d at an angle45° with a time interval from t =	initial velocity $20\sqrt{2} \text{ m s}^{-1}$. The = 0 to t = 3 s in m s^{-1} is
	1) 20.62	2) 10.31	3) 41.14	4) 5.15
3.	A ball is thrown vector normal to 1) $\frac{u \sin \theta}{g}$ A stope is proje	with a velocity of o initial vector (u) a 2) $\frac{u}{g \cos \theta}$	u making an angle θ after a time interval of 3) $\frac{u}{g \sin \theta}$ ty 20 $\sqrt{2}$ m/s at an and	with the horizontal. Its velocity $u \cos \theta$ g
	average velocit	y of stone during i	ts motion from starting	point to its maximum height is
	1) 10 √5 m/s	2) 20 √5 m/s	3) 5√5 m/s	4) 20 m/s
5.	A player kicks a Another player instant to catch the second play	a foot ball obliquel at a distance of 24 the ball. Before th yer has to run is (g	y at a speed of 20 m/s 4m away in the directic e ball hits the ground to g=10 ms ⁻²)	s so that its range is maximum. on of kick starts running at that o catch it, the speed with which
	1) 4 m/s ⁻¹	2) 4 √2 m/s⁻¹	3) 8 √2 m/s⁻¹	4) 8 m/s⁻¹
6.	A particle is fire in velocity wher	d with velocity u ma n it is at the highes	aking angle $ heta$ with the st point ?	horizontal . What is the change
	1) $u\cos\theta$	2) u	3) $u\sin\theta$	$4)(u\cos\theta - u)$
7.	Two projectiles	A and B are throw	n from the same point	t with velocities <i>v</i> and $\frac{v}{2}$
	respectively. If when their range $1) \sin^{-1}\left(\frac{1}{4}\right)$	B is thrown at an a ges are the same $(2)\frac{1}{2}\sin^{-1}\left(\frac{1}{4}\right)$	angle 45° with horizonta? 3) $2\sin^{-1}\left(\frac{1}{4}\right)$	al. What is the inclination of A. 4) $\frac{1}{2} \sin^{-1} \left(\frac{1}{8} \right)$
8.	A particle is pro- twice the greate eration due to g 1) $\frac{4v^2}{2}$	pjected with a velocity of the set of the s	bocity v such that its radius by it, The range of the $3\sqrt{\frac{v^2}{2}}$	nge on the horizontal plane is e projectile is (when it is accel-
9.	A number of but The maximum $\frac{1}{2}$	$5v^2$ sillets are fired in a area of ground co	all possible directions vered by bullets is	with the same initial velocity u.
	1) $\pi \left(\frac{u^2}{g}\right)^2$	$2) \pi \left(\frac{u^2}{2g}\right)$	3) $\pi \left(\frac{u}{g}\right)^2$	$4)\pi\left(\frac{u}{2g}\right)^2$
10.	A ball is project Then	ted from the grour	nd with a velocity 'u' su	uch that its range is maximum.
IX -	CLASS			102

 	1) Its velocity at half the	1) Its velocity at half the maximum height is $\frac{\sqrt{3}}{\sqrt{3}}$			
İ	2) Its velocity at the ma	iximum height is 'u	, 2		
	3) Change in its velocit	v when it returns to	the around	is 'u'.	
 	4) all the above are true.				
Ass	ertion and Reason type	e:			
		<u></u>	- Englisserie		
▼ 	(Assertion) and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option.				
İ	1) Both A & R are true and R is correct explanation of A				
	2) Both A & R are true	and R is not correc	t explanation	n of A	
	3) A is true but R is fals	e. 4) Both A	& R are fals	se.	
 11. 	Assertion(A): In proje acceleration at the heig	ctile motion, the ar ht point is 180º.	ngle betweer	n the instantaneous velocity and	
	Reason(R): At the high	nest point, velocity	of projectile	will be vertically upward.	
12 .	Assertion :- Two part angles. The maximum	icles of different m height attained by	nass, projec both the par	ted with same velocity at same ticle will be same.	
	Reason :- The maxi	mum height of proj	jectile is inde	ependent of particle mass.	
Mat	rix Match Type:		0 ^µ		
◆ 	This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II . The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows:				
13.		or a projectile		List II	
 	LISI - I	d(00, a) with com	20	LIST - II	
	a) For two angles θ and magnitude of velocity of	furgiection $(90 - \theta)$ with same	IE	$(\underline{P_1,P_1})$	
İ	h) Equation of parabola	a of a projectile $v =$	$Px = Ox^2$	f) Maximum beight = 25% of P^2	
 	c) Radius of curvature with velocity $(P \vec{i} + Q \vec{j}) r$	of path of a body pi ns ⁻¹ at highest poir	rojected nt	g) Range = Maximum height	
 	d) Angle of projection e	$9 = \tan^{-1}(4)$		h) Range is same	
' 	1) $a \rightarrow f; b \rightarrow h; c \rightarrow g;$	$d \rightarrow e$ 2)) a \rightarrow h; b \rightarrow	$f; c \rightarrow e; d \rightarrow g$	
	3) $a \rightarrow e; b \rightarrow g; c \rightarrow f;$	$d \rightarrow h$ 4)	$a \rightarrow e; b \rightarrow$	$g; c \rightarrow h; d \rightarrow f$	
14. 	Trajectories are shown in figure for three kicked footballs. Initial vertical and horizontal velocity components are u_y and u_x respectively. Ignoring air resistance, choose the correct statement from column-2 for the value of variable in column-1.			alls. Initial vertical and horizontal oring air resistance, choose the able in column-1.	
	Column-1	Column-2			
	A) Time of flight	P) greatest for A	only		
İ	B) u_y / u_x	Q) greatest for C	only A	B	
l	C) u_x	R) equal for A and	d B	C	
	D) $u_x u_y$	S) equal for B an	dC o	<u> </u>	
	CT LOC			100	

PHY	YSICS	MOTION IN A PLANE
 	KEY	
Φ <u>Φ</u>	TEACHING TASK :	i
 	1)3, 2)1, 3)3, 4)1, 5)2, 6)3, 7)2, 12)1, 13)2, 14) a-r b-p c-q d-s, 15)b,c 18)b, 19)b, 20)2	8) 1, 9) 1, 10) 1, 11) 4, d, 16) a,c, 17) a,
		-
 	LEARNER'S TASK	
ļ	★ IIII → BEGINNERS (Level - I	<u>)</u> * ∎- ∎ *
 Sin	ale Answer Type:	
<u>0</u> 1.	Keeping the speed of projection constant, the angle of pr	rojection is increased from 0° to 90° .
	Then the horizontal range of the projectile	
	1) goes on increasing up to 90 ⁰	
İ	2) decreases up to 90°	2
	3) increases up to 45° and decreases afterwards	, -
2	Keeping the speed of projection constant, the angle of	projection is increased from 0° to
~ .	90°. Then the maximum height of the projectile	
	1) goes on increasing upto 90 ⁰	
İ	2) decreases upto 90 ⁰	
	3) increases upto 45° and decreases beyond it	
<u>,</u>	4) decreases upto 45° and increases beyond it The path of one projectile as seen from another project	tile is a (if horizontal components
3.	of velocities are equal)	
	1) straight line 2) parabola 3) hyperbola	4) circle
4 .	Two particles are projected with same speed but at a $(45^{\circ} + 2)$	ngles of projection $\left(45^{\circ}- heta ight)$ and [
	$(45^{\circ} + \theta)$. Then their horizontal ranges are in the ratio	o of the above
5	The acceleration of a projectile relative to another pro	iectile is
•	1) -q 2) q 3) 2q	4)0
 6.	A particle is projected in xy plane with y-axis along ve	ertical, the point of projection is
ļ	origin. The equation of the path is $V = \sqrt{3}x - \frac{g}{2}x^2$.	where v and v are in m. Then the
 	speed of projection in ms^{-1} is	
	1) 2 2) $\sqrt{3}$ 3) 4	4) $\sqrt{3}/2$
7. 	If a body is thrown with a speed of 19.6m/s making a then the time of flight is	n angle of 30º with the horizontal, ^I
	1) 1 s 2) 2 s 3) $2\sqrt{3}$ s	4) 5 s
8.	A particle is projected with an initial velocity of 200 m/s 30° with the vertical. The horizontal distance covered	s in a direction making an angle of t by the particle in 3s is
	1) 300 m 2) 150 m 3) 175 m	4) 125 m
	- CLASS	, 105
17 -	- ULASS	105

9.	A body is project velocity vector i	cted with an initial s(g=10m/s	velocity 20 m/s a ²)	at 60° to the horizontal. Its initial	
	1) $10\hat{i} - 20\hat{j}$	2) $10\sqrt{3}\hat{i} + 10\hat{j}$	3) $10\hat{i} + 10\sqrt{3}$	\hat{j} 4) $5\hat{i} + 5\sqrt{3}\hat{j}$	
10. 	A body is project highest point th	cted at an angle of the magnitude of the	30° with the ho momentum is:	rizontal with momentum P. At its	
1	$1)\frac{\sqrt{3}}{2}P$	2) $\frac{2}{\sqrt{2}}P$	3) P	$4)\frac{P}{2}$	
 	The potential e energy there. If	nergy of a project the velocity of pro	tile at its maxim jection is $20 ms^{-1}$	um height is equal to its kinetic , its time of flight is $(g=10 ms^{-2})$	
	1) 2s	2) $2\sqrt{2} s$	3) $\frac{1}{2}s$	4) $\frac{1}{\sqrt{2}}s$	
12. 	From a point on horizontal range	the ground a parti is maximum. The	cle is projected v magnitude of av	with initial velocity u , such that its rerage velocity during its ascent.	
i	1) $\frac{\sqrt{3u}}{2\sqrt{2}}$	2) $\frac{5u}{4}$	3) $\frac{\sqrt{3}}{2\sqrt{2}}$	4) none	
 	The horizontal $y = bt - ct^2$. T	and vertical displation of pro-	acements of a p bjection is	projectile are given as $x = at$ &	
İ	1) $\sqrt{a^2 + b^2}$	2) $\sqrt{b^2 + c^2}$	3) $\sqrt{a^2 + c^2}$	4) $\sqrt{b^2 - c^2}$	
14. 	Two bodies are angles of projec heights is 30m, t	thrown from the sa tion are complimer the minimum and m	me point with the stary to each othe saximum heights	e same velocity of 50ms ⁻¹ . If their er and the difference of maximum are(g=10 m/s ²)	
1	1) 50 m & 80 m	2) 47.5 m & 77.5	m 3) 30 m & 60	0 m 4) 25 m & 55 m	
 	A missile is fired the missile is (,	d for maximum range $g = 10 m/s^2$	ge with an initial	velocity of $20ms^{-1}$, the range of	
1	1) 50m	2) 60 m	3) 20m	4) 40 m	
16. 	If $\vec{u} = a\hat{i} + b\hat{j} + c$ component of ve	$\hat{c}\hat{k}$ with \hat{i},\hat{j},\hat{k} are elocity of projectile	in east, north a is	and vertical directions, horizontal	
1	1) a	2) b	3) $\sqrt{a^2 + b^2}$	4) $\sqrt{b^2 + c^2}$	
17. 	If the time of flig attained?	ght of a projectile i	s doubled, what	happens to the maximum height	
	1) halved	2) remains unchai	nged 3) do	ubled 4) become four times	
18. 	If $\vec{u} = a\hat{i} + b\hat{j} + c\hat{j}$ height of the pro	\hat{k} with $\hat{i}, \hat{j}, \hat{k}$ are in jectile is	n east, north and	vertical directions, the maximum	
	1) $\frac{a^2}{2}$	2) $\frac{b^2}{2}$	3) $\frac{c^2}{2}$	4) $\frac{b^2 c^2}{2}$	
19. 	The parabolic pa of projection is ($g = 10 \text{ ms}^{-2}$	represented by y	$=\frac{x}{\sqrt{3}}-\frac{x^2}{60}$ in MKS units : Its angle	
	1) 30°	2) 45 [°]	3) 60 ⁰	4) 90°	
20.	A body is project	ted at angle 30° to	horizontal with a v	velocity 50 $_{MS}^{-1}$. Its time of flight is	
	1) 4 s	2) 5 s	3) 6 s	4) 7 s	
21 .	A body is project body after 3 sec	eted with velocity 6 conds is	$0 m / s$ at 30° to	the horizontal. The velocity of the	
	1) $20\hat{i} + 20\sqrt{3}\hat{j}$	2) 30 <i>î</i>	3) 10√3 ĵ	4) $30\sqrt{3}\hat{i}$	
IX -	IX - CLASS 106				

22.	A body is proje	cted with velocity	u such that in horizon	tal range and maximum vertical
1	heights are sau	me.The maximun <i>3u²</i>	n height is $16u^2$	$8u^2$
i	1) $\frac{1}{2g}$	2) $\frac{1}{4g}$	3) $\frac{1}{17g}$	4) $\frac{1}{17g}$
23.	A cricket ball is	hit for a six leavin	g the bat at an angle of	60^0 to the horizontal with kinetic
1	energy 'k'. At th	ne top, K.E. of the	ball is k	k
	1) Zero	2) k	3) -	$(4) \overline{\sqrt{2}}$
24. 	A bomb at rest velocity of 20m	is exploded and the second time of the second second second second second second second second second second se	he pieces are scattered distance from that spot	in all directions with a maximum is $(g = 10 \text{ m/s}^2)$
	1) 10 m	2) 20 m	3) 30 m	4) 40 m
25 . 	A boy can thro distance that th	ow a stone up to ne boy can throw	a maximum height of the same stone up to v	10 m. The maximum horizontal vill be
	1) 20√2 m	2) 10 m	3) 10√2 m	4) 20 m
26 .	A grass hopper time on the gro	r can jump a maxi ound, its horizonta	mum horizontal distanc al component of velocity	e of 0.3 m. If it spends negligible / is (g=10 m/s^2)
į	1) 3/2 m/s	2) $\sqrt{\frac{3}{2}}$ m/s	3) 1/2 m/s	4) $\sqrt{\frac{2}{3}}$ m/s
27.	A stone is throw when it makes	wn with a velocity an angle β with	v_v at an angle θ	with the horizontal. Its speed
		v		$v\cos\theta$
	1) $v\cos\theta$	2) $\frac{1}{\cos\beta}$	3) $v\cos\theta\cos\beta$	4) $\cos\beta$
20. 	maximum heig mum possible	hts attained in the range is	e two cases are 20 m a	nd 10 m respectively. The maxi-
	1) 60 m	2) 30 m	3) 20 m	4) 80 m
29.	The launching height. Its angle	speed of a certair e of projection is	n projectile is five times	the speed it has at its maximum
i	1) $\theta = \cos^{-1}(0.$	2) 2) $\theta = \sin^{-1}(0.1)$.2) 3) $\theta = \tan^{-1}(0.2)$) 4) $\theta = 0^{\circ}$
30 . 	A person throw of 45° . The vel	vs a bottle into a d locity of thrown is	ustbin at the same heig	ht as he is 2m away at an angle
	1) g	2) \sqrt{g}	3) 2g	4) $\sqrt{2g}$
31. 	A particle project $120\sqrt{3}$ away respectively. It will solve at a distant	ected from the lev neasured horizor strike the ground nce of (in metres	rel ground just clears in ntally. The time since pl in the same horizontal)	its ascent a wall 30 m high and rojection to clear the wall is two plane from the wall on the other
	1)150 $\sqrt{3}$	2)180 $\sqrt{3}$	3) 120 $\sqrt{3}$	4) 210 $\sqrt{3}$
 32. 	A stone is proj average veloci (g=10 m/s²)	ected with a velo ty of stone during	city 20 $\sqrt{2}$ m/s at an an , its motion from starting	gle of 45º to the horizontal. The g point to its maximum height is
l	1)10 $\sqrt{5}$ m/s	2)20 $\sqrt{5}$ m/s	3)5 $\sqrt{5}$ m/s	4)20m/s
 33. 	A ball is thrown will be perpend	with velocity 8 m licular to the direct	${\rm s}^{-1}$ making an angle 60 ction of initial velocity of	° with the horizontal. Its velocity projection after a time of
Ì	1) $\frac{10}{\sqrt{3}}$ s	2) $\frac{1}{\sqrt{3}}$ s	3) 0.6 s	4)1.6 $\sqrt{3}$ s
34.	The range of a	projectile, when	launched at an angle of	15° with the horizontal is 1.5m.
 	The additional velocity at 45°	horizontal distantis	ce the projectile would o	cover when projected with same
IX-	CLASS			107

107₁

I

I

★ # # # # EXPLORERS (Level - III)

Assertion and Reason type:

 ◆ 	This section contains certain number of questions. Each question contains Statement -1 (Assertion) and Statement -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option.				
	1) Both A & R are true and R is correct explanation of A				
	2) Both A & R are true and R is not correct explanation of A				
	3) A is true but R is false. 4) Both A & R are false.				
1.	 A : The horizontal displacement of a projectile varies linearly with time. R : Projectile motion is uniform motion along horizontal direction. 				
2. 	 A: The path followed by one projectile as observed by another projectile is a straight line in uniform gravitation field. R: The relative velocity between two projectiles at a given place doesnot change with time. Because their relative acceleration is zero. 				
3. 	A : A ball is projected with 60ms^{-1} at 60^0 with the horizontal simultaneously a toy car starts moving with 30ms^{-1} from the same point and in the same horizontal direction as the ball moves. The ball always lies above the toy car. R : Bodies moving with same uniform velocity cover equal displacements in equal intervals of time				
4 . 	 A : Only vertical component of velocity of a projectile is known, time of flight can be calculated but horizontal range cannot be calculated. R : Time of flight depends on horizontal component and range depends on vertical component of velocity projection. 				
5. 	 A : In case of projectile the angle between velocity and acceleration changes from point to point. R : Because its horizontal component of velocity remains constant while vertical component of velocity changes from point to point due to acceleration due to gravity. 				
 	 A: In projectile motion, the angle between the instantaneous velocity and acceleration at the height point is 180⁰. R: At the highest point, velocity of projectile will be in horizontal direction only. 				
7.	A : When range of a projectile is maximum, its angle of projection may be 45° or 135° .				
	R : Horizontal range = $\frac{u^2 \sin 2\theta}{g}$. When q = 45 ⁰ or 135 ⁰ the range is same.				
8. 	A : When a body is projected at an angle 45 ⁰ , its maximum height is half than that of horizontal range.				
 	R : Horizontal range = $\frac{u^2 \sin 2\theta}{g}$ and maximum height = $\frac{u^2 \sin^2 \theta}{2g}$				
<u>Mat</u>	Matrix Match Type:				
• 	<i>This section contains Matrix-Match Type questions. Each question contains statements given</i> <i>in two columns which have to be matched. Statements (A, B, C, D) in</i> Column–I <i>have to be matched</i> <i>with statements (p, q, r, s) in</i> Column–II . <i>The answers to these questions have to be appropriately</i> <i>bubbled as illustrated in the following example.</i> <i>If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s, then the correct bubbled 4*4 matrix</i> <i>should be as follows:</i>				
9 . 	a) Vertically projected body e) 90 ⁰				
	· CLASS 109				

	b) For freely falling body	f) changes from point to point
i	c) For projectle	g) Zero
i	1) a b b a c f d a	$\begin{array}{c} 1) 180^{\circ} \\ 2) a f b a c a b c d a \end{array}$
ļ	3)a-e; b-f; c-h; d-g	4)a-g; b-h; c-e; d-f
10.	For a projectile 'R' is range and 'H' is	maximum height
1	a) $R = H$ e) Ar	representation $\tan^{-1}(1)$
1	b) R = 2H f) An	gle of projection $\tan^{-1}(4)$
1	c) R = 3H g)Ar	gle of projection tan ⁻¹ (2)
İ	d) $R = 4H$ h) Ar	igle of projection $\tan^{-1}(4/3)$
	1)a-g; b-h; c-e; d-t 3)a-f: b-g: c-h: d-e	2)a-h; b-g; c-e; d-t 4)a-e: b-g: c-f: d-h
 11	For a projectile relation between Ran	ne velocity of projection and angle of projection
	$(g=10 \text{m/s}^2)$	
	a) u = 20 m/s q = 30 ⁰	e) 45√3m
 	b) u = 30 m/s q = 60 ⁰	f) 40m
i	c) u = 30 m/s q = 45 ⁰	g) 20√3m
	d) u = 20 m/s q = 45 ⁰	h) 90m
	1)a-e; b-g; c-h; d-f	2)a-g; b-h; c-g; d-f
 841	3)a-f; b-h; c-g; d-e	4)a-g; b-e; c-n; d-f
	<u>this section contains multiple choice quest</u>	ions Each question has A choices (A) (B) (C) (D)
ļ 🍢	out of which ONE or MORE is correct. Ch	pose the correct options.
 12	A particle is projected from the grou	nd with velocity u at angle A with horizontal. The
1 2 . 	horizontal range, maximum height a	nd time of flight are R. H and T respectively. Now I
İ	keeping u as fixed, θ is varied from	30° to 60°. Then
l	(a) R will first increase. H will increase	se and T will decrease
	(b) R will first increase then dcrease	while H and T both will increase
	(c) R will decrease while H and T will	
 40	(d) R will increase while H and T will	ueclease
13.	resisitance is taken into consideratio	n and the corresponding values are R'_1 , H'_1 , t_1' and $t_2 = t_{AB}$. If all r'_1
ļ	t ₂ ' then	↑ , , , , , , , , , , , , , , , , , , ,
	(a) $R' < R, H' < H, t_1' > t_1 \text{ and } t_2 > t_2$	
 	(b) $R < R, H < H, t_1 > t_1 and t_2 < t_2$ (c) $P' < P, H' > H, t_1 > t_1 and t_2 < t_2$	A
İ	(c) $\mathbf{R} < \mathbf{R}, \mathbf{H} > \mathbf{H}, \mathbf{l}_1 > \mathbf{l}_1 \text{ and } \mathbf{l}_2 < \mathbf{l}_2$ (d) $\mathbf{R}' < \mathbf{R}, \mathbf{H}' < \mathbf{H}, \mathbf{t}' < \mathbf{t}$ and $\mathbf{t}' > \mathbf{t}$	x
İ.	(d) $\mathbf{R} \in \mathbf{R}, \mathbf{R} \mathbf{R} \in \mathbf{R}, \mathbf{R}, \mathbf{R} \in \mathbf{R}, $	C = t The horizontal displacement from O to A
"	is R and from A to B is R Maximum	$t_{AB} = t_2$. The horizontal displacement from 0 to A
	considered, then choose the correct	alternative(s).
1	(a) t_1 will decrease while t_2 will increase	ase
İ	(b) H will increase	A
l I	(c) R_1 will decrease while R_2 will in	crease O
	(d) T may increase or decrease	$R_1 R_2$
15.	A projectile is projected from the grou	und making an angle of $_{30^\circ}$ with the horizontal. Air
i	exerts a drag which is proportional to	the velocity of the projectile
i		

PHY	ISICS	MOTION IN A PLANE				
	(a) at highest point velocity will be horize	ontal				
	(b) the time of ascent will be equal to the time of descent					
1	(c) the time of descent will be greater th	(c) the time of descent will be greater than the time of ascent				
i	(d) the time of ascent will be greater than the time of descent					
16.	A particle is projected from ground with velocity $40\sqrt{2}$ m / s at 45° . At time t = 2 s					
	(a) displacement of particle is 100 m					
	(b) vertical component of velocity is 20 (a) velocity is 20 (b) (a) velocity is 20 (c) velocity is 20 (c) velocity in the set of	m/s				
1	(c) velocity makes an angle of $\tan (2)$	j with vertical				
i	a) particle is at holght of oo in more grou					
Con	nprehsion Type:					
•	This section contains paragraph. Based upo	on each paragraph multiple choice questions have to be				
Ì	answered. Each question has 4 choices (A) ,	(B), (C) and (D) out of which ONLY ONE is correct.				
 	Choose the correct option.	ĺ				
Pas	A body is projected with a velocity 60 m	s^{-1} at 30 ⁰ to horizontal.				
17.	Its initial velocity vector is					
1	1) $10\hat{i} + 10\sqrt{3}\hat{j}$ 2) $30\hat{i} + 30\sqrt{3}\hat{j}$	3) $30\sqrt{3}\hat{i} + 30\hat{j}$ 4) $30\sqrt{3}\hat{i}$				
18.	Velocity after 3 seconds is	indu				
	1) $20\hat{i}_{+20}\sqrt{3}\hat{i}_{-2}$ 2) $30\hat{i}_{-3}$ 3) $10\sqrt{3}$	4) 30√3 i				
19.	The displacement after 2 s is	02				
1	1) $30\sqrt{3}\hat{i} + 30\hat{j}$ 2) $60\sqrt{3}\hat{i} + 40\hat{j}$	$(3)_{10\sqrt{3}\hat{i}} + 10\hat{j}$ 4) $(4)_{\sqrt{3}\hat{i}} + 40\hat{i}$				
Pas	sage-II					
	A ball is projected at an angle of 30 ⁰ and	d 60 ⁰ to the horizontal with the same initial				
	Velocity in each case.					
20.	Ratio of their times of flight is					
İ	1) 1:1 2) 1:3	(3) 1: $\sqrt{3}$ 4) 2: $\sqrt{3}$				
2 1.						
 	1) 1.1 2) 1.3	$3) 1. \sqrt{3}$ $4) 2. \sqrt{3}$				
22 . 	National Tranges is 1) 1·1 2) 1·3	3) 1: /2 /2: /2				
i	1)1.1 2)1.3	$3) 1. \sqrt{3}$ $4) 2. \sqrt{3}$				
		v				
1						
	BEGINNERS :					
	$1)_{3}_{2}_{1}_{1}_{3}_{1}_{3}_{1}_{1}_{4}_{3}_{3}_{5}_{1}_{4}_{4}_{5}_{4}_{5}_{6}_{6}_{6}_{6}_{6}_{6}_{6}_{6}_{6}_{6$	6) 1 7) 2 8) 1 9) 3 10) 1 11) 2				
1	12) 1 13) 1 14) 2 15) 4 16) 3	17) 4 18) 3 19) 1 20) 2 21) 4 22) 4				
i	23) 3 24) 4 25) 4 26) 2 27) 4 2	28) 1 29) 1 30) 4 31) 2 32) 1 33) 1				
	34) 3 35) 4 36) 2 37) 1 38) 1 3	39) 3				
	ACHIEVERS: 1)9 2)3					
İ	12) h 13) h 14) a d 15) a d 16	0)4 /)1 0)1 9)1 10)3 11)4 S)abcd 17)3 18)4 19)2 20)3				
	21) 2 22) 3					
IX -	CLASS	111				

in the case .

(b) Range

The maximum horizontal distance travelled by the body while it touches the ground is the range (R). It is AB in the fig.

As the horizontal velocity is constant

Range R = (horizontal velocity) time of descent = $(u)t_{d}$.

From Eq. (v),
$$R = (u) \sqrt{\frac{2h}{g}}$$

(c) Velocity after some time

$$\vec{U} = U\hat{i} \qquad \vec{a} = g \hat{j}$$

$$\vec{v} = \vec{U} + \vec{a}t \qquad \vec{v} = U\hat{i} + gt \hat{j} \qquad \vec{v} = v_x \hat{i} + v_y \hat{j}$$

$$\tan \theta = \frac{v_y}{dt} \Rightarrow \theta = \tan^{-1}\left(\frac{gt}{dt}\right)$$

 $\vec{a} - \sigma \hat{i}$

$$\tan \theta = \frac{v_y}{v_x} \Longrightarrow \theta = \tan^{-1} \left(\frac{gt}{U} \right)$$

This is the angle made by the velocity vector with horizontal.

d) Velocity vector after travelling some vertical displacement.

$$\vec{U} = U\hat{i}; a = g\hat{j} \qquad \vec{s} = y\hat{j}; \vec{v}.\vec{v} = \vec{u}.\vec{u} + 2\vec{a}$$
$$v^{2} = u^{2} + 2ay; v = \sqrt{u^{2} + 2ay}$$
in vector form $\vec{v} = u\hat{i} + \sqrt{2ay}\hat{j}$.

Angle made by velocity vector with horizontal. $Tan \alpha = \sqrt{\frac{2gy}{II}}$;

Position vector after some time e)

$$\vec{U} = U\hat{i} \qquad \vec{a} = g\hat{j} \quad \vec{s} = \vec{U}t + \frac{1}{2}\vec{a}t^{2};$$

$$\vec{s} = Ut\hat{i} + \frac{1}{2}gt^{2}\hat{j} \quad \vec{s} = x\hat{i} + yj$$

$$x = Ut \qquad y = \frac{1}{2}gt^{2}$$

angle made by position vector with horizontal $\tan \alpha = \frac{y}{x} = \frac{\frac{1}{2}gt^2}{Ut}$; $\tan \alpha = \frac{gt}{2U}$

Case (ii) When body is projected at an angle above horizontal from the top of tower(If $\theta > 0$)

 $\vec{U} = U\cos\theta \hat{i} + u\sin\theta \hat{j}$

$$\vec{a} = -g\hat{j}$$

IX - CLASS

114

PHYSICS W.E - 6: An enemy plane is flying horizontally at an altitude of 2 km with a speed of 300 ms⁻¹. An army man with an anti - aircraft gun on the ground sights enemy plane when it is directly overhead and fires a shell with a muzzle speed of 600ms⁻¹. At what angle with the vertical should the gun be fired so as to hit the plane? **Sol:** Let G be the position of the gun and E that of the enemy plane flying horizontally with speed. Р Е u v_v $(90^{0}-\theta)$ Ground v_x $u = 300 ms^{-1}$, when the shell is fired with a speed v_0 The shell will hit the plane, if the horizontal distance EP travelled by the plane in time t = the distance travelled by the shell in the horizontal direction in the same time, i.e. $u \times t = v_x \times t \quad \text{or } u = v_x \implies u = v_0 \cos\theta$ or $\cos\theta = \frac{u}{v_0} = \frac{300}{600} = 0.5 \text{ or } \theta = 60^\circ$ Therefore, angle with the vertical $= 90^{\circ} - \theta = 30^{\circ}$. **W.E -7:** From the top of a tower, two balls are thrown horizontally with velocities u, and u, in opposite directions. If their velocities are perpendicular to each other just before they strike the ground, find the height of tower. **Sol:** Time taken to reach ground $t = \sqrt{\frac{2h}{g}}$ at time of reaching ground respective velocities are $\vec{v_1} = u_1\hat{i} + gt\hat{j}$, $\vec{v_2} = -u_2\hat{i} + gt\hat{j}$ Given $\overrightarrow{v_1} \cdot \overrightarrow{v_2} = 0$, $t = \frac{\sqrt{u_1 u_2}}{g}$ $\therefore \sqrt{\frac{2h}{g}} = \frac{\sqrt{u_1 u_2}}{g} \Rightarrow h = \frac{u_1 u_2}{2g}$ is the height of the tower. **W.E-8:** A block of ice starts sliding down from the top of an inclined roof of a house along a line of the greatest slope. The inclination of the roof with the horizontal is 30°. The heights of the highest and lowest points of the roof are 8.1 m and 5.6 m respectively. At what horizontal distance from the lowest point will the block hit the ground? Neglect any friction. [g = 9.8 m/s²] **Sol:** Acceleration of the block along the greatest slope is equal to $a = g \sin 30^{\circ}$ Distance travelled by the block along the greatest slope is equal to $S = \frac{(8.1 - 5.6)}{\sin 30^0} = 5m.$ If u be the speed of the block when it is just about to leave the roof then

As x = 0 is not possible, So, $\left[\frac{gx}{2u^2} - \tan\theta\right] = 0$ or $x = \frac{2u^2 \tan \theta}{g}$(v) Now from equation (i), (iv) and (v), we get $R = \sqrt{x^2 + y^2} = \sqrt{x^2 + (x \tan \theta)^2} = x\sqrt{1 + \tan^2 \theta} = x \sec \theta \quad \text{or} \quad = \frac{2u^2}{\alpha} \tan \theta \sec \theta$ V W.E -11: An aeroplane is flying in a horizontal direction with a velocity of 600 km/hour at a height of 1960 m. When it is vertically above a point A on the ground, a body is dropped from it. The body strikes the ground at a point B. Calculate the distance AB. **Sol:** Here, $v_0 = 600 \text{ km hr}^{-1} = \frac{600 \times 1000}{3600} = \frac{500}{3} \text{ ms}^{-1}$ For vertically downward motion of the body under gravity For vertically downward motion of the body under gravity $u = 0, g = 9.8 \text{ ms}^{-2}, S = h = 1960 \text{ m}, t = ?$ From formula, $S = ut + \frac{1}{2}gt^2$ Putting values, we get, $1960 = 0 + \frac{1}{2} \times 9.8 \times t^2 = 4.9 t^2$ i.e., $t^2 = \frac{1960}{4.9} = 400 \text{ or } t = 20 \text{ sec.}$ Horizontal distance covered by the body in the above time is given by, $R = v_0 t$ Putting values, we get, $R = \frac{500}{3} \times 20 = \frac{10^4}{3} m$ $R = \frac{10}{3} \text{ km} = 3.33 \text{ km}.$ <u>W.E -12:</u> Two particles move in a uniform gravitational field with an acceleration "g". At V the initial moment the particles were located at one point and moved with velocities $u_1 =$ 3.0 ms⁻¹ and $u_2 = 4.0$ ms⁻¹ horizontally in opposite directions. Find the distance between the particles at the moment when their velocity vectors become mutually perpendicular. Sol: The situation is shown Fig. Let the velocity vectors become perpendicular after time "t" when both particles has fallen same vertical distance $\frac{1}{2}$ gt² and have acquired same vertical velocities gt. Let their resultant velocities make angles " q_1 " and " q_2 " with horizontal. Then tan $q_1 = \frac{gt}{v_1}$ and tan $q_2 = \frac{gt}{v_2}$ θ_2 Since, velocity vectors are perpendicular $q_1 + q_2 = 90^\circ$, hence $\tan q_2 = \cot q_1$ at It makes $\tan q_1 = \frac{gt}{v_1}$ and $\cot q_1 = \frac{gt}{v_2}$ Multiplying we get. V W.E -13: A ball rolls off the top of a stairway with a horizontal velocity of magnitude 150 cm/sec. The steps are 20 cm high and 20 cm wide. Which step will the ball hit first? **Sol:** Let **x** be the horizontal distance measured from the foot of the edge of the step, the ball leaves the top of stairway to the point it hits the nth step. $\frac{1}{1}$ $x = v_0 t = 1.5 t$ (i) where v_0 is the initial horizontal speed. The height of the ball drops through is **IX - CLASS** 119

y = nH = 0.2 n..... (ii) where n is number of steps and H = 20 cm is the height of each step. As the vertical component of initial velocity is zero, the vertical distance traversed in the same time **t** is $y = \frac{1}{2}gt^2$ (iii) x = nw = 0.2 n (iv) and x = y = 0.2n (iv) V₀t = $\frac{1}{2}$ gt² t = $\frac{2V_0}{g} = \frac{2 \times 150 \times 10^{-2}}{10} \implies t = 0.3 s$ 2.25 m $\implies n = 3$ $0.2n = 1.5 (0.3) \implies n = 2.25 m \implies n = 3$ TEACHING TASK Single Answer Type: A stair case contains ten steps each 10 cm high and 20 cm wide. The minimum 1. horizontal velocity with which the ball has to be rolled off the upper most step, so as to hit directly the edge of the lowest step is (approximately) 3) 24ms⁻¹ 1) 42ms⁻¹ 2)4.2ms⁻¹ 4)2.4ms⁻¹ From certain height 'h' two bodies are projected horizontally each with velocity v. One 2. body is projected towards North and the other body is projected towards east. Their separation on reaching the ground 1) $\sqrt{\frac{2v^2h}{g}}$ 2) $\sqrt{\frac{4v^2h}{\sigma}}$ $3)\sqrt{\frac{v^2h}{\sigma}}$ 4) $\sqrt{\frac{8v^2h}{\sigma}}$ 3. An object is projected horizontally from a top of the tower of height h. The line joining the point of projection and point of striking on the ground makes an angle 45° with ground, Then with what velocity the object strikes the ground 2) $\sqrt{\frac{9gh}{2}}$ $1)\sqrt{\frac{11\mathrm{gh}}{2}}$ 3) $\sqrt{\frac{7\text{gh}}{2}}$ 4) $\sqrt{\frac{5gh}{2}}$ A ball is thrown horizontally from a cliff such that it strikes the ground after 5s. The line 4. of sight makes an angle 37° with the horizontal. The initial velocity of projection in ms-¹ is 3) $\frac{100}{\sqrt{2}}$ 2) $\frac{100}{\sqrt{3}}$ 1) 50 An object is launched from a cliff 20 m above the ground at an angle of 30° above the 5. horizontal with an initial speed of 30 m/s. How far does the object travel before landing on the ground? (in metre) 1)20 3)60 2) $20\sqrt{3}$ 4) $60\sqrt{3}$ 6. A bomber flying upward at an angle of 53° with the vertical releases a bomb at an altitude of 800 m. The bomb strikes the ground 20 s after its release. If $g=10 \text{ m s}^{-2}$, the velocity at the time of release of the bomb in ms⁻¹ is 1)400 2)800 3) 100 4) 200 **IX - CLASS**

PHY	ZSICS			MOTION IN A PLANE
7. 	Two particles move i moment the particles and $u_2 = 4 \text{ m s}^{-1}$ ho the moment when t $g = 10 \text{ m s}^{-2}$)	n a uniform gravita were located at sar prizontally in opposi heir velocity vecto	tional field with an ne point and moved te directions. The t ors are mutually p	acceleration g. At the initial d with velocities $u_1 = 9 \text{ m s}^{-1}$ ime between the particles at perpendicular in s is (take
1	1) 0.36	2) 3.6	3) 0.6	4) 6
8. 	An aeroplane is flyin food packet. A perso point. At what velocit	g horizontally at a h on on the ground is y should he move s	neight of 980 m wi 414 m ahead hoi o that he can catcl	th velocity 100 ms ⁻¹ drops a rizontally from the dropping n the food packet.
	1) $50\sqrt{2}ms^{-1}$	2) $\frac{30}{\sqrt{2}}ms^{-1}$	3) 100ms ⁻¹	4) $200 m s^{-1}$
Ass	ertion and Reason ty	vpe:		
 ◆ 	This section contains cen (Assertion) and Statemen which ONLY ONE is corr	tain number of questio nt – 2 (Reason). Each g rect Choose the correct	ns. Each question con question has 4 choices t option.	ntains Statement – 1 (A), (B), (C) and (D) out of
ļ	1) Both A & R are tru	e and R is correct e	explanation of A	10
 	2) Both A & R are tru	e and R is not corre	ect explanation of A	
ļ	3) A is true but R is fa	alse. 4) Both	A & R are false.	
 9. 	A: For a body project ground depends both	ed horizontally from on velocity of proje	the top of a tower, ection and height of	the velocity on reaching the f the tower.
	R : For a projectile ve	elocity varies both ir	horizontal and ver	rtical directions.
 	A : If a bomb is droppe the bomb appears to	ed from an aeroplan move along a vertic	e moving horizonta al straight line for th	lly with constant velocity then ne pilot of the plane.
	R : Horizontal component of velocity of the bomb remains const and same as thevelocity of the plane during the motion under gravity.			
<u>Mul</u>	<u>ti Answer Type:</u>			
 ◆ 	This section contains mu out of which ONE or M (ltiple choice questions DRE is correct. Choose	. Each question has 4 the correct options	choices (A), (B), (C),(D),
11.	Two projectiles A and	B are fired	y(m)	$\mu_2 \mathbf{k}$
	simultaneously as sh	own in figure.	20	$\theta_2 B$
	They collide in air at	point at time t.	20	u,
	Then			P
	(a) $t(u_1 \cos \theta_1 - u_2 \cos \theta_1)$	$(s\theta_2) = 20$	10	$\underline{K}_{\boldsymbol{\theta}_1}$
	(b) $t(u_1 \sin \theta_1 - u_2 \sin \theta_1)$	$\left(\theta_{2}\right) = 10$		
	(c) Both (a) and (b) a	ire correct	0	10 20 x(m)
	(d) Both (a) and (b) a	ire wrong		10 20
12 . 	An aeroplane at a co aeroplane,	nstant speed releas	ses a bomb. As the	e bomb drops away from the
	a) It will always be ve	rtically below the a	eroplane	
 	b) It will always be horizontallly.	vertically below the	e aeroplane only i	if the aeroplane was flying
i IX -	CLASS			121

PHYSICS	MOTION IN A PLANE				
c) It will always be vertically below th angle of 45º to the horizontal	c) It will always be vertically below the aeroplane only if the aeroplane was flying at an angle of 45° to the horizontal				
d) It will gradually fall behind the aero	d) It will gradually fall behind the aeroplane if the aeroplane was flying horizontally.				
Matrix Match Type:					
This section contains Matrix-Match Type in two columns which have to be matched matched with statements (p, q, r, s) in Co appropriately bubbled as illustrated in a If the correct matches are A-p,A-s,B-r,B-r should be as follows:	This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II . The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows:				
13. When a body is projected horizontally	with velocity 'u' 'from certain height, it reaches				
the ground with the velocigty 4u, ther	า				
1) height of projection	a) 4u				
 2) Range 	b) $\frac{u}{g}\sqrt{15}$				
 3) Time of flight 	c) $\frac{u^2}{g}\sqrt{15}$				
4) Velocity to reches the ground	d) $\frac{13u}{2g}$				
A) 1-d,2-c,3-b,4-a C) 1-a,2-c,3-b,4-d D) 1-	-d,2-b,3-c,4-a -b,2-c,3-d,4-a				
Comprehsion Type: ◆ This section contains paragraph. Based answered. Each question has 4 choices (Choose the correct option. Passage: 1	omprehsion Type: This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B),(C) and (D) out of which ONLY ONE is correct. Choose the correct option.				
Two projectiles are projected simultaneously from the top and bottom of a vertical tower					
of height h at angles 45° and 60° abo point on ground at distance 20m from	we horizontal respectively. Body strike at the same m the foot of the tower after same time.				
14. The speed of projectile projected fro	m the bottom is				
a) 40 m/s b) $\frac{20}{\sqrt{3}}m/s$ c) $40\sqrt{3}m/s$	d) $\frac{20}{\sqrt{\sqrt{3}}} m/s$				
15.The ratio of the speed of the projectile projected from the bottom of tower is	projected from the top and the speed of the projectile				
a) $1:\sqrt{2}$ b) $1:\sqrt{3}$ c) $\sqrt{5}:1$	d) $\sqrt{7}:1$				
16. The time of flight of projectiles is	1				
a) $(3)^{\frac{1}{4}}$ b) $2(3)^{\frac{1}{4}}$ c) $3(3)^{\frac{1}{4}}$	d) $4(3)^{\frac{1}{4}}$				
Passage:2	(IIT JEE 1996)				
Two guns situated on top of a hill of h $5\sqrt{3}$ m/s at some interval of time. On at an angle of 60° with the horizontal	eight 10m fire one shot each with the same speed a gun fires horizontally and the other fires upwards I. The shots collide in air at a point P. Find				
17. The time interval between the firings	and				
IX - CLASS	122				

 	3) a parabola for an observer in B when B is moving with same speed but in opposite direction			
	4) all the above	are true		
4 . 	A ball is thrown from rear end to the front end of a compartment of a train which is moving at constant horizontal velocity. An observer sitting in the compartment and another observer standing on the ground draw the trajectory of the ball. They will have			
	1) equal horizor	ntal and equal vertion	cal ranges	
	2) equal vertical ranges but different horizontal ranges			
1	3) different vert	ical ranges but equa	al horizontal ranges	
Ì	4) different vert	ical and different ho	rizontal ranges	
5.	For body throw	n horizontally from t	the top of a tower,	
	1) the time of fli	ght depends both o	on h and v	
1	2) the horizonta	al Range depends o	nly on v but not on h	
i	3) the time of fli	ght and horizontal F	Range depend on h bu	t not on v
	4) the horizonta	al Range depends o	n both v and h	40
6 .	A body projecte	d horizontally with a v	velocity 'v' from a heigh	t 'h' has a range 'R'. With what
1	1) $\sqrt{2}$ v	2) 2v	3) 6v	1/2 to flave the same range ?
7	A stone is throw	wn horizontally with	velocity a ms ⁻¹ from t	he top of a tower of height g
	metre. The velo	city with which it hi	ts the ground is (in ms	(5^{-1})
	1)g	2) 2g	3) √3 <i>g</i>	4) 4g
8. 	A body is thrown angle 45° to the	ו horizontally from th e ground. The veloc	ne top of a tower. It read ity of projection is	ches the ground after 4s at an
	1)9.8ms ⁻¹	2)19.6ms ⁻¹	3)29.4ms⁻¹	4) 39.2ms ⁻¹
9. 	Two cliff of heig if a car has to re be	hts 120 m and 100. each from the first cl	.4 m are separated by liff to the second the ho	a horizontal distance of 16 m prizontal velocity of car should
1	1) 16 m/s	2) 4 m/s	3) 2 m/s	4) 8 m/s
10. 	A body projecte where x , y are	d horizontally from the in m $(g = 10 \text{ m s}^{-2})$	ne top of a tower follows .Then the velocity of th	$y = 20 x^2$ parabola equation the projectile is (ms ⁻¹)
	1) 0.2	2) 0.3	3) 0.4	4) 0.5
11. 	A bomb is drop an altitude of 98	ped from an aeropla 30m. Time taken by	ane flying horizontally v the bomb to hit the gro	with a velocity of 720 kmph at ound is
1	1) 1 s	2) 7.2 s	3) 14.14 s	4) 0.15 s
12. 	A body is projected horizontally from a height of 78.4 m with a velocity 10 $_{MS}^{-1}$. Its velocity after 3 seconds is (g=10 $_{MS}^{-2}$)(Take direction of projection as i and vertically upward direction as j)			
İ	1) $10\hat{i} - 30\hat{j}$	2) $10\hat{i} + 30\hat{j}$	3) $20\hat{i} - 30\hat{j}$	4) $10\hat{i} + 10\sqrt{3}\hat{j}$
13. 	Two thin wood at speed of 600 from B making difference of h	screens A and B are) m/s hits the screen holes in A and B heights of the holes	e separated by 200 m en A penetrates throug the resistance of air a s in A and B is.	a bullet travelling horizontally gh it and finally emerges out and wood are negligible the
i I	1) 5 m	2) $\frac{49}{26}m$	3) $\frac{7}{\sqrt{22}}m$	4)zero
Ĺ	/	· 90	<i>′</i> √90	,

PHY	/SICS			MOTION IN A PLANE
14. 	A body is proj elapse before	ected horizontally from the vertical compored the sector of the sector o	om the top of a tower wi nent of is twice of the ho	th a velocity 9.8 m/s. The time prizontal velocity is.
1	1) 1s	2) 2s	3)0.5s	4) 1.5s
15. 	A particle is p from <u>the e</u> dge	projected horizontally , then the <u>vel</u> ocity of	y from the table to toucl f projection <u>is</u>	hes the ground at distance 'd'
 	$1)h\sqrt{\frac{2g}{d}}$	$2)d\sqrt{\frac{2g}{h}}$	$3)h\sqrt{\frac{g}{2d}}$	$(4)d\sqrt{\frac{g}{2h}}$
 16. 	Two stones A horizontally if	and B are thrown w they reach the grou	ith velocity 10 m/s and and after times t ₁ and t ₂ i	20 m/s from the to of a tower respectively, then
	1) t ₁ =2 t ₂	2) t ₂ =2 t ₁	3) t ₁ =t ₂	4) $t_{1}^{2}=2t_{2}^{2}$
17. 	A body is proje 30 ⁰ to the hori	ected horizontally fro zontal the its initial v	m certain height. After 2 velocity is	s its direction of motion makes
 	1) $\frac{2g}{\sqrt{3}}$	$2)2\sqrt{3}g$	3) 3) $\frac{\sqrt{3g}}{2}$	4) none
18. 	A stone is thro The velocity w	wn horizontally with vith which it hits grou	velocity 30 m/s from the und is (in m/s)	e top of a tower height 0f 60m.
l	1) 0	2) 20	3) $10\sqrt{21}$	4) $20\sqrt{3}$
19. 	A ody is proje 10s. Then itr s	cted horizontally wit strikes the ground at	h 98 m/s from the top a an angle	a tower reaches the ground in
l	1) 0 ⁰	2) 45 ⁰	3) 30 ⁰	4) 60 ⁰
20 .	A body is pro ground with a	jected horizontally v velocity '2u'. the hei	with a velocity 'u' from t ight of the tower is	the top of a tower strikes the
	1) u²/2g	2) u²/g	3) 3u²/g	4) 3u²/4g
21. 	A body is proj reaching the g	pround its displacem	with 10 m/s from the top nent is (g=10m/s)	o of a tower of height 20m on
 	1) 40m	2) 20m	3) $20\sqrt{2}$ m	4) $40\sqrt{2}$ m
22. 	Two stones an velocities 25 r oth are project	re proje andcted hor n/s and 45 m/s. The ted in same directio	izontally from the top of e seperation between th n is	f a tower of height 78.4m with hem on reaching the ground if
1	1) 40m	2) 80m	3) 120m	4) 160m
23.	A bomb is dro an altitude of s	opped from an aerop 980m. Time taken b	blane flying horizontally y the bomb to hit the gro	with a velocity of 720kmph at ound is
ļ	1) 1s	2) 7.2s	3) 14.14s	4) 0.15s
24 . 	From the top m/s and 20 m 1) 120 m	of a tower of height /s in opposite direct 2) 100 m	78.4 m two stones are ions. On reaching the g 3) 200 m	projected horizontally with 10 ground, their separation is 4) 150 m
 25. 	A body is proje masses in the $m s^{-1}$. The tir	ected vertically upwa e ratio of 2:3 and th ne after which the l	ards. At its highest point ne lighter piece flies ho ines joining the point o	t it explodes into two pieces of rizontally with a velocity of 6 of explosion to the position of
 	1) $\sqrt{\frac{6}{25}}$ s	2) $\sqrt{\frac{12}{15}}$	$\sqrt{\frac{24}{25}}$ s	4) 2 s.
26	$\gamma 23$ From the top (γις of a building 80 m hi	<i>ی</i> ہ ah_a ball is thrown hori	zontally which hits the around
	at a distance. makes an ang	The line joining the t gle of 45° with the gro	top of the building to the ound. Initial velocity of p	point where it hits the ground projection of the ball is
IX -	CLASS			125
I –				

PH	YSICS	MOTION IN A PLANE				
	velocity of the plane during the motion under gravity.					
2.	A) : Time taken by the bomb to reach the ground from a mo on height of aeroplane only	oving aeroplane depends				
	R) : Horizontal component of velocity of bomb remains component of velocity of bomb changes due to gravity	ins constant and vertical				
3.	A) : For a body projected horizontally from the top of a tow the ground depends both on velocity of projection and heig	ver, the velocity on reaching ht of the tower.				
	R : For a projectile velocity varies both in horizontal and ve	rtical directions.				
Mu	Iti Answer Type:					
*	This section contains multiple choice questions. Each question has 4 out of which ONE or MORE is correct. Choose the correct options	choices (A), (B), (C),(D),				
5.	 a) The path of bomb as seen by the observer on the groun b) The path of the bomb as seen by a pilot is a straight line c) The path of the aeroplane with respect to bomb is a straight of the bomb as seen by pilot observed as para d) The path of the bomb as seen by pilot observed as para 1) a is correct 2) a and b are correct 3) a,b and c are correct An aeroplane moving horizontally from west to east with 	d is parabola aight line bola. ect some velocity and with an				
	a) The path of the packet is parabolic with respect to grounb) A person sitting on the aeroplane shall see the packet is plane.c) With respect to plane, the packet travels in a stright line r west of vertical	making an angle $\tan^{-1}(1/2)$				
<u>Ma</u> t ♦	 d) With respect to plane, the packet travels in a stright line making an angle tan⁻¹(2) east of vertical atrix Match Type: This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be 					
	appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the should be as follows:	correct bubbled 4*4 matrix				
6.	A ball is projected horizontally with a speed of 9.8 m/s from	the top a tower of height 4.9				
	m. Then match the following two columns.					
	<u>Column-I</u>	<u>Column-II</u>				
	A) Time of flight in seconds B) Magnitude of velocity in m/s on reaching the ground	p) 4.9 q) 9.8				
	C) Horizontal range in meters	r) 9.8√2				
	D) Magnitude of change in vertical velocity in $\frac{1}{2}$ s in m/s	s) 1				
IX	- CLASS	127				
-						

 7.	a) Equatior	n of trajectory		e) $\sqrt{u^2 + 2gh}$			
 	b) Range			f)	Tan ⁻¹ (gt/u)			
	c) velocity a	aqt ground		g)) y=(g/2u ²)x ²			
	d) The angle at which projectile strikes the ground h) $u \sqrt{\frac{2h}{g}}$							
	1)a-g; b	o−d; c−a;	d – b	2) a – g ;	b-h; c-g;	d – f		
	3)a-f; b	o−h; c−g;	d – e	4) a – g ;	b-e; c-h;	d – f		
<u>Con</u>	nprehsion Ty	<u>pe:</u>						
♦	This section of answered. Ed	contains paragrap ach auestion has 4	h. Based upon e choices (A). (B)	each paragraph i (C) and (D) or	nultiple choice que ut of which ONLY (stions have to be ONE is correct.		
 	Choose the c	correct option.		,(=) = (=) = .				
Pas 	Passage-I From a tower of height 19.6m two bodies are simultaneously projected horizontal in opposite directionts, with velocites of 10m/s and 4 m/s respectively.							
 8.	The time take	en for the veloci	tes vectors of	two bodies to	become perpend	dicular to each		
	othe is	2) 0 2s	3)	0.45	4) 0 8s			
9.	The horizonta dicular to eac	al distance betw ch other is	veen the two bo	odies when the	eir velocity vecto	rs are perpen-		
	1) 1m	2) 0.5m	3)	2m	4) 4m			
10. 	10. The time taaken for the displacement vectors of the two bodies to become perpend lar to each other is							
 Baa	1) 0.1s	2) 0.2s	3)	0.4s	4) 0.8s			
ras 	When a stone is projected horizontally from top of the tower height is 45m, with the velocityof 30m/s then,							
11.	Time of desc	ent						
 12	1) 3s The velocity v	2) 2s with which it hit	3) s the around	1s	4) 4s			
	1) $20m/s$	2) 30 m/s	3)	$20\sqrt{2m/c}$	4) 20 $\sqrt{2m}$			
 13.	The horizont	al displacemen	t or range	JUV ZIII/ S	1) ZUĄ ZII	1/ 5		
	1) 45m	2) 90m	3) :	25m	4) 30m			
 n								
 	A boat is moving with a velocity (3i+4j) with respect to ground. The water in the river moving with a velocity (-3i-4j) with respect to ground. The relative velocity of boat with respect to water is (2001F)							
	1) 6i+8j	2) zero	3) 6i	4)) 8j			
IX -	CLASS					128		

PHYSICS MOTION IN A PLANE 2. Two persons A and B are located in x-y plane at the points (0, 0) and (0, 10) respectively (the distances are measured in mks units). At time t = 0, they start moving simultaneously with velocities $\vec{v}_A = 2\hat{j}$ m/s and $\vec{v}_B = 2\hat{i}$ m/s. The time after which A and B are at their closest distance (2009M) 1) 2.5 s 2) 4 s 3) 1 s 4) 10/ s 3. Two bodies are projected simultaneously in the same verticle plane from the same point with velocities v_1 and v_2 with angles θ_1 and θ_2 respectively with the horizantal. If $v_1 \cos \theta_1 = v_2 \cos \theta_2$, the path of one ball from the position of other ball is (2010M) 1) Parabola 2) Horizantal straight line 4) straight line making 45^{0} with the vertical 3) Vertical straight line The maximum height reached by projectile is 4 metres. The horizontal range is 12m. 4. Velocity of projection in m/s is (g - acceleration due to gravity) (2004M) 3) $\frac{1}{3}\sqrt{\frac{g}{2}}$ 1) $5\sqrt{\frac{g}{2}}$ 2) $3\sqrt{\frac{g}{2}}$ 5. Two stones are projected with the same speed but making different angles with the horizontal. Their horizontal ranges are equal. The angle of projection of one is p/3 and the maximum height reached by it is 102m. Then the maximum height reached by the other in metres is (2003M) 3) 56 1) 336 2)224 4) 34 A projectile has initially the same horizontal velocity as it would acquire if it had moved 6. from rest with uniform acceleration of 3m/s² for 0.5 minute. If the maximum height reached by it is 80m, then the angle of projection is $(g=10m/s^2)$ (2002M) 1) $tan^{-1}(3)$ 2) $\tan^{-1}(3/2)$ 3) $\tan^{-1}(4/9)$ 4) $\sin^{-1}(4/9)$ 7. The horizontal and vertical displacements of a projectile at a time 't' are x = 36t, y = 48t - 4.9t² respectively. Initial velocity of the projectile is (in m/s) (2002M) 2) 30 3) 45 1) 15 4)60 It is possible to project a particle with a given speed in two possible ways so that it has 8. the same horizontal range R. The product of the times taken by it in the two possible ways is (**2001M**) R 2R 4R 3) 2) 1) g A body of mass m1, projected vertically upwards with an initial velocity 'u' reaches a 9. maximum height 'h'. Another body of mass m₂ is projected along an inclined plane making an angle 30⁰ with the horizontal with a velocity 'u'. The maximum distance travelled along the incline is (**2001M**) 3) h/2 4) h/4 1) 2h 2) h **10.** A boy playing on the roof of a 10m high building throws a ball with a speed of 10 m/s at an angle of 30° with the horizontal. How far from the throwing point will the ball be at the height of 10m from the ground? [AIEEE-2013] $(g = 10 m / s^2, \sin 30^\circ = 1 / 2, \cos 30^\circ = \sqrt{3} / 2)$ b) 5.20 m c) 4.33 m d) 2.60 m a) 8.66 m **IX - CLASS** 129

PHYSICS **MOTION IN A PLANE 11.** A projectile can have the same range R for two angles of projection. If T_1 and T_2 be the time of flights in the two cases, then the product of the two time of flights is directly proportional to [AIEEE-2004] a) $1/R^2$ b) 1/R c) R d) R^{2} **12.** The relation between time t and distance x is $t = ax^2 + bx$ where a and b are constants. The acceleration is [AIEEE-2005] c) $-2abv^2$ a) $-2av^{3}$ b) $2av^2$ d) $2hv^3$ **13.** A projectile can have the same range 'R' for two angles of projection. If t_1 ' and t_2 ' be the times of flights in the two cases, then the product of the two times of flight is proportional [AIEEE-2005] to a) 1 / R d) 1 / R² b) R c) R^2 **14.** A particle is projected at 60° to the horizontal with a kinetic energy K. The kinetic energy at the highest point is [AIEEE-2007] (d) K/4 a) K/2 b) K c) zero **15.** A projectile is projected under gravity with velocity $\sqrt{2ag}$ from a point at a height 'h' above the level plane at an anle ' $_{\theta}$ ' to it. The maximum range R on the ground is [AIEEE2007] 2) √a²h 3) √a h 4) $2\sqrt{a(a+h)}$ 1) $\sqrt{(a^2+1)h}$ 16. A ball is thrown vertically upwards with a speed of 10m/s from the top of the tower 200m high and another is thrown vertically downwards with the same speed simultaneously. The time difference between them in reaching the ground is (g=10m/s) (**1994E**) 1) 12s 2) 6s 4) 1s 3) 2s A ball iis released from the top of a tower of height h meter. it takes T seconds to reach 17. the ground. what is the position of the ball in T/3 seconds. (2004A) 1) h/9 meters from the ground 2) 7h/9 meters from the ground 3) 8h/9 meters from the ground 4) 17h/18 meters from the ground A wooden block of mass 10g is dropped from the top of a cliff 1`00m high. simultameously 18. a bullet of mass 10g is fired from the foot of the cliff upward with velocity 100m/s. The bullet and the wooden block will meet each after a time (**2011M**) 1) 10s 2) 0.5s 3) 7s 4) 1s Additional Worksheet for practice: | II) A ball is projected at an angle of 30° and 60° to the horizontal with the same initial 1. velocity in each case. Ratio of their times of flight is 4) 2: $\sqrt{3}$ 3) 1: $\sqrt{3}$ 1) 1:1 2) 1:3 | 2. Two stones are projected with the same speed but making different angles with the horizontal. Their horizontal ranges are equal. The angle of projection of one is $\pi/3$ and the maximum height reached by it is 102m. Then the maximum height reached by the |other in metres is 1) 336 2) 224 4) 34 3) 56 3. In the above problem, ratio of maximum height is **IX - CLASS** 130

PHY	ISICS				МОТ	ION IN A PLANE	
	1) 1:1	2) 1:3		3) 1: √ <u>3</u>		4) 2: √ <u>3</u>	
¦4 . ∣	For a projectile (g=10ms ⁻²)	, the ratio of ma	ximum	height reache	ed to the squa	re of flight time is	
İ	1) 5:4	2) 5:2		3) 5:1		4) 10:1	
 5.	In the above pro	blem, ratio of rai	nges is	3			
i	1) 1:1	2) 1:3		3) 1: √ <u>3</u>		4) 2: √ <u>3</u>	
 	The horizontal r then the angle o	ange of a projec f projection is	ctile is	$4\sqrt{3}$ times the	emaximum hei	ght achieved by it,	
İ	1) 30 ⁰	2) 45 [°]		3) 60 ⁰	4) 90 ⁰		
7.	If the range and range that could	maximum height I be obtained wit	of a pr h the s	ojectile are resp ame velocity o	pectively 'R' and f projection is	d 'H', the maximum \mathbf{H}^2	
	1) 4H	2) 2R		3)2H + $\frac{R}{2H}$		4) $2R + \frac{H}{8P}$	
8. 	A body is projected horizontally from a height of 78.4 m with a velocity10 ms ⁻¹ . Its velocity after 3 seconds is [$g = 10 \text{ ms}^{-2}$]						
	1) 10i +30j	2) 10i +10j		3) 20i +30j	4) 10i	+10√3 j́	
9 . 	A bomb is dropp an altitude of 98	oed from an aero 0m. Time taken	plane by the	flying horizonta bomb to hit the	ally with a veloc ground is	city of 720 kmph at	
	1) 1 s	2) 7.2 s	イ	3) 14.14 s		4) 0.15 s	
10. 	A stone is thrown velocity with whic	horizontally with ve h it hits the groun	elocity g id is (in	ms ⁻¹ from the to ms ⁻¹)	op of a tower of	height g metre. The	
	1) g	2) 2g	20	3) √3g	4) 4g		
11. 	Two particles A and B are prejected simultaneously freom the two towers of height 10m and 20m respectively. Particle A is projected with an initial speed of $10\sqrt{2}$ m/s at angle 45^0 with horizontal, while particle B is projected horizontally with speed 10m/s. If they collide in aiar what is the distance 'd' between the towers						
	1) 10m	2)5m		3)2m		4) 15m	
12 .	A ball is thrown h 75m away from	norizontally from the tower , if g=	the top 10m/s²	a tower with a ² , height of the	speed 12.5m/s tower is	strikes the ground	
	1) 45m	2) 90m 🕄	3) 150		4) 180m		
į							
İ							
IX -	CLASS					131	

MOTION IN A PLANE

			P	ΚEY				
י ו סמ		STVOK ·						
<u>* 4</u> □	BEGINNERS	: 1) 3 2) 3	3) 4 4))2 5)4	4 6) 1	7) 3 8) 4	9) 4	
		10) 4 11) 3	12) 1 13)	2 14)2	2 15) 4	16) 1 17)	2 18) 3	
		28) 1 29) 3	21) 5 22)	2 23)	5 24)1	23/3 20)	5 21)4	
	ACHIEVERS	: 1) 4 2) 3					
	EXPLORERS	5:1)1 2)) 2 3) 3	4) 3	5) a,c	6) A–s	; B–r; C–q; D-	-р
i		7) 1 8)) 3 9) 1	10) 2	11) 1 12)) 3 13) 2		
	RESEARCHE	RS:						
	l)1)a 2) 12)4 13)) c 3) a 4)) 2 14) 1 15) b 5) d 5) 4 16) 3	6) 1 17) 3	7) 1 8) 3 18) 4	39)1	10)4 11)3	
	II) 1) 3 2)	4 3) 2 4)) 1 5) 1	6) 1	7)3 8)	19)3	10) 3 11)3	
 	12)4					tiO!		
					nda			
				col				
 					02			
ļ				01-1				
			- 70	6				
ļ								
ļ								
ļ								
	CLASS							122
	- CLASS							152