

Genius High School

IIT/NEET/OLYMPIAD FOUNDATION Bridge Course – VIII Class

p

BASIC CONCEPT OF MATHEMATICS

TRIGONOMETRY

TRIGONOMETRIC IDENTITIES

According to Pythagoras's theorem, $p^2 + b^2 = h^2$...(i)

Dividing (i) by h²,
$$\left(\frac{p}{h}\right)^2 + \left(\frac{b}{h}\right)^2 = 1 \implies \sin^2\theta + \cos^2\theta = 1$$

Dividing (i) by b², $\left(\frac{p}{b}\right)^2 + 1 = \left(\frac{h}{b}\right)^2 \implies \tan^2\theta + 1 = \sec^2\theta$
Dividing (i) by p², $1 + \left(\frac{b}{p}\right)^2 = \left(\frac{h}{p}\right)^2 \implies 1 + \cot^2\theta = \csc^2\theta$

SOME VALUES OF TRIGONOMETRIC ANGLES

angle ratio	0^0	30 ⁰	45^{0}	60^{0}	90 ⁰	
sin	$\sqrt{\frac{0}{4}} = 0$	$\sqrt{\frac{1}{4}} = \frac{1}{2}$	$\sqrt{\frac{2}{4}} = \frac{1}{\sqrt{2}}$	$\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$	$\sqrt{\frac{4}{4}} = 1$	$\sqrt{2} = 1.414$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$\sqrt{3} = 1.732$
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined	

• The value of $\sin\theta$ increases form 0 to 1, as θ increases from 0° to 90°.

• The value of $\cos \theta$ decreases from 1 to 0, as θ increase form 0° to 90° .

- Class : VIII
- The value of tan θ increases from 0 to ∞ (infinity), as θ increases from 0° to 90°

Complementary relations

$\sin A = \cos(90^\circ - A)$	$\cos A = \sin (90^\circ - A)$
$\tan A = \cot(90^\circ - A)$	$\cot A = \tan (90^\circ - A)$
$\sec A = \csc(90^\circ - A)$	$\operatorname{cosec} A = \operatorname{sec} (90^{\circ} - A)$

Some relations

Illustrations –1:	If $5\tan\theta = 4$, find the value of $\frac{5\sin\theta - 3\cos\theta}{5\sin\theta + 2\cos\theta}$
Solution:	Given $5\tan\theta = 4 \implies \tan\theta = \frac{4}{5}$ (i)
	Now $\frac{5\sin\theta - 3\cos\theta}{5\sin\theta + 2\cos\theta} = \frac{5\frac{\sin\theta}{\cos\theta} - 3\frac{\cos\theta}{\cos\theta}}{5\frac{\sin\theta}{\cos\theta} + 2\frac{\cos\theta}{\cos\theta}}$
	(Dividing the numerator and denominator by $\cos\theta$)
	$=\frac{5\tan\theta-3}{5\tan\theta+2}\qquad \qquad \left(\tan\theta=\frac{\sin\theta}{\cos\theta}\right)$
	$=\frac{5(4/5)-3}{5(4/5)+2}$ [using (i)]
	$=\frac{4-3}{4+2}=\frac{1}{6}$

Illustrations –2:	If θ is acute and $3\sin\theta = 4\cos\theta$, find the value of $4\sin^2\theta - 3\cos^2\theta + 2$
Solution:	Given $3\sin\theta = 4\cos\theta \implies \frac{\sin\theta}{\cos\theta} = \frac{4}{3} \implies \tan\theta = \frac{4}{3}$
	But $\tan\theta = \frac{MP}{OM} \implies \frac{MP}{OM} = \frac{4}{3}$ Draw a triangle OMP right angled at M (Shown in the adjoining figure) such that MP = 4 and OM = 3.

KEY POINTS

- Arc length : An arc "subtends" an angle at the centre of the circle.
- **Analytic Trigonometry :** Analytic Trigonometry takes place on the x-y plane. According to the Pythagorean Theorem

This is the analytic definition for an angle terminating in any quadrant. It is in terms of the coordinates (x, y) of the endpoint of a radius r.

0

• Trigonometric Identities

Reciprocal Identities

(i) $\cos x = \frac{1}{\sec x}$ and $\sec x = \frac{1}{\cos x}$ (ii) $\sin x = \frac{1}{\csc x}$ and $\csc x = \frac{1}{\sin x}$ (iii) $\tan x = \frac{1}{\cot x}$ and $\cot x = \frac{1}{\tan x}$

Quotient Identities

(i) $\tan x = \frac{\sin x}{\cos x}$ (ii) $\cot x = \frac{\cos x}{\sin x}$

Pythagorean Identities

- (i) $\cos^2 x + \sin^2 x = 1$ (ii) $1 + \tan^2 x = \sec^2 x$
- (iii) $1 + \cot^2 x = \csc^2 x$

Negative Angle Identities

- (i) $\cos(-x) = \cos x$
- (ii) $\sin(-x) = -\sin x$
- (iii) $\tan(-x) = -\tan x$

ASSIGNMENT – I

- 1. If $\tan A = \cot B$, prove that $A + B = 90^{\circ}$.
- 2. Express $\sin 67^0 + \cos 75^0$ in terms of trigonometric ratios of angles between 0^0 and 45^0 .
- 3. In the figure, the chord AB makes and angle of 30^0 at the point C of the circle. If the radius of the circle is 4 cm, find the length of the chord AB.

4. In the figure, ABCD is a rectangle with sides 10 cm and 16 cm. AE makes an angle of 60° with AB. Find the perimeter of the trapezium ABCE.

- 5. A chord of length 10cm makes and angle 60° at the center of a circle. Find the radius of the circle.
- 6. In the figure, ABCD is a rectangle with sides 10 cm and 16 cm. AE makes an angle of 60^0 with AB. Find the perimeter of the trapezium ABCE.
- 7. In the figure, ABCD is a parallelogram such that AB = 8cm, AC = 10 cm and $\angle BAC = 30^{\circ}$.

- 8. In a right-angled $\triangle PQR$, $\angle R = 90^{\circ}$, PR = 8 cm and PQ = 17 cm. Find the value of sin P.
- 9. Evaluate $3\sec^2 30^\circ + 4\tan^2 60^\circ 6\cot^2 30^\circ$

10. Find the value of
$$\frac{\tan 45^{\circ}}{\cos e c 30^{\circ}} + \frac{\sec 60^{\circ}}{\cot 45^{\circ}} - \frac{2\sin 90^{\circ}}{\cos 0^{\circ}}$$

ASSIGNMENT – II

- 1. If $\sin \theta = \frac{5}{13}$ and θ is less than 90°, find the value of $\tan \theta + \frac{1}{\cos \theta}$.
- 2. If $\sin \theta = \frac{\sqrt{3}}{2}$ and $\cos \phi = \frac{1}{\sqrt{2}}$, find the value of $\frac{\tan \theta \tan \phi}{1 + \tan \theta \tan \phi}$ (where θ and ϕ are acute).
- 3. If $\tan \theta = \frac{5}{12}$, find sec θ and sec θ + cosec θ , where θ is acute.
- 4. From the adjoining figure, find cos y.
- 5. If 5 tan $\theta = 4$, find the value of $\frac{5\sin\theta 3\cos\theta}{5\sin\theta + 2\cos\theta}$.
- 6. If θ is acute and $3 \sin \theta = 4 \cos \theta$, find the value of $4 \sin^2 \theta 3 \cos^2 \theta + 2$.
- 7. In the adjoining figure, $\triangle ABC$ is right-angled at B and $\tan a = \frac{4}{3}$. If AC = 15 cm, find the lengths of AB and BC.
- 8. In the adjoining figure, AM is perpendicular to BC. If $\tan B = \frac{3}{4}$, $\tan C = \frac{5}{12}$ and BC = 56 cm, calculate the length of AM.
- 9. ABCD is a rhombus whose diagonal AC makes an angle α with AB. If $\cos \alpha = \frac{2}{3}$ and OB = 3 cm, then find the side and the diagonals of the rhombus.
- 10. If $\tan x + \cot x = 2$, find the value of $\tan^2 x + \cot^2 x$.
- 11. Prove that $\tan^2 \theta \frac{1}{\cos^2 \theta} + 1 = 0$.

KEY & HINTS

TRIGONOMETRY

ASSIGNMENT – I

- 1. $\tan A = \cot B \Rightarrow \tan A = \tan(90^{\circ} B)$ $\Rightarrow A = 90^{\circ} - B \Rightarrow A + B = 90^{\circ}$
- 2. $\sin 67^{\circ} + \cos 75^{\circ} = \cos(90^{\circ} 67^{\circ}) + \sin(90^{\circ} 75^{\circ}) = \cos 23^{\circ} + \sin 15^{\circ}$

3. Given,
$$\angle ACB = 30^{\circ}$$
 $OA = 4 \text{ cm}$
 $A = \frac{1}{30^{\circ}}$ $O = 4 \text{ cm}$
 $A = \frac{1}{30^{\circ}}$ $O = \frac{1}{30^{\circ}}$ $OA = 4 \text{ cm}$
 $A = \frac{1}{30^{\circ}}$ $O = \frac{1}{30^{\circ}}$ $OA = 4 \text{ cm}$
 $A = \frac{1}{2}$ $(AOB = 2(30^{\circ}) = 60^{\circ}$
 $Draw OD \perp AB$
Then $\angle AOD = \frac{1}{2} \angle AOB = \frac{1}{2}(60^{\circ}) = 30^{\circ}$
 $A = \frac{1}{2} (AOB = \frac{1}{2}(60^{\circ}) = \frac{1}{2} = \frac{AD}{4} \Rightarrow Ad = 2 \text{ cm}$
 $A = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} = \frac{AD}{4} \Rightarrow Ad = 2 \text{ cm}$
 $A = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} = \frac{AD}{4} \Rightarrow Ad = 2 \text{ cm}$
 $A = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} = \frac{AD}{4} \Rightarrow Ad = 2 \text{ cm}$
 $A = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} = \frac{AD}{4} \Rightarrow Ad = 2 \text{ cm}$
 $A = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} = \frac{AD}{4} \Rightarrow Ad = 2 \text{ cm}$
 $A = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} = \frac{AD}{4} \Rightarrow Ad = 2 \text{ cm}$
 $A = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} = \frac{AD}{4} \Rightarrow Ad = 2 \text{ cm}$
 $A = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}{2} AOB = \frac{1}{2} (AOB = \frac{1}{2} AOB = \frac{1}$

$$= AB + BC + CE + EA = 16 + 10 + \left(16 - \frac{10}{\sqrt{3}}\right) + \frac{20}{\sqrt{3}} = 42 + \frac{10}{\sqrt{3}}$$
$$= 42 + \frac{10\sqrt{3}}{3} = 42 + \frac{17.32}{3} = 42 + 5.77 = 47.77 \text{ cm}$$
5. Given, AB = 10 cm $\angle AOB = 60^{\circ}$
Draw OD $\perp AB$
$$\overrightarrow{D}$$

Then AD $= \frac{1}{2} \angle AB = \frac{1}{2} (10) = 5 \text{ cm}$
$$\angle AOD = \frac{1}{2} \angle AOB = 30^{\circ}$$
$$\therefore \ \angle OAD = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

Now AD = 5 cm and $\angle A = 60^{\circ}$
$$\therefore \cos A = \cos 60^{\circ} = \frac{AD}{OA} \Rightarrow \frac{1}{2} = \frac{5}{OA} \Rightarrow OA = 10 \text{ cm}$$
6. Given, AB = AC BC = 12 cm $\angle ABC = 30^{\circ}$
$$\overrightarrow{D}$$

Draw AD $\perp BC$. Then BD $= \frac{1}{2}BC = 6 \text{ cm}$
Also, tanB $= \frac{AD}{BD} \Rightarrow \tan 30^{\circ} = \frac{AD}{6} \Rightarrow \frac{1}{\sqrt{3}} = \frac{AD}{6} \Rightarrow AD = \frac{6}{\sqrt{3}}$
$$\therefore \text{ area of } \Delta ABC = \frac{1}{2} \times BC \times AD = \frac{1}{2} (12) \left(\frac{6}{\sqrt{3}}\right) = \frac{36}{\sqrt{3}} = \frac{36\sqrt{3}}{3} = 12\sqrt{3}$$
$$= 12(1.732) = 20.8 \text{ cm}^{2}$$

AB = 8 cm AC = 10 cm $\angle BAC = 30^{\circ}$

Then
$$\sin 30^{0} = \frac{BE}{AB} \Rightarrow \frac{1}{2} = \frac{BE}{8} \Rightarrow BE = 4 \text{ cm}$$

 \therefore area of parallelogram = 2(area $\triangle ABC$) = $2\left(\frac{1}{2} \times AC \times BE\right) = 2 \times \frac{1}{2} \times 10 \times 4 = 40 \text{ cm}^{2}$
8. Given, PR = 8 cm PQ = 17 cm $\angle R = 90^{0}$
 \overrightarrow{R}
 \overrightarrow{R} PR² + QR² = PQ² or 82 + QR² = 17²
 \therefore QR = $\sqrt{17^{2} - 8^{2}} = \sqrt{289 - 64} = \sqrt{225} = 15 \text{ cm}$
 \therefore sin P = $\frac{QR}{PQ} = \frac{15}{17}$
9. $2 \sec^{2}30^{0} + 4 \tan^{2}60^{0} - 6 \cot^{2}30^{0} = 3\left(\frac{2}{\sqrt{3}}\right)^{2} + 4(\sqrt{3})^{2} - 6(\sqrt{3})^{2} = 3\left(\frac{4}{3}\right) + 4(3) - 6(3)$
 $= 4 + 12 - 18 = -2$
10. $\frac{\tan 45^{0}}{\cos e \cdot 30^{0}} + \frac{\sec 60^{0}}{\cot 45^{0}} - \frac{2\sin 90^{0}}{\cos 0^{0}}$
 $= \frac{1}{2} + \frac{2}{1} - 2 \times \frac{1}{1} = \frac{1}{2} + 2 - 2 = \frac{1}{2}$.
ASSIGNMENT – II

We know that
$$\sin^2\theta + \cos^2\theta = 1$$

$$\Rightarrow \quad \cos^2\theta = 1 - \sin^2\theta = 1 - \left(\frac{5}{13}\right)^2$$

$$\Rightarrow \quad \cos^2\theta = 1 - \frac{25}{169} = \frac{169 - 25}{169} = \frac{144}{169}$$

$$\Rightarrow \quad \cos\theta = \frac{12}{13}$$
(As θ is acute, $\cos\theta$ is +ve, so we take +ve.

(As θ is acute, $\cos\theta$ is +ve, so we take +ve value of the square root)

$$\therefore \quad \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{5}{13} \div \frac{12}{13} = \frac{5}{13} \times \frac{13}{12} = \frac{5}{12}$$
$$\therefore \quad \tan \theta + \frac{1}{\cos \theta} = \frac{5}{13} + \frac{1}{\frac{12}{13}} = \frac{5}{12} + \frac{13}{12} = \frac{5+13}{12} = \frac{18}{12} = \frac{3}{2}$$

1.

2.	We kn	ow that $\sin^2\theta + \cos^2\theta = 1$
	\Rightarrow	$\cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{\sqrt{3}}{2}\right)^2 = 1 - \frac{3}{4} = \frac{1}{4}$
	\Rightarrow	$\cos^2 \theta = \frac{1}{2}$ (:: θ is acute, so $\cos \theta$ is +ve)
	<i>.</i>	$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{3}}{2} \times \frac{2}{1} = \sqrt{3}$
	Also w	we know that $\sin^2\phi + \cos^2\phi = 1$
	\Rightarrow	$\sin^2 \phi = 1 - \cos^2 \phi = 1 - \left(\frac{1}{\sqrt{2}}\right)^2 = 1 - \frac{1}{2} = \frac{1}{2}$
	\Rightarrow	$\sin \phi = \frac{1}{\sqrt{2}}$ (:: ϕ is acute, so $\sin \phi$ is +ve)
	<i>.</i>	$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{1} = 1$
	<i>.</i>	$\frac{\tan\theta - \tan\phi}{1 + \tan\theta\tan\phi} = \frac{\sqrt{3}-1}{1 + \sqrt{3}\times1} = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$
		$=\frac{(\sqrt{3}-1)^2}{(\sqrt{3})^2-1^2}=\frac{3+1-2\sqrt{3}}{3-1}=2-\sqrt{3}$
3.	Given	$ \tan \theta = \frac{5}{12} \text{ but } \tan \theta = \frac{\text{MP}}{\text{OM}} $
	\Rightarrow	$\frac{MP}{OM} = \frac{5}{12}$
	Draw a	a triangle OMP right angled at M such that $OM = 12$ and $MP = 5$.
	From r	ight angled $\triangle OMP$, by Pythagoras theorem,
	We get	$tOP^2 = OM^2 + MP^2 = 12^2 + 5^2 = 144 + 25 = 169$
	\Rightarrow	OP = 13 $OP = 13$ $OP = 13$
	<i>.</i>	$\sec \theta = \frac{\Theta \Gamma}{\Theta M} = \frac{13}{12}$ and $\csc ec\theta = \frac{\Theta \Gamma}{MP} = \frac{13}{5}$
	.:.	$\sec \theta + \cos \sec \theta = \frac{13}{12} + \frac{13}{5} = 13\left(\frac{1}{12} + \frac{1}{5}\right)$
		$=13.\frac{5+12}{60} = \frac{13\times17}{60} = \frac{221}{60} = 3\frac{41}{60}$
4.	From r	ight-angled $\triangle ABD$, by Pythagoras theorem, we get $AD^2 = AB^2 + BD^2$
	\Rightarrow	$AD^2 = (12)^2 + 5^2 = 144 + 25 = 169 \implies AD = 13$
	<i>.</i>	$\cos y = \frac{base}{hypotenuse} = \frac{12}{13}$
		3 AM 3
5.	Given	$\tan B = \frac{3}{4} \Rightarrow \frac{1}{BM} = \frac{3}{4}$
	Let	AM = 3x cm, then BM = 4x cm.
		MC = BC - BM = (56 - 4x) cm.

IIT / NEET / OLYMPIAD Foundation

Also
$$\tan C = \frac{5}{12} (given) \Rightarrow \frac{AM}{MC} = \frac{5}{12}$$

$$\Rightarrow \frac{3x}{56-4x} = \frac{5}{12} \Rightarrow 36x = 280 - 20x$$

$$\Rightarrow 56x = 280 \Rightarrow x = 5$$

$$\therefore AM = 3x cm = (3 \times 5) cm = 15 cm.$$
6. We know that the diagonals of a rhombus bisects each other at right angles.
From right-angled triangle OAB,
 $\cos \alpha = \frac{OA}{AB} = \frac{2}{3} (given)$
Let $OA = 2x$ cm, then $AB = 3x$ cm.
By Pythagoras theorem, $AB^2 = OA^2 + OB^2$
 $\Rightarrow (3x)^2 = (2x)^2 + 3^2 \Rightarrow 9x^2 = 4x^2 + 9$
 $\Rightarrow 5x^2 = 9 \Rightarrow x = \frac{3}{\sqrt{5}}$
 $\therefore AB = 3x - \frac{3}{\sqrt{5}} cm = \frac{9}{\sqrt{5}} cm$ and $OA = 2x - \frac{3}{\sqrt{3}} cm = \frac{6}{\sqrt{5}} cm$
 $\therefore BD = 2 \times OB = (2 \times 3) cm = 6 cm and AC = 2 \times OA = \left(2x - \frac{6}{\sqrt{5}}\right) cm = \frac{12}{\sqrt{5}} cm$
 $\therefore BD = 2 \times OB = (2 \times 3) cm = 6 cm and AC = 2 \times OA = \left(\frac{2x}{\sqrt{5}}\right) cm = \frac{12}{\sqrt{5}} cm$
 $\therefore Bach side = \frac{9}{\sqrt{5}} cm$, diagonal BD = 6 cm and diagonal AC = $\frac{12}{\sqrt{5}} cm$
7. Given tan $x + \cot x = 2$, on squaring both sides, we get $(\tan x + \cot x)^2 = 2^2$
 $\Rightarrow \tan^2 x + \cot^2 x + 2 x \tan x \times \cot x = 4$
 $\Rightarrow \tan^2 x + \cot^2 x + 2 = 4$
 $\Rightarrow \tan^2 x + \cot^2 x = 2$
8. L.H.S. $= \tan^2 \theta - \frac{1}{\cos^2 \theta} + 1$
 $= \tan^2 \theta - (1 + \tan^2 \theta) + 1$ ($\because \sec^2 \theta = 1 + \tan^2 \theta$)
 $= \tan^2 \theta - (1 + \tan^2 \theta) + 1$ ($\because \sec^2 \theta = 1 + \tan^2 \theta$)
 $= \tan^2 \theta - (1 + \tan^2 \theta) + 1 = 0 = R.H.S.$
9. ($\cos 0^\circ + \sin 45^\circ + \sin 30^\circ$) ($\sin 90^\circ - \cos45^\circ + \cos60^\circ$)
 $= \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{2}\right) \left(1 - \frac{1}{\sqrt{2}} + \frac{1}{2}\right) = \left(\frac{3}{2} + \frac{1}{\sqrt{2}}\right) \left(\frac{3}{2} - \frac{1}{\sqrt{2}}\right)$
 $= \left(\frac{3}{2}\right)^2 - \left(\frac{1}{\sqrt{2}}\right)^2$ [$\because (a + b) (a - b) = a^2 - b^2$]
 $= \frac{9}{4} - \frac{1}{2} = \frac{9 - 2}{4} = \frac{7}{4} = \frac{1}{4}$

10.
$$\sin^2 30^\circ \cos^2 45^\circ + 4 \tan^2 30^\circ + \frac{1}{2} \sin^2 90^\circ - 2 \cos 90^\circ + \frac{1}{24}$$
$$= \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + 4 \times \left(\frac{1}{\sqrt{3}}\right)^2 + \frac{1}{2} \times (1)^2 - 2 \times 0 + \frac{1}{24}$$
$$= \frac{1}{4} \times \frac{1}{2} + 4 \times \frac{1}{3} + \frac{1}{2} \times 1 - 0 + \frac{1}{24} = \frac{1}{8} + \frac{4}{3} + \frac{1}{2} + \frac{1}{24} = \frac{3 + 32 + 12 + 1}{24} = \frac{48}{24} = 2$$

.

Straight Objective Type

1.
$$\sin A = \frac{1}{2} \implies A = 30^{\circ} \implies \tan A = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

2. $3\sin A = 5\cos A \implies \frac{\sin A}{\cos A} = \frac{5}{3} \implies \tan A = \frac{5}{3}$
 $\therefore 6\tan A = 6\left(\frac{5}{3}\right) = 10$
3. $\tan A = \frac{2}{3}$
 $\therefore \frac{3\sin A - \cos A}{3\sin A + \cos A} = \frac{3\frac{\sin A}{\cos A} - \frac{\cos A}{\cos A}}{3\frac{\sin A}{\cos A} + \frac{\cos A}{\cos A}} = \frac{3\tan A - 1}{3\tan A + 1} = \frac{3(2/3) - 1}{3(2/3) + 1} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$
4. $\cot \theta = \frac{7}{8}$
 $\therefore \frac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)} = \frac{1 - \sin^2 \theta}{1 - \cos^2 \theta} = \frac{\cos^2 \theta}{\sin^2 \theta} = \cot^2 \theta = \left(\frac{7}{8}\right)^2 = \frac{49}{64}$
5. $\tan(A + B) = \sqrt{3} \implies A + B = 60^{\circ}$
 $\sin c A = 45^{\circ}, B = 60^{\circ} - A = 60^{\circ} - 45^{\circ} = 15^{\circ}$

6.
$$\tan 2A = \cot(A - 150^{\circ}) \Rightarrow \tan 2A = \tan[90^{\circ} - (A - 15^{\circ})]$$

 $\Rightarrow 2A = 90^{\circ} - (A - 150^{\circ}) \Rightarrow 2A = 90^{\circ} - A + 150^{\circ}$
 $\Rightarrow 3A = 105^{\circ} \Rightarrow A = 35^{\circ}$

7. Let the length of ladder be x metes.

$$\therefore \quad \sin 60^{0} = \frac{3}{x} \implies \frac{\sqrt{3}}{2} = \frac{3}{2}$$
$$\implies x = \frac{2 \times 3}{\sqrt{3}} = 2\sqrt{3}$$

 \therefore length of ladder = $2\sqrt{3}$ meters.

8. Let AB = x meters

$$\therefore \tan 30^0 = \frac{x}{20} \implies \frac{1}{\sqrt{3}} = \frac{x}{20}$$

$$\therefore x = \frac{20}{\sqrt{3}} = \frac{20\sqrt{3}}{3} = \frac{1.73 \times 20}{3} = 11.53$$

$$\therefore AB = 11.53 \text{ meters}$$
9. Let AB be the tower

$$\therefore AB = 11m$$
The sun is inclined at 45°
Let BC = x be the length of the shadow

$$\therefore \tan 45^{\circ} = \frac{10}{x} \Rightarrow \tan 45^{\circ} = \frac{10}{x} \Rightarrow x = 10$$

$$\therefore \text{ length of shadow = 10 metres.}$$
10. Given, $\sin\theta = \frac{12}{13}$

$$\therefore \cos\theta = \sqrt{1-\sin^{2}\theta} = \sqrt{1-\left(\frac{12}{13}\right)^{2}} = \sqrt{\frac{169-144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}$$

$$\therefore \sec\theta = \frac{13}{5} \text{ and } \tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{12/13}{1/5} = \frac{12}{5}$$

$$\therefore \frac{\sec\theta + \tan\theta}{\sec\theta - \tan\theta} = \frac{13/5 + 12/5}{13/5 - 12/5} = \frac{25/5}{1/5} = 25$$
11. In AABD,

$$\tan\theta0^{\circ} = \frac{AD}{BD} \Rightarrow \sqrt{3} = \frac{AD}{10}$$

$$\therefore AD = 10\sqrt{3} \text{ cm}$$
In AACD,

$$\tan 30^{\circ} = \frac{AD}{DC} \Rightarrow \frac{1}{\sqrt{3}} = \frac{10\sqrt{3}}{DC}$$

$$\therefore DC = (10\sqrt{3})\sqrt{3} \Rightarrow DC = 30\text{ cm}$$
12. Given, $\tan\theta = \frac{3}{4} \Rightarrow \frac{AB}{BC} = \frac{3}{4}$

$$\frac{1}{\tan\theta} = \frac{12}{12} = 16 \text{ cm}}$$

$$\therefore AC = \sqrt{AB^{2} + BC^{2}} = \sqrt{12^{2} + 16^{2}}$$

$$= \sqrt{144 + 256} = \sqrt{400} = 20\text{ cm}$$

Draw AD \perp BC 13. Then, $\sin 45^{\circ} = \frac{\text{AD}}{\text{AB}}$ or $\frac{1}{\sqrt{2}} = \frac{\text{AD}}{5}$ $\therefore AD = \frac{5}{\sqrt{2}} cm$ 5m ∕₄s° B 30 Б Also, $\sin 30^{\circ} = \frac{\text{AD}}{\text{AC}}$ or $\frac{1}{2} = \frac{5/\sqrt{2}}{\text{AC}}$:. AC = $2\left(\frac{5}{\sqrt{2}}\right) = 5\sqrt{2}$ cm = 5 × 1.4142 = 7.0710 cm or x = 7.1 cm (approx) From the figure, 14. $\sin 30^{\circ} = \frac{AB}{AC}$ and AC = 4 cm $\therefore \frac{1}{2} = \frac{AB}{4}$ or AB = 2 cm Also, $\cos 30^{\circ} = \frac{BC}{AC}$ High School $\therefore \frac{\sqrt{3}}{2} = \frac{BC}{A}$ or $BC = 2\sqrt{3}$ cm \therefore area of $\triangle ABC = \frac{1}{2} \times BC \times AB = \frac{1}{2} \times (2\sqrt{3}) \times 2 = 2\sqrt{3}$ $= 2 \times 1.732 = 3.464 \text{ cm}^2$ (AD) 15. 16. (AC) 17. (ACD) 18. (B) 1. 2. (A) 3. (C) 19. (1) $\sin 60^{\circ} \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1$ $2\sin^2 A + 5\sec^2 A + 3\cos^2 A - 5\tan^2 A$ 20. $= 3(\sin^2 A + \cos^2 A) + 5(\sec^2 A - \tan^2 A)$ $= 3 \times 1 + 5 \times 1 = 8$

• SURFACE AREA & VOLUME

- **SOLIDS** The objects having definite shape and size are called solids. A solid occupies a definite space.
- **CUBOID** Solids like matchbox, chalkbox, a tile, a book, an almirah, a room, etc., are in the shape of a cuboid.

FORMULAE: For a cuboid length = l, length = b and height = h, we have

- (i) Volume = $(l \times b \times h)$ cubic units
- (ii) Total surface area = 2(lb + bh + lh) sq units
- (iii) Lateral surface area = $[2(l + b) \times h]$ sq units

• **CUBE** Solids like ice cubes, sugar cubes, dice, etc., are in the shape of a cube.

- FORMULAE: For cube having each edge = a units, we have
- (i) Volume a^3 cubic units
- (ii) Total surface area = $6a^2$ sq units
- (iii) Lateral surface area = $4a^2$ sq units
- **CYLINDER** Solids like measuring jars, circular pillars, circular pencils, circular pipes, road rollers, gas cylinders etc., are said to have cylindrical shape.

FORMULAE: For a cylinder of base radius = r and height (or length) = h we have

- h, we have
- (i) Volume = $(\pi r^2 h)$ cubic units
- (ii) Curved surface area = $2\pi rh$ sq units
- (iii) Total surface area = $(2\pi rh + 2\pi r^2)$ sq units

$$= 2\pi r(h + r)$$
 sq units

 HOLLOW CYLINDERS Solids like iron pipes, rubber tubes are in the shape of hollow cylinders.

FORMULAE Consider a hollow cylinder having External radius = R, internal radius = r and height = h.

Then, we have

(i) Volume of material = (external volume) – (internal volume)

= $(\pi R^2 h - \pi r^2 h)$ cubic units

$$=\pi h(R^2-r^2)$$
 cubic units

(ii) Curved surface area of hollow cylinder

= (external surface area) – (internal surface area)

$$=(2\pi Rh - 2\pi rh)$$
sq units

$$=2\pi h(R-r)$$
 sq units

(iii) Total surface area of hollow cylinder

=(curved surface area) + (area of the base ring)

 $=(2\pi Rh + 2\pi rh) + 2(\pi R^2 - \pi r^2)$ sq units

 $= 2\pi h (R+r) + 2\pi (R^2 - r^2) \text{ sq units}$

h

r ·

CONE Solids like ice-cream cones, conical tents, funnels, etc, are having the shape of a cone

FORMULAE Consider a cone in which base radius = r, height = h and slant height, $l = \sqrt{h^2 + r^2}$.

Then, we have

(i) Volume of the cone $=\frac{1}{3}\pi r^2 h$ cubic units

- (ii) Curved surface area of the cone $=\pi r l = \pi r \sqrt{r^2 + h^2}$ sq units
- (iii) Total surface area of the cone = (curved surface area) + (area of the base) = $(\pi rl + \pi r^2) = \pi r(l + r)$ sq units
- **SPHERE** Objects like a football, a cricket ball, etc., are said to have the shape of a sphere.

FORMULAE For a sphere of radius r, we have

- (i) Volume of sphere $=\left(\frac{4}{3}\pi r^3\right)$ cubic units
- (ii) Surface area of the sphere = $(4\pi r^2)$ sq units
- **HEMISPHERE** A plane through the centre of a sphere cuts it into two equal parts. Each part is called a hemisphere.

FORMULAE For a hemisphere of radius r, we have

(i) Volume of the hemisphere $=\frac{2}{3}\pi r^3$ cubic units

- (ii) Curved surface area of the hemisphere = $(2\pi r^2)$ sq units
- (iii) Total surface area of the hemisphere = $(3\pi r^2)$ sq units.

Name of the	Figure	Lateral/ Curved	Total Surface	Volume
Soliu		Sullace Alea	Alta	
Cube	a a a	$4a^2$	6a ²	a ³

Cuboid	b l	2(l+b)h	2(<i>lb+bh+hl</i>)	lbh
Right circular cylinder	h	2πrh	$2\pi r(r+h)$	⁄⁄π²h
Right circular cone	h	πrl	$\pi r(l+r)$	$\frac{1}{3}\pi r^2h$
Sphere	r	$4\pi r^2$	$4\pi r^2$	$\frac{4}{3}\pi r^3$
Hemisphere	r	$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$

Illustration – 1:	Find the volume, the total surface area and the lateral surface area of a		
	cuboid which is 15 m long, 12 m wide and 4.5 m high.		
Solution	Here, $l = 15 \text{ m}$, $b = 12 \text{ m}$ and $h = 4.5 \text{ m}$		
	Volume of the cuboid = $(1 \times b \times h)$ cubic units		
	$= (15 \times 12 \times 4.5) \text{ m}^3 = 810 \text{ m}^3$		
	Total surface area of the cuboid		
	= 2(lb + bh + lh) sq units		
	$=(15 \times 12 + 12 \times 4.5 + 15 \times 4.5) \text{ m}^2 = 603 \text{ m}^2.$		
	Lateral surface are of the cuboid		
	$= \left[2(1+b) \times h \right] $ sq units		
	$= [2(15+12) \times 4.5] \text{ m} = 243 \text{ m}^2.$		
Illustration – 2	How many bricks will be required to construct a wall 13.5 m long, 6 m		
	high and 22.5 cm thick if each brick measures $(27 \text{ cm} \times 12.5 \text{ cm} \times 9 \text{ cm})$?		
Solution	Length of the wall = (13.5×100) cm = 1350		
	Breadth of the wall = 22.5 cm		
	Height of the wall = (6×100) cm = 600 cm		

Volume of the wall = $(1350 \times 22.5 \times 600)$ cm³

Volume of each brick = $(27 >$	Volume of each brick = $(27 \times 12.5 \times 9)$ cm ³		
Number of brick required -	volume of wall		
Number of blick required –	volume of 1 brick		

Illustration – 3	A field is 70 m long and 40 m broad. In one corner of the field, a pit which is 10 m long, 8 m broad and 5 m deep, has been dug out. The earth taken out of it is evenly spread over the remaining part of the field. Find the rise in the level of the field. Area of the field = (70×40) m ² = 2800 m ²		
Solution .	Area of the nit = $(10 \times 8) m^2 = 80 m^2$		
	Area over which the earth is spread over		
	70 m		
	4 0		
	$= (2800 - 80) \text{ m}^2 = 2720 \text{ m}^2$		
	Volume of the earth dug out = $(10 \times 8 \times 5) \text{ m}^3 400 \text{ m}^3$		
	Disa in level of the field (volume of the earth dug out)		
	Rise in level of the field = $\left(\frac{1}{\text{area on which the earth is spread}}\right)$		
	$= \left(\frac{400}{2720}\right) \mathbf{m} = \left(\frac{400 \times 100}{2720}\right) \mathbf{cm}$		
	$=\frac{250}{17}=14.70$ cm		
	Link Colored		

Illustration – 4:	The total surface area of a cube is 216 cm ² . Find its volume.
Solution	Let each side of the cube be <i>a</i> cm. Then, the total surface area of the cube = $(6a)^2 \text{ cm}^2$. $\therefore 6a^2 = 216 \Leftrightarrow a^2 = 36 \Leftrightarrow a = \sqrt{36} = 6$ Volume of the cube = a^3 cubic units = $(6 \times 6 \times 6) \text{ cm}^3 = 216 \text{ cm}^3$.
Illustration – 5:	Find the (1) volume, (11) area of the surface and (111) total surface area of a
	cylinder having radius of the base 14 cm and height 30 cm.
Solution	Here, $r = 14$ cm and $h = 30$ cm.
	(i) Volume of the cylinder = $(\pi r^2 h)$ cubic units

$$= \left(\frac{22}{7} \times 14 \times 14 \times 30\right) \text{ cm}^3 = 18480 \text{ cm}^3$$

(ii) Curved surface area of the cylinder = (2\pi rh) sq units.

$$=\left(2 \times \frac{22}{7} \times 14 \times 30\right) \text{cm}^2 = 2640 \text{ cm}^2$$

(iii) Total surface area of the cylinder
=
$$(2\pi rh + 2\pi r^2)$$
 sq units = $2\pi r(r + h)$ sq units

Class	:	VIII
-------	---	------

$=\left\{2 \times \frac{22}{7} \times 14(14+30)\right\}$	$cm^2 = 3872cm^2$
--	-------------------

Illustration – 6:	The curved surface area and the volume of a pillar are 264 m^2 and 396 m^3 respectively. Find the diameter and the height of the pillar.
Solution	Let the radius of the pillar be r meters and its height be h meters. Then,
	$2\pi rh = 264$ (i)
	and $\pi r^2 h = 396$ (ii)
	On dividing (ii) by (i) we get
	On arviang (ii) by (i), we get
	$\frac{\pi r h}{2} = \frac{396}{2} \Leftrightarrow r = \left(\frac{2 \times 396}{2}\right) = 3 \Leftrightarrow 2r = 6$
	$\frac{1}{2\pi rh} = \frac{1}{294} = \frac{1}{264} = \frac{1}{264} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
	Hanna the diameter of the rillor is (m
	Hence, the diameter of the pillar is 6 m.
	Putting $r = 3$ in (i), we get
	$2 \times \frac{22}{7} \times 3 \times h = 264 \iff h = \left(264 \times \frac{7}{132}\right) = 14$
	Hence, the height of the pillar is 14 m.
Illustration – 7:	The diameter of a roller, 120 cm long, is 84 cm. If it takes 500 complete
	revolutions to level a playeround find the cost of leveling it at 75 paisa per
	square meter
Colution	Dedive of the college $r = 42$ and and its length $h = 120$ and
Solution	Kadius of the roller, $r = 42$ cm, and its length, $h = 120$ cm

 reactions of the forier, f 12 offi, and its forigan, f 120 offi
Area covered by the roller in 1 revolution
= curved surface area of the roller
$= (2\pi rh)$ sq units
$= \left(2 \times \frac{22}{7} \times 42 \times 120\right) \operatorname{cm}^2 = 31680 \operatorname{cm}^2$
Area covered by the roller in 500 revolutions
= (31680×500) cm ² = $\left(\frac{31680×500}{100×100}\right)$ m ² = 1584 m ²
\therefore area of the playground = 1548 m ²
Cost of leveling the playground = $Rs\left(1584 \times \frac{75}{100}\right)$

= Rs 1188.

Illustration – 8:

The height of a cone is 24 cm and the diameter of its base is 14 cm. Find the slant height, volume, area of curved surface and the total surface area of the cone.

Solution	Here, $h = 24$ cm and $r = 7$ cm.
	Let the slant height be I cm. Then,
	$l = \sqrt{h^2 + r^2} = \sqrt{(24)^2 + 7^2} = \sqrt{625} = 25$
	\therefore slant height = $l \text{ cm} = 25 \text{ cm}$.
	Volume of the cone $=\frac{1}{3}\pi r^2 h$
	$= \left(\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 25\right) \text{ cm}^{3}$
	Curved surface area of the cone $= \pi r l$
	$= \left(\frac{22}{7} \times 7 \times 25\right) \operatorname{cm}^2 = 550 \operatorname{cm}^2$
	Total surface area of the cone = $\pi r(l+r)$
	$= \left[\frac{22}{7} \times 7 \times (25+7)\right] \mathrm{cm}^2$
	$= 704 \text{ cm}^2$

Illustration – 9: The	radius and the height of a right circular cone are in the ratio of 5 : 12
and	its volume is 2512 cu cm. Find the curved surface area and the total
surfa	ace area of the cone. (use $\pi = 3.14$.)
Solution Let 1	radius = $5x$ cm and height = $12 x$ cm. Then,
volu	me = $\left[\frac{1}{3} \times 3.14 \times (5x)^2 \times (12x)\right]$ cm ² = (314x ³) cm ³
.:.31	$4x^3 = 2512 \Leftrightarrow x^3 = \left(\frac{2512}{314}\right) = 8 \Leftrightarrow x = 2.$
∴ ra	dius = 10 cm and height = 24 cm
∴ sl	ant height $=\sqrt{r^2 + h^2} = \sqrt{(10)^2 + (24)^2}$ cm $= \sqrt{676}$ cm
= 26	cm
So, a	area of the curved surface = π rl
=(3	$.14 \times 10 \times 26) \text{ cm}^2$
= 81	6.4 cm^2
Who	ble surface area = (curved surface area + base area)
= (8	$16.4 + 3.14 \times 10 \times 10) \text{ cm}^2$
= (8	$16.4 + 314) \text{ cm}^2 = 1130.4 \text{ cm}^2$

Illustration – 10:	A cone of height 8 m has a curved surface area 188.4 square meters. Find
	its volume. (Take $\pi = 3.14$)
Solution	Let the radius be r meters and slant height be l meters. Then,
	Curved surface area = $\pi r l m^2 = \pi r \sqrt{r^2 + h^2} m^2$
	$= \left(3.14 \times \mathbf{r} \times \sqrt{\mathbf{r}^2 + 64}\right) \mathrm{m}^2$
	$\therefore 3.14 \times r \times \sqrt{r^2 + 64} = 188.4$

$\Leftrightarrow r\sqrt{r^2 + 64} = \frac{188.4}{3.14} = 60$
$\Leftrightarrow r^2(r^2+64) = 3600$
$\Leftrightarrow r^4 + 64r^2 - 3600 = 0$
$\Leftrightarrow (r^2 + 100)(r^2 - 36) = 0$
\Leftrightarrow r ² = 36 [:: r ² = -100 gives imaginary value of r]
\Leftrightarrow r = 6
So, the radius of the base $= 6$ m.
Volume = $\left(\frac{1}{3}\pi r^2 h\right)$ cubic units
$\left(\frac{1}{3} \times 3.14 \times 6 \times 6 \times 8\right) \mathrm{m}^3 = 301.44 \mathrm{m}^3$
Hence, the volume of the cone is 301.44 m ³

Illustration – 11:	Find the volume and surface area of a sphere of radius 21 cm.
Solution	Radius of the sphere = 21 cm
	Volume of the sphere $=\left(\frac{4}{3}\pi r^3\right)$ cubic units
	$= \left(\frac{4}{3} \times \frac{22}{7} \times 21 \times 21 \times 21\right) \text{ cm}^3$
	$= 38808 \text{ cm}^3$
	Surface area of the sphere = $(4\pi r^2)$ sq units
	$= \left(4 \times \frac{22}{7} \times 21 \times 21\right) \operatorname{cm}^2 = 5544 \operatorname{cm}^2.$

Illustration – 12:	How many spherical bullets can be made out of a solid cube of lead whose
	edge measures 44 cm, each bullet being 4 cm in diameter?
Solution	Length of each edge of the cube $= 44$ cm
	Volume of the cube = $(44 \times 44 \times 44)$ cm ³
	Radius of each bullet, $r = 2 cm$
	Volume of each bullet = $\left(\frac{4}{3}\pi r^3\right)$ cm ³
	$= \left(\frac{4}{3} \times \frac{22}{7} \times 2 \times 2 \times 2\right) \operatorname{cm}^{3} = \frac{704}{21} \operatorname{cm}^{3}$
	Number of bullets formed = $\frac{\text{volume of the cube in cm}^3}{\text{volume of each bullet in cm}^3}$
	$= \left(44 \times 44 \times 44 \times \frac{21}{704}\right) = 2541.$
	Hence, the number of bullets formed is 2541.

Illustration – 13:	Find the volume, curved surface area and the total surface area of
	a hemisphere of diameter 7 cm.
Solution	Radius of the hemisphere, $r = 3.5$ cm
	Volume of the hemisphere = $\left(\frac{2}{3}\pi r^3\right)$ cm ³
	$= \left(\frac{2}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}\right) \operatorname{cm}^{3}$
	$=\frac{539}{6}$ cm ³ = 89.83 cm ³ .
	Curved surface area of the hemisphere = $(2\pi r^2)$ cm ²
	$= \left(2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \operatorname{cm}^{2} = 77 \operatorname{cm}^{2}$
	Total surface area of the hemisphere = $(3\pi r^2)$ cm ²
	$= \left(3 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \operatorname{cm}^{2} = \frac{231}{2} \operatorname{cm}^{2} = 115.5 \operatorname{cm}^{2}$

KEY POINTS

- 1. If a cuboid has length *l*, breadth b and height h, then
 - (i) Perimeter of the cuboid $= 4(\ell + b + h)$.
 - (ii) Surface are of the cuboid $= 2(\ell b + bh + \ell h)$
 - (iii) Lateral surface area of the cuboid $= 2(\ell + b) \times h$
 - (iv) Length of a diagonal = $\sqrt{\ell^2 + b^2 + h^2}$
 - (v) Volume of the cuboid $= \ell \times b \times h$
- 2. If the length of each edge of a cube is ℓ then
 - (i) Perimeter of the cube $= 12\ell = 12(Edge)$
 - (ii) Surface area of the cube $= 6\ell^2 = 6(\text{Edge})^2$
 - (iii) Lateral surface area of the cube $= 4\ell^2 = 4(\text{Edge})^2$
 - (iv) Volume of the cube $= \ell^3 = (Edge)^3$
- 3. A right circular cone is a solid generated by revolving a line segment which passes thought a fixed point and which makes a constant angle with a fixed line. The fixed point is called the vertex of the cone, the fixed line is called the axis of the cone.

High School

- 4. For a right circular cone of based radius r, slant height l and height h, we have
 - (i) Curved surface area $= \pi r \ell$
 - (ii) Total surface area $= \pi r (\ell + r)$

(iii) Volume
$$=\frac{1}{3}\pi r^2 h$$

Also, Volume = $\frac{1}{3}$ (Area of the base) × height.

ASSIGNMENT – I

- 1. * Eight identical cuboidal wooden blocks are staked one on top of the other. The total volume of the solid so formed is 128 cm³. If the height of each block is 1 cm and the base is a square, find the dimensions of each block.
- 2. A rectangle block of ice measures 40 cm by 25 cm by 15 cm. Calculate its weight in kg, if ice weights $\frac{9}{10}$ of the weight of the same volume of water and 1 cm³ of water weight 1 gm.

- 3. What will happen to the volume of a cube if its edge is doubled?
- 4. A match box measures 4 cm by 2.5 cm by 1.5 cm. What will be the volume of a packet containing 12 such match boxes? How many such packets can be placed in a cardboard box whose size is $60 \text{ cm} \times 30 \text{ cm} \times 24 \text{ cm}$?
- 5. A water tank built by a municipality of a town to supply water to its 25000 inhabitants at 125 litres per person is 40 m long and 31.25 m broad. The tank, when it is full, can supply water for two days to the inhabitants of the town. Find the depth of the tank.
- What will be the labour charges for digging a cuboidal pit 8 m long, 6 m broad and 3 m 6. deep at the rate of Rs 20 per m³?
- 7. A rectangular field is 154 m long and 121 m broad. A well of 14 m length and 11 m breadth is dug inside the field and mud taken out is spread evenly over the remaining part of the field to a thickness of 25 cm. Find the depth of the well.
- The curved surface area of a cylinder is 1210 cm² and its diameter is 20 cm. Find its 8. height and volume.
- * The curved surface area of a cylinder is 4400 cm^2 and the circumference of its base is 9. 110 cm. Find the height and the volume of the cylinder
- The sum of the height and radius of the base of a solid cylinder is 37 m. If the total 10. surface area of the cylinder be 1628 m², Find its volume.
- The radii of two cylinders are in the ratio 2:3 and their heights are in the ratio 5;3. 11. Calculate the ratio of their volumes and the ratio of their curved surfaces.
- If 1 cm³ of cast iron weighs 21 g, find the weight of a cast iron pipe of length 1 m with a 12. bore of 3 cm in which the thickness of the metal is 1 cm.

ASSIGNMENT – II

- 1. Find the volume, the total surface area and the lateral surface area of a cuboids which is 15 m long, 12 m wide and 4.5 m high.
- 2. A river 2 m deep and 45 m wide is flowing at the rate of 3 km per hour. find the volume of water that runs into the sea per minute.
- 3. 2.2 cu dm of brass is to be drawn into a cylindrical wire of diameter 0.50 cm. Find the length of the wire.
- 4. Find the volume, total surface area, lateral area and the length of diagonal of a cube, each of whose edges measures 20 cm.
- 5. How many cubic metres of earth must be dug out to sink a well 14 m deep and having a radius of 4 m? If the earth taken out is spread over a plot of dimensions $(24m \times 16m)$, what is the height of the platform so formed?
- 6. The external diameter of an iron pipe is 25 cm and its length is 20 cm if the thickness of the pipe is 1 cm, find the total surface area of the pipe.
- 7. A hollow sphere of external and internal diameters 8 cm and 4 cm respectively is melted into a cone of base diameter 8 cm. Find the height of the cone.
- 8. A lead pencil consists of a cylinder of wood with a solid cylinder of graphite fitted into it. The diameter of the pencil is 7 mm, the diameter of the graphite is 1 mm and the length of the pencil is 10 cm. Calculate the weight of the whole pencil, if the specific gravity of the wood is 0.7 g/cm³ and that of the graphite is 2.1 g/cm³.
- 9. The volume of a right circular cone is (100π) cm³ and its height is 12 cm. Find its slant height and its curved surface area.
- 10. * The curved surface area of a cone is 4070 cm^2 and its diameter is 70 cm. Find its slant height.

ANSWER KEY

SURFACE AREA & VOLUME

ASSIGNMENT – I

- 1. $4 \text{ cm} \times 4 \text{ cm} \times 1 \text{ cm}.$
- 2. 13.5 kg
- 3. edge of the4 cube is doubled, then the volume becomes 8 times.
- 4. 240
- 5. 0.5 m
- 6. Rs 2880
- 7. 30 m
- 8. Volume = 6050 cm^3 , h = 19.25 9. Volume = 38500 cm^3 , h = 40 cm
- 10. Volume = 4620 cm^3
- 11. 10/9

ASSIGNMENT – II

High School

- 1. 243 sqm
- 2. 4500 cubic m
- 3. 112 m
- 4. 34.64 cm
- 5. 1.76 m
- 6. 3168 sq cm
- 7. 14 cm
- 8. 0.8925π gm
- 9. l = 13 cm. Area = 204.4 cm²
- 10. l = 37 cm

Class : VIII

HINTS & SOLUTION

BASIC CONCEPT OF MATHEMATICS

ASSIGNMENT – I

1.	Let the length and breadth are staked one on top of the base of each wooden block be x
	cm each.
	Since eight identical blocks are staked one on top of the other and the height of each
	So, height of the solid formed -8 cm
	\therefore Volume of the solid formed = $(x \times x \times 8)$ cm ³ = $8x^2$ cm ³
	But the volume of solid formed is 128 cm ³ (given)
	$2 \frac{128}{16} = \frac{128}{16} = \frac{16}{16} \frac{16}{16}$
	$\therefore \qquad 8x^2 = 128 \Rightarrow x^2 = \frac{3}{8} \Rightarrow x^2 = 16x^2 = 4^2 \Rightarrow x = 4 \text{ cm}$
	Hence, each wooden block is dimension 4 $\text{cm} \times 4\text{cm} \times 1$ cm.
2.	We have,
	Volume of rectangular block of ice = $40 \times 25 \times 15$ cm ² = 15000 cm ²
	Now, weight of 1 cm^3 of water = 1 gm
	and, weight of 1 cm ³ of ice = $\left(\frac{9}{10}\right)^{\text{th}}$ of the weight of 1 cm ³ of water
	$\therefore \qquad \text{Weight of 1 cm}^3 \text{ of ice } = \left(\frac{9}{10}\right) \text{ gm}$
	\therefore Weight of the rectangular block of ice $=\frac{9}{10} \times 15000$ gm
	=13500 gm=13.5 kg
3.	Let the edge of the cube be l cm. Then, its volume V is given by
	$\mathbf{V} = l^3 \mathbf{cm}^3 \qquad \qquad \dots \dots (\mathbf{i})$
	Let V_1 be the volume of the cube when its edge is doubled. Then,
	$V_1 = (2l)^3 \text{ cm}^3$
	\Rightarrow V ₁ = 8l ³
	\Rightarrow V ₁ = 8V
4	Hence, if each edge of the4 cube is doubled, then the volume becomes 8 times. We have
	Volume of a match box = $(4 \times 2.5 \times 1.5)$ cm ³ = 15 cm ³
	\therefore Volume of a packet containing 12 match boxes = (12×15) cm ³ = 180 cm ³
	Now Volume of cardboard box $= (60 \times 30 \times 24)$ cm ³ $= 43200$ cm ³
	Now, volume of cardboard box $=(00\times30\times24)$ cm $=43200$ cm 42200
	\therefore Number of packet that can be put in a cardboard $=\frac{43200}{180}=240$
5.	Water consumed by the inhabitants in one day = Number of inhabitants × Water consumed by an inhabitant in one day

 $=(25000 \times 125)$ litres =3125000 litres Water consumed by the inhabitants in to days $=(3125000 \times 2)$ litres $=6250000 \text{ litres} = \frac{6250000}{1000} \text{ m}^3 \qquad [\therefore 1000 \text{ litres} = 1 \text{ m}^3]$ $= 6250 \text{ m}^3$ Volume of the tank = 6250 litres Depth of the tank = $\frac{\text{Volume}}{\text{Lenght} \times \text{Breadth}} = \frac{6250 \text{ m}^3}{40 \text{m} \times 31.25 \text{ m}} = \frac{625}{1250} \text{m} = 0.5 \text{ m}$ 6. We have, Volume of the pit = (Length × Breadth × Height) = $(8 \times 6 \times 3)$ m³ = 144 m³ Since labour charges are at the rate of Rs 20 per m³ Total labour charges = Rs $(144 \text{ m}^3 \times 20)$ = Rs 2880 7. We have. Length of the well = 14 m, Breadth of the well = 11 mArea of the base of the well = (14×11) m² = 154 m² Also, area of the field = (154×121) m² = 18634 m² Area of the field in which mud is spread = (18634-154)m² = 18480 m² Thickness of the mud = $25 \text{ cm} = \frac{25}{100} \text{ m} = \frac{1}{4} \text{ m}$ Volume of the mud = $18480 \times 1/4 \text{ m}^3$ - 4620 m^3 Depth of the well = $4620/14 \times 11 = 30$ m. Surface area = 1210 cm^2 8. Diameter = 20 cmR = 10 cmSurface area = $2\pi rh$ $1210 = 2 \times \frac{22}{7} \times 10 \times h$ h = 19.25 cmVolume = $\pi r^2 h$ $=\frac{22}{7} \times 100 \times 19.25$ $= 6050 \text{ cm}^3$ 9. Curved surface area = 4400 cm^2 $2\pi rh = 4400$ $2\pi r = 110$ $h = \frac{4400}{2\pi r} = \frac{4400}{110} = 40 \text{ cm}$ Volume = $\pi r^2 h$

$$= \pi \left(\frac{110}{2\pi}\right)^{2} \cdot 40$$

$$= 38500 \text{ cm}^{3}$$
10. $\Rightarrow h + r = 37$
 $\Rightarrow 2\pi rh + 2\pi r^{2} = 1628$
 $2\pi r(h + r) = 1628$
 $2\pi r = \frac{1628}{37}$

$$r = 7 \text{ m}$$
 $\Rightarrow h = 37 - 7 = 30 \text{ m}$
 $\Rightarrow \text{Volume} = \pi r^{2}h$
 $= \frac{22}{7} \times 7^{2} \times 30$
 $= 4620 \text{ m}^{3}$
11. $\frac{r}{r_{2}} = \frac{2}{3}, \frac{h_{1}}{h_{2}} = \frac{5}{3}$
 $\Rightarrow V_{1} = \pi r_{1}^{2}h_{1}$
 $\Rightarrow V_{2} = \pi r_{2}^{2}h_{2}$
 $\frac{V_{1}}{V_{2}} = \frac{\pi r_{1}^{2}h_{1}}{\pi r_{2}^{2}h_{2}}$
 $= \left(\frac{r_{1}}{r_{2}}\right)^{2} \cdot \left(\frac{h_{1}}{h_{2}}\right)$
 $= \frac{4}{3} \cdot \frac{5}{3}$
 $\Rightarrow \frac{S_{1}}{S_{2}} = \frac{2\pi r_{1}h_{1}}{2\pi r_{2}h_{2}}$
 $\Rightarrow \frac{S_{1}}{S_{2}} = \frac{2\pi r_{1}h_{1}}{2\pi r_{2}h_{2}}$
 $= \frac{r_{1}}{r_{2}} \cdot \frac{h_{1}}{h_{2}}$

ASSIGNMENT – II

1. Ans: 243 m²

Solution: Here, l=15, b = 12 m and h = 4.5m Volume of the cuboid $= (l \times b \times h)$ cubic units $= (15 \times 12 \times 4.5)$ m³ = 810m³ Total surface area of the cuboid

Class : VIII

 $=2(lb \times bh \times lh)$ sq units $= 2(15 \times 12 + 12 \times 4.5 + 15 \times 4.5) m^{2} = 603 m^{2}$ Lateral surface area of the cuboid $= \left\lceil 2(l+b) \times h \right\rceil$ sq units $= [2(15+12) \times 4.5] m = 243m^{2}$ Ans: 4500 m³ $3 \text{ km /hr} = \left(\frac{3 \times 1000}{60}\right) \text{m / min} = 50 \text{m / min}.$ Volume of water running into the sea per minute $=(50\times45\times2)m^{3}=4500m^{3}$. Ans: 112 m Volume of brass = $(2.2 \times 10 \times 10 \times 10)$ cm³ = 2200cm³. Radius of the wire = 0.25 cm. Let the required length of wire be x cm. Then, volume of the wire = $(\pi r^2 x)$ cu units. $= \left(\frac{22}{7} \times 0.25 \times 0.25 \times x\right) \mathrm{cm}^{3}$ 0 $\therefore \frac{22}{7} \times 0.25 \times 0.25 \times x = 2200$ $\Leftrightarrow \mathbf{x} = \left(\frac{2200 \times 7}{22 \times 0.25 \times 0.25}\right) = 11200 \text{ cm} = 112 \text{ m}$ Hence, the length of the wire is 112 m. Here, a = 20 cm. Volume of cube $= a^3$ cubic units $=(20 \times 20 \times 20)$ cm³ = 8000 cm³ Total surface area of the cube $=(6a^2)$ sq units $=(6 \times 20 \times 20)$ cm² = 2400 cm² Lateral surface are of the cube $=(4a^2)$ sq units $=(4 \times 20 \times 20)$ cm² = 1600 cm² Diagonal of the cube $= (\sqrt{3}a)$ units $=(\sqrt{3} \times 20) \text{ cm} = (1.732 \times 20) \text{ cm}$ = 34.64 cm. Clearly, we have r = 4 m and h = 14 m. Volume of the earth dug out of the well $=(\pi r^2 h)$ cubic units $=(\frac{22}{7} \times 4 \times 4 \times 14) m^3 = 704 m^3$ Area of the given plot = (25×16) m² = 400m² Volume of the platform formed = volume of the earth dug out = 704 m^3 IIT / NEET / OLYMPIAD Foundation

5.

2.

3.

4.

Height of the platform = $\left(\frac{\text{volume in } m^3}{\text{area in } m^2}\right)$ $= \left(\frac{704}{400}\right)m = \frac{176}{100} = 1.76m$ Hence, the height of the platform so formed = 1.76 m

6. Total surface area of the pipe == (external curved surface area) + (internal curved surface area) + 2 (area of the base ring) = $\left[2\pi Rh + 2\pi rh + 2(\pi R^2 - \pi r^2)\right]$ sq units $=2\pi(\mathbf{R}+\mathbf{r})[\mathbf{h}+(\mathbf{R}-\mathbf{r})]$ sq units $= \left\{ 2 \times \frac{22}{7} \times (12.5 + 11.5)(20 + 12.5 - 11.5) \right\} \mathrm{cm}^{2}$ $=\left(2 \times \frac{22}{7} \times 24 \times 21\right) \text{cm}^2 = 3168 \text{ cm}^2.$

Hence, the total surface area of the pipe is 3168 cm^2 .

7. Volume of the material of the sphere
$$=\frac{4}{2}\pi(4^3-2^3)$$
 cm³ $=\left(\frac{224\pi}{2}\right)$ cm³

Volume of the cone
$$=\left(\frac{1}{3}\pi r^2 h\right) cm^3$$

 $=\left(\frac{1}{3}\pi \times 4 \times 4 \times h\right) cm^3 = \left(\frac{16\pi h}{3}\right) cm^3$
 $\therefore \frac{16\pi h}{3} = \frac{224\pi}{3} \Leftrightarrow h = \left(\frac{224}{3} \times \frac{3}{16}\right) = 14.$

Hence, the height of cone is 14 cm.

7

8.

$$r_{2} = \frac{7}{2} \text{ mm} = \frac{7}{20} \text{ cm}$$

$$r_{1} = \frac{1}{2} \text{ mm} = \frac{1}{20} \text{ cm}$$
Volume of graphite (V₁) = πr_{1}^{2} h
$$= \pi \left(\frac{1}{20}\right)^{2} \times 10$$
Volume of wood = $\pi h(r_{2}^{2} - r_{1}^{2})$

$$= \pi .10 \left(\left(\frac{7}{20}\right)^{2} - \left(\frac{1}{20}\right)^{2}\right)$$

Weight of graphite $=\frac{\pi \times 10}{400} \times 2.1$ $= 0.0525 \ \pi g$ Weight of wood = $10\pi \left(\frac{49}{400} - \frac{1}{400}\right) \times 0.7$

IIT / NEET / OLYMPIAD Foundation

32

. .

$$= 7\pi \left(\frac{48}{400}\right)$$

$$= 0.84 \pi g$$
Weight of the whole pencil = $(0.0525 + 0.84)\pi g$

$$= 0.8925 \pi g$$
9. Volume = $100 \pi \text{ cm}^3$

$$h = 12 \text{ cm}$$

$$\frac{1}{3}\pi r^2 h = 100\pi$$

$$r^2 h = 300$$

$$r^2 = \frac{100}{4}$$

$$r = \frac{10}{2} = 5 \text{ cm}$$

$$l = \sqrt{h^2 + r^2}$$

$$= \sqrt{144 + 25}$$

$$= 13 \text{ cm}$$
Curved surface area
$$= \pi r l$$

$$= 204.3 \text{ cm}^2$$
10. $\pi r l = 4070 \text{ cm}^2$

$$r = 35 \text{ cm}$$

$$\Rightarrow l = \frac{4070}{\pi r} = 37 \text{ cm}$$
High School