Γ

VECTORS

	VECTORS 🐵
LE	ARNING OBJECTIVES:
<mark>→</mark>	Basic trigonometry
¦	Different types of vectors
¦ ♦ .	Components, rectangular components
•	Addition rules for vectors
i ♦	Lami's theorm, Tangent law
•	Dot product and Cross product
<u>Re</u>	<u>al life applications:</u>
Φ 	vectors are mathematical constructs that include a length and a direction. They can exist in any number of dimensions. Because of this, they are used to simply yet effectively convey information about objects or situations.
Φ	One of the most common uses of vectors is in the description of velocity.
Ф 	By using vectors, physicists describe the movement of a car in motion using a simple line on a geometric plane. This same principle is also applied by navigators to chart the movements of airplanes and ships.
ΙΦ	Vectors are also used to plot trajectories. The movements of any thrown object, such as a football, can be mapped with vectors.
ΙΦ 	Using multiple vectors allows for the creation of a model that encompasses external forces like the wind.
ΙΦ	By utilizing vector addition on these different forces, mathematicians create an accurate estimate of the path of motion and distance traveled by the object
<u>Im</u>	portant Formula:
¦1.	A vector have both magnitude and direction
¦2.	Maximum angle between two vectors is 180° and minimum is zero
3. 	If $\vec{A} = xi + yj + zk$, then $\left \vec{A}\right = \sqrt{x^2 + y^2 + z^2}$
 4.	Any vector \vec{P} makes an angl θ with X- axis can be written as $\vec{P} = P \cos \theta \vec{i} + P \sin \theta \vec{j}$
 5.	If $\vec{a} \& \vec{b}$ acting at an angl θ then magnitude of their resultant is given by
 	$\sqrt{a^2 + b^2 + 2ab\cos\theta}$ and dierection of resultant $\alpha = \tan^{-1}\left(\frac{b\sin\theta}{a + b\cos\theta}\right)$.
6.	To find resultant parallalogram law, triangle law, polygon law, lami's theorm, tangent law are used.
7.	Any two vecots $\vec{a} \& \vec{b}$ acting θ , then their dot product is given by $\vec{a}.\vec{b} = ab\cos\theta$
8.	Any two vecots $\vec{a} \& \vec{b}$ acting θ , then their cross product is given by $\vec{a} \times \vec{b} = ab\sin\theta \overline{n}$
 	Worksheet-1
A c	physical quantity which requires two parameters namely magnitude and direction for its
	nplete specification is known as vector. eg: force, displacement, velocity etc.

Representation

A vector is graphically represented by a directed line segment. The length of the line segment | is proportional to the magnitude of vector and arrow points along the direction. IX - CLASS

 	Tail head (origin) (terminus)
	Modulus of a vector
 	The length or magnitude of a vector is known as the modulus of vector. If \ddot{a} is a vector,
l then	length of magnitude is denoted by $\left \overline{a} \right $. This is read as Mod \overline{a}
<u>§§</u>	TYPES OF VECTORS
1. 	EQUAL VECTORS: Two vectors are said to be equal when their magnitude and direction are equal.
2. 2.	NEGATIVE VECTOR: Negative vectors are those which are equal in magnitude but opposite in direction.
 3. 	NULL VECTOR or ZERO VECTOR: It is a vector whose magnitude zero and direction is unspecified.
į	Ex: a) Displacement after one complete revolution.
	b) Velocity of vertically projected body at the highest point.
¦4.	UNIT VECTOR : It is a vector whose magnitude is unity. A unit vector parallel to a given
 	vector \vec{r} is given by $\hat{\mathbf{r}} = \frac{\vec{r}}{ \vec{r} }$
 5. 	REAL VECTOR or POLAR VECTOR : If the direction of a vector is independent of the coordinate system, then it is called a polar vector.
į	Ex: linear velocity, linear momentum, force etc.
6. 	PSEUDO VECTOR or AXIAL VECTOR : Vectors associated with rotation about an axis and whose direction is changed when the co-ordinate system is changed from left to right, are called pseudo vectors.
	Example : Torque, Angular momentum, Angular velocity etc.
7.	POSITION VECTOR: It is a vector that represents the position of a particle with respect to
İ	the origin of a co-ordinate system. The Position Vector of a point (x, y, z) is $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$
 <u>§§</u>	POSITION VECTOR IN 3D PLANE
1.	A point in space can be specified by a position vector $\vec{R} = x\hat{i} + y\hat{i} + z\hat{k}$, x, y and z being the
 	coordinates of the point in cartesian coordianate system.
 2.	Magnitude of position vector is given by $\left \vec{R} \right = \sqrt{x^2 + y^2 + z^2}$
 3. 	The unit vector along \vec{R} is given by $\hat{R} = \frac{\vec{R}}{ \vec{R} } = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{\sqrt{x^2 + y^2 + z^2}}$
	Basic addition of vectors
	To add two vectors, one vector is drawn to scale and the tail of second vector is made to
coin	cide with the head of first vector without changing its orientation.
IX -	CLASS 60

Re sul
$$\tan t(\overline{R}) = \overline{i} + 2\overline{j} + 2\overline{i} + \overline{j} = 3\overline{i} + 3\overline{j}$$

solution:

 $=\frac{\overline{R}}{R}=\frac{3\overline{i}+3\overline{j}}{\sqrt{2^{2}+2^{2}}}=\frac{3\overline{i}+3\overline{j}}{3\sqrt{2}}=\left(\frac{1}{\sqrt{2}}\right)\overline{i}+\left(\frac{1}{\sqrt{2}}\right)\overline{j}$ **Example:8** Find the unit vector along the resultant of the vectors $\overline{a} = \overline{i} - \overline{j}$, $\overline{b} = \overline{i} + 2\overline{j}$, $\overline{c} = 4\overline{i} - \overline{j}$ solution: $\overline{R} = \overline{i} - \overline{j} + \overline{i} + 2\overline{j} + 4\overline{i} - \overline{j} = 6\overline{i}$ $\frac{\hat{R}}{R} = \frac{R}{R} = \frac{6i}{\sqrt{c^2}} = \overline{i}$ **Example:** 9 Find the vector \overline{a} if the resultant of $\overline{a}, \overline{b} = 4\overline{i} + 2\overline{j}$ and $\overline{c} = 2\overline{i} - \overline{j}$ is $\overline{0}$ solution: $\overline{a} + 4\overline{i} + 2\overline{j} + 2\overline{i} - \overline{j} = \overline{0} \Rightarrow \overline{a} = -6\overline{i} - \overline{j}$ **Example: 10** $\bar{a} = \bar{i} - 2\bar{j}, \bar{b} = 2\bar{i} + \bar{j}, \bar{c} = x\bar{i} + y\bar{j}$ find \hat{c} if the resultant of \bar{a}, \bar{b} and \bar{c} is $\bar{0}$ undati^{oi} solution: $\overline{c} = -(\overline{a} + \overline{b})$ $\overline{c} = -(2\overline{i} + \overline{j} + \overline{i} - 2\overline{j})$ $\overline{c} = -3\overline{i} + \overline{i}$ $\hat{\overline{c}} = \frac{\overline{c}}{|\overline{c}|} \Longrightarrow \hat{\overline{c}} = \frac{-3\overline{i} + \overline{j}}{\sqrt{3^2 + 1^2}} \Longrightarrow \hat{\overline{c}} = \frac{-3\overline{i} + \overline{j}}{\sqrt{10}}$ TEACHING TASK Choose the correct option: If $0.5i + 0.8j + c\vec{k}$ is a unit vector, then C is 1. 1) $\sqrt{89}$ 2) 0.2 3) 0.3 4) $\sqrt{0.11}$ If $\vec{P} = \vec{i} + 3\vec{j} - 7\vec{k}$ and $\vec{Q} = 5\vec{i} - 2\vec{j} + 4\vec{k}$ then the length of the vector \vec{PQ} is 2. 1) $\sqrt{104}$ 2) $\sqrt{162}$ 3) - 29 4) 20 If a body starts with a velocity $2\hat{i} - 3\hat{j} + 11\hat{k} ms^{-1}$ and moves with an accelaration of 3. $10\hat{i} + 10\hat{j} + 10\hat{k} ms^{-2}$. then its velocity after 0.25s 1) $\frac{1}{2}\sqrt{811}ms^{-1}$ 2) $\sqrt{\frac{811}{2}}ms^{-1}$ 3) $\sqrt{811} m s^{-1}$ 4) $2\sqrt{811} m s^{-1}$ The value of 'm', if $\vec{i}+2\vec{j}-3\vec{k}$ is parallel to $3\vec{i}+m\vec{j}-9\vec{k}$ is | 4. 2)9 4) 3 1) 12 3)6 **IX - CLASS** 63

5.	A fore $2\hat{i} + \hat{j} - \hat{k}$ newton acts on a body which is initially at rest. If the velocity of the body at								
 	the end of 20sec	onds is $4\hat{i} + 2\hat{j} +$	$2\hat{k}$ ms^{-1} , the mass of	f the body					
į	1) 20kg	2) 15kg	3) 10kg	4) 5kg					
 6. 	Two vectors \overline{A} a	nd \overline{B} are relate	ed as $\overline{A} - 2\overline{B} = -3\left(\overline{A} + \overline{B}\right)$	\overline{B}). If $\overline{A} = 6 \overline{i} - 2 \overline{k}$ then $\overline{B} =$					
	1) $-24 \overline{i} + 8 \overline{k}$	2) 8 \bar{i} – 24 \bar{k}	3) $2\bar{k}-6$	\bar{i} 4) $2\bar{k} + 6\bar{i}$					
<u>Asse</u>	rtion A and Reaso	<u>n R:</u>							
♦ Statem the co	This section contains nent – 2 (Reason). Each rrect option.	s certain number oj question has 4 choi	f questions. Each questi ices (A), (B), (C) and (D)	ion contains Statement – 1 (Assertion) and out of which ONLY ONE is correct Choose					
7.	A : A physical quantity is not called as a vector if its magnitude is zero								
	R : A vector has t	ooth magnitude a	and direction						
	A) Both 'A' and 'R	' are true and 'R'	is the correct explan	ation of 'A'					
ļ	B) Both 'A' and 'R	' are true and 'R'	is not correct explan	ation of 'A'					
1	C) A' is true and (D) (A' is following and	R' is faise		211					
Matc	b) A is laise and	R IS li ue	inu						
	This section contain	s Matrix-Match Tyr	e questions Each quest	ion contains statements given in two					
• colum	ns which have to be ma	tched. Statements (2	A, B, C, D) in Column–I	have to be matched with statements (p, q, r,					
s) in C	Column–II. The answer	rs to these questions	s have to be appropriate.	ly bubbled as illustrated in the following					
^{examp}	If the correct matche	es are A-p,A-s,B-r,B-	-r,C-p,C-q and D-s,then t	he correct bubbled 4*4 matrix					
should	l be as follows:		6.						
8.	Match by finding	angle between th	e given vectors						
		1	1 /	* /					
1	a) 120°	b) 120 ⁰	c)	$\frac{45^{\circ}}{45^{\circ}}$ d) $\frac{45^{\circ}}{45^{\circ}}$					
ļ	1) 60 ⁰	2) 120 ⁰	3) 135 ⁰	4) 45 [°]					
	A) a-1, b-2, c-3, c	1-4 B)a	a-4, b-3, c-2, d-1						
İ	C) a-2, b-3, c-1, o	d-4 D) a	a-1, b-2, c-4, d-1						
<u>Com</u>	prehention type:								
↓ 	This section contain answered. Each que the correct option.	s paragraph. Based stion has 4 choices	l upon each paragraph (A), (B),(C) and (D) ou	multiple choice questions have to be it of which ONLY ONE i s correct. Choose					
9.	If \vec{A} and \vec{B} are t	wo vectors acting	g at an angle $ heta$ then	find the angle between					
į	a) \vec{A} and \vec{A} b)	\vec{B} and \vec{B}	c) \vec{A} and - \vec{B}	d) - \vec{A} and \vec{B}					
	e) $3\vec{A}$ and \vec{A} f)	\vec{A} and $2\vec{B}$	g) 2 \vec{A} and 3 \vec{B}	h) - \vec{A} and 2 \vec{B}					
 	i) - \vec{A} and - \vec{B} j)	-2 \vec{A} abd - \vec{B}	k) -3 \vec{A} and \vec{B}	I) -3 \vec{A} and -2 \vec{B}					
 IX - (CLASS			64					
I 1				v -					

Solve	e the following:								
10.	A motor cyclist drives his vehicle 8 km towards west then 5 km towards north and then 4 km towards west. What is his total displacement in entire journey.								
11.	Alex goes cruising on his dirt bike. He rides 700 m north, 300 m east, 400 m north, 600 m west, 1200 m south 300 m east and finally 100 m north. What was his displacement?								
	LEARNER'S TASK								
<u>Choc</u>									
1.	If $\bar{P} = \bar{i} + 2\bar{i} + 2\bar{k}$, the magnitude of \vec{P} is								
••	1)1 2)2 3)3 4)9								
2.	The modulus of a vector $\overline{A} = \overline{5}i + p \overline{j} + 4\sqrt{2} \overline{k}$ is 11. The value of p is								
3.	1) $+8$ 2) -8 3) ± 8 4) 6A particle has a displacement of 12m towards east then 5m towards north and then 6mvertically upwards. The resultant displacement is1) 10.04 m2) 12.10 m3) 14.32 m4) 12.6 m								
4.	A force $\bar{F} = 6\bar{i} - 8\bar{i} + 10\bar{k}$ N Produces and acceleration of 1m/s ² in a body. The mass of								
	body would be								
5.	1) 200 kg 2) 20kg 3) $10\sqrt{2}kg$ 4) $6\sqrt{2}kg$ A vector has co-ordinates (1,1,2) for initial point and (2,1,3) as the terminal point. The length of the vector is								
	1) $\sqrt{2}$ 2) $\sqrt{34}$ 3) 2 4) $\sqrt{6}$								
6.	A vector is represented by $3\bar{i}_+\bar{j}_+2\bar{k}$. Its length in xy plane is								
	1) 2 2) $\sqrt{14}$ 3) $\sqrt{10}$ 4) $\sqrt{5}$								
7.	If position vector is given by \bar{R} = (-6,-4,-12) then the unit vector parallel to \bar{R} is								
	1) $+\frac{1}{7}(3i+2\bar{j}+6\bar{k})$ 2) $-\frac{1}{7}[3i+2\bar{j}+6\bar{k}]$ 3) $\pm\frac{1}{7}[3i+2\bar{j}+6\bar{k}]$ 4) $\frac{14}{[6i+4\bar{j}+12\bar{k}]}$								
8.	A man travels 1 mile due east, than 5 miles due south, then 2 miles due east and finally 9 miles due north. His displacement is 1) 3 miles 2) 5 miles 3) 4 miles 4) between 5 and 9 miles								
Solve									
1.	A person walks 3m towards east and then 4m towards north. Find the displacement of the person.								
2.	A boy walks 12m towards west and then 5m towards south. Find the displacement of the boy.								
3.	A car travels 10km towards south and then 24km towards east. Find the displacement of								
IX -	CLASS 65								

PHYS	VECTORS VECTORS						
	the car.						
4. 	A train travels 60km towards north and then 80km towards west. Find the displacement of the car.						
5. 	Find the angle between two vectors $\overline{A} \& \overline{B}$ as shown in the figures						
 	a) 225^{0} b) 45^{0} c) 270^{0} d) 270^{0} e) 135^{0}						
6.	What is the maximum possible angle between two vectors?						
7.	What is the minimum possible angle between two vectors?						
 	The angle between two vectors is θ . If the direction of one of the vectors is reversed then the angle between the vectors becomes.						
9. 	The angle between two vectors is θ . If the directions of both of the vectors are reversed then the angle between the vectors becomes						
 10.	If \vec{A} and \vec{B} are two vectors acting at an angle 30 [°] then find the abgle between						
 	a) \vec{A}_{A} and \vec{A}_{A} b) \vec{B}_{B} and \vec{B}_{B} c) \vec{A}_{A} and $-\vec{B}_{B}$ d) $-\vec{A}_{A}$ and \vec{B}_{B}						
	e) $3\vec{A}$ and \vec{A} f) \vec{A} and $2\vec{B}$ g) $2\vec{A}$ and $3\vec{B}$ h) - \vec{A} and $2\vec{B}$						
 	i) - \vec{A} and - \vec{B} j) - 2 \vec{A} abd - \vec{B} k) - 3 \vec{A} and \vec{B} l) - 3 \vec{A} and -2 \vec{B}						
1							
 <u>Asser</u>	tion A and Reason R:						
Statements the cor	This section contains certain number of questions. Each question contains Statement -1 (Assertion) and ent -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose rect option.						
	A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'						
l	B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A'						
	C)'A' is true and 'R' is false						
1 	D) 'A' is false and 'R' is true						
1.	A:-A null vector is a vector whose magnitudeis zero and direction is arbitray						
	R:-A null vector does not exist						
 2.	A:- $\frac{1}{\sqrt{2}}\bar{i}$ + $\frac{1}{\sqrt{2}}\bar{j}$ is a unit vector						
1	R:- The component vectors of a unit vector need not be unit vectors						
3.	A: Electriccurrent isa vector						
	R: A physical quantity having magnitude and direction should be always a vector.						
<u>Multip</u>	ole option type:						
	◆ This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D),out of which						
ONE 0	ONE or MORE is correct. Choose the correct options						
1/1 - (

PHYS	SICS			VECTORS					
4.	Which of the following	is a null vector							
	a) velocity vector of a b	oody moving in a circl	e with a uniform s	speed					
	b) velocity vector of a body moving in a straight line with a uniform speed								
	c) position vector of the	e origin of the rectang	jular co-ordinate s	system					
	d) displacement vecto	or of a stationary ob	ject						
	A) both a & b	B) both b & c	C) a, b & c	D) both c & d					
5.	Two vectors of same p	hysical quantity are u	nequal if						
	a) They have the same	e magnitude and sam	e direction						
	b) They have different magnitudes but same direction								
	c) They have same ma	gnitude but different	directions						
	d) They have different	magnitudes and diffe	rent directions						
	A) a & b are true	B) b, c & d are true	C) only c and d a	are true D) a, b, c & d are true					
Match	n the following:								
column s) in Ce exampl	Ints section contains Matr as which have to be matched. olumn–II. The answers to th le. If the correct matches are A be as follows:	IX-Match Type questions. Statements (A, B, C, D) i ese questions have to be 1-p,A-s,B-r,B-r,C-p,C-q an	each question cont n Column–I have to appropriately bubbl nd D-s,then the corre	this statements given in two be matched with statements (p, q, r, ed as illustrated in the following ct bubbled 4*4 matrix					
5 <i>nouiu</i>	List-1	List-2	n						
	a.Force	1. Sca	lar						
	b.Mass	2. Axial Vector	<u> </u>						
	c.Moment of Interia	3. Vec	tor						
	d.Angular Momentum	4. Tensor							
	A) a-3,b-1,c-4,d-2 B)a	a-1,b-3,c-4,d-2 C)	a-3,b-1,c-2,d-4 D)a-1,b-3,c-2,d-4					
7.	Column-I	Colur	nn-ll						
	a) Equal vectors	1) san	ne magnitude						
	b) Like vectors	2) same direc	tion						
	c) Unlike vectors	3) diffe	erent magnitude						
	d) Negative of a vector	4) opp	osite direction						
	A) a-1,2 b-2,3 c-3,4 d-7	I,4 B)a-1,4 b-3,4	c-1,4 d-2,3						
	C) a-3,4 b-1,3 c-2,4 d-	1,4 D)a-1,2 b-3,4	c-2,3 d-1,4						
<u>Comp</u>	prehention type:								
•	This section contains para answered. Each question h the correct option.	graph. Based upon each as 4 choices (A) , (B) ,(C	paragraph multiple) and (D) out of whi	choice questions have to be ch ONLY ONE i s correct. Choose					
8.	If $\vec{a} = 4\vec{i} - 3\vec{j}$ and $\vec{b} = 8\vec{i}$	$\vec{s_i} - \vec{s_j}$ then choose the	ne correct magnit	udes for the below					
	i) Magnitude of $\vec{a} + \vec{b}$ i	s							
	A) 5	B) 10	C) 15	D) $\sqrt{5}$					
	ii) Magnitude of $\vec{a} - \vec{b}$			·					
1	A) 5	B) 10	C) 15	D) $\sqrt{5}$					
IX - (CLASS	,	,	67					

	iii) Magnitude of $\vec{b} - \vec{a}$										
	A) 5	B) 10		C) 15		D) .	$\sqrt{5}$		l		
High	High order thinking skills (HOTS):										
9.	If $\overline{A} = 3\overline{i} + 5\overline{j} - 2k$, and	If $\overline{A} = 3\overline{i} + 5\overline{j} - 2k$, and vector $\overline{B} = -3\overline{j} + 6\overline{k}$. Find a vector \overline{C} such that $2\overline{A} + 7\overline{B} + 4\overline{C} = 0$									
	1) $-6\bar{i}+11\bar{j}-38\bar{k}$	2) $11\bar{j}-4\bar{k}$	3) _{–1.}	$5\bar{i}+2.75$	$5\bar{j}-9.5\bar{k}$	4) 4	<i>j</i> −6 <i>k</i>				
 10. 	If $\bar{A} = 3 \bar{i} + 4 \bar{j}$ and \bar{A} and parallel to \bar{A} is	$\overline{B}=7\overline{i}+24\overline{j}$, t	hen the v	vector ha	aving the	same mao	gnitude a	s that	of <u></u> B		
	1) $15\bar{i}+20\bar{j}$	2) $15\bar{i}-20\bar{j}$		3) ₂₀ ī-	$+15\bar{j}$	4) 2	$20\bar{i}-15\bar{j}$	i			
 11.	The unit vector para	llel to the resul	tant of ve	ectors \overline{A} =	$=4\bar{i}+3\bar{j}+$	$6\bar{k}$ and \bar{B}	$=-\overline{i}+3\overline{j}-$	$8\bar{k}$ is			
 	1) $\frac{1}{7}(3\bar{i}+6\bar{j}-2\bar{k})$	2) $-\frac{1}{7}(3\bar{i}+)$	$5\bar{j}-2\bar{k})$ KEY	3) $\pm \frac{1}{7}$	$-(3\overline{i}+6\overline{j})$	$-2\bar{k})$	4) $\frac{1}{47}(3)$	$\overline{i} + 6\overline{j}$	$(-2\bar{k})$		
ι <u>ΦΦ</u>	TEACHING TASK :		FC)				 		
	1) 4, 2) 2, 3) 1,	4) 3, 5) 3,	6) 1,	7) 4,	8)A,	9) 0	⁰ , b) 0 ⁰ , c)	180- <i>θ</i>),d) ∣		
י ו שש	180- θ , e) 0°, f) θ ,	g) <i>θ</i> , h) 180-	9,1)	heta , K) 1	80- <i>⊕</i> , I)	θ , 10)	13 km,	11)	zero		
<u>\.</u> [BEGINNERS :										
	1) 3, 2) 3, 3) 3,	4) 3, 5) 1,	6) 3,	7) 3,	8) 2						
	1) 5 m 2) 13	m 3) 26	km	4) 100	km 5	i) a) 135º	b) 135° o	c) 90º	d)		
 	90 [°] , e) 135 [°] ,	6) 180 [°] ,	7) 0 ⁰ ,	8) 180-	$\cdot \theta$, 9	θ) θ , 10)	0 ⁰ , b) 0 ⁰ ,	c) 150	, d)		
	150 [°] , e) 0 [°] , f) 30 [°] , g)	30º, h) 150º, i)	30º, j) 3	0º, k) 15	0°, I) 30°						
	1) C, 2) B, 3) D	4) D, 5) B,	6) C,	7)A,	8) i) C, ii) A, iii) A	9)3, ⁻	10)1,	11)3		
 		W	orksh	eet-2							
	Components of a v	<u>vector</u>									
ļ	Any vector can be e	xpressed as th	e vector	sum			1				
 	of some other vecto	rs known as co	omponen	t vectors	6	~<	P				
 	eg: $\overline{AB} = \overline{AP} + \overline{PO} +$	$\overline{OR} + \overline{RB}$									
IX -	CLASS	~							68		

VECTORS

The maximum number of vector components that a given vector can be resolved into is infinite.

<u>Illustration</u>

A force of magnitude 10N is acting at an angle 60[°] with axis as shown in figure. If $\overline{F_x}$, $\overline{F_y}$ are the component vectors along X & Y directions. Then the given vector can be expressed as

$$F_x + F_y = 10\cos 60^{\circ}i + 10\sin 60 j$$

= 10 X $\frac{1}{2}\bar{i}$ + 10 X $\frac{\sqrt{3}}{2}\bar{j}$ = 5 \bar{i} + 5 $\sqrt{3}\bar{j}$

where $\overline{i} \& \overline{j}$ are the unit vectors along x and y - axes respectively. They just indicate the direction.

<u>example</u>: Find the angle made by the vector $3\overline{i} + 4\overline{j}$ with x-axis

solution: $\tan \theta = 4/3$

<u>example</u>: Find the angle made by the vector $\overline{i} + \sqrt{3}\overline{j}$ with x-axis

solution: $\tan \theta = \sqrt{3}$ $\theta = 60^{\circ}$

<u>88</u> RECTANGULAR COMPONENTS

If a (plane) vector is resolved into two mutually perpendicular component vectors then these component vectors are called as the rectangular component vectors of that vector in 2 D coordinate system.

If a (spatial) vector is resolved into three mutually perpendicular component vectors then these component vectors are called as the rectangular component vectors of that vector in 3D coordinate system.

The advantage of splitting up a vector into rectangular components is we can find the magnitude of the vector by simply finding the square root of sum of the squares of the components.

<u>§§</u> RESOLUTION OF A VECTOR:

- 1. A vector (\overline{R}) can be resolved into two mutually perpendicular components R_x and R_y .
- 2. The projection of (\overline{R}) along x-axis is called horizontal component $(R_x) R_x = R.\cos\theta$
- 3. The projection of (\overline{R}) along y-axis is called vertical component (R_v) $R_v = R.sin\theta$

 \overline{F} = F cos 30° \overline{i} +F sin 30° \overline{j}

Hence F_x & F_y are known as the rectangular components.

Example : A force of magnitude 20N is acting at an angle 60° with the +ve x-axis in anit - clockwise direction as shown in figure. Express this force the vector sum of rectangular component vector.

Solution : $\overline{F} = F_x \overline{i} + F_y \overline{j}$

$$20N = 20 \times \cos 60^{\circ} \frac{1}{i} + 20 \times \sin 60^{\circ} \frac{1}{j}$$

 $20N = 10\bar{i} + 10\sqrt{3}\bar{j}$

Example : Two forces each of magnitude 20N are acting in horizontal plane on a particle of mass 5kg as shown in the figure. Find the acceleration of the particle. T/NEE 2021-22

Solution : $\overline{F_1} = 10\overline{i} + 10\sqrt{3}\overline{j}$

$$\overline{F_2} = 10\overline{i} - 10\sqrt{3}\overline{j}$$

$$\overline{R} = \overline{F_1} + \overline{F_2} = 20\overline{i}$$
$$\overline{a} = \frac{20}{5} = 4\overline{i} m / s^2$$

Example : Three forces each of magnitude 10N are acting as shown in figure. Find the resultant force.

```
Solution : \overline{F_1} = 10 \cos 30 \,\overline{i} + 10 \sin 30 \,\overline{j}
```


 $\overline{R} = \overline{F_1} + \overline{F_2} + \overline{F_3} = 0$ Example : Find the resultant of the following Solution : $\overline{R} = \overline{F_1} + \overline{F_2} + \overline{F_3} + \overline{F_3}$ $\overline{R} = 5\overline{i} - 10\overline{i} + 15\overline{j} - 10\overline{j}$ $\overline{R} = -5\overline{i} + 15\overline{j}$ $\left|\overline{R}\right| = \sqrt{(5)^2 + (5)^2}$ $\left|\overline{R}\right| = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}N$ Example : A boy moves 3m along positive x-axis, 4m along +ve y-axis, 5m along -ve x-axis and J = 5i - 2j $\overline{S} = -2\overline{i} + 2\overline{j} \quad |\overline{S}| = -\sqrt{(2)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2m}$ $\overline{Ie} : A \text{ boy moves } 3m \text{ eastward } \overline{S}$ Find the diam Solution : $\overline{S} = 3\overline{i} + 4\overline{j} - 5\overline{i} - 2\overline{j}$ **Example** : A boy moves 3m eastward, $5\sqrt{2}$ m northeast and 5m west and 5m 60^o north of west. Find the displacement. Solution : $\overline{S} = 3\overline{i} + (5\overline{i} + 5\overline{j}) + (-5\overline{i}) + (-2.5\overline{i} + 2.5\sqrt{3}\overline{j})$ $\overline{S} = 0.5\overline{i} + (5 + 2.5\sqrt{3})\overline{j}$ **Example** : A person moves 30m north, then 20m east and then $30\sqrt{2}$ m southwest. Find his displacement. Solution : $\overline{S} = (30\overline{j}) + (20\overline{i}) + (-30\overline{i} + -30\overline{j})$ $\overline{S} = -10\overline{j}$ Displacement = 10m west **Example** : The horizontal and vertical components of a force are 8N and 15N respectively. Find the magnitude of force. Solution : $\overline{F} = 8\overline{i} + 15\overline{j}$ $\left|\overline{F}\right| = \sqrt{64 + 225} = \sqrt{289} = 17N$

PHYSICS	VECTORS							
TEACHING TASK								
Choose the correct option:								
diametrically opposite corner. The magni	/ starting at one corner ends up at the tude of the displacement of the fly is							
1) 12m 2) 60 m	3) $2\sqrt{5}$ m 4) $5\sqrt{2}$ m							
2. The horizontal and vertical components of is	a force are 8N and 15N respectively. The force							
1) 23 N 2) 20N	3) 17 N 4) 7 N							
3. An aeroplane is heading north east at a s its velocity is	peed of 141.4ms ⁻¹ . The northward component of							
1) 141.4 ms ⁻¹ 2) 100 ms ⁻¹	3) zero 4) 50 ms ⁻¹							
4. The component of \overline{A} along \overline{B} is $\sqrt{3}$ times	${ m S}$ that of the component of $\overline{ m B}$ along $\overline{ m A}$. Then A:B is							
1) 1: $\sqrt{3}$ 2) $\sqrt{3}$: 1	3) 2: $\sqrt{3}$ 4) $\sqrt{3}$: 2							
Assertion A and Reason R:	atl							
♦ This section contains certain number of question	is. Each question contains Statement -1 (Assertion) and							
Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose							
the correct option.								
5. A : A vector is zero vector if any one of its	compenents is zero							
R : A vector in space is a sum of its three	rectangular components							
1) Both A and R are true and R is the co	orrect explanation of A							
(2) both A and K are true and K is hold (3)								
 4) 'A' is false and 'R' is true 								
Multiple option type:								
 ↓ This section contains multiple choice questions. Ea 	ch question has 4 choices (A), (B), (C),(D),out of which							
ONE or MORE is correct. Choose the correct options								
6. Consider the following statements A and I	3 given below and identify the correct answer.							
A) The projection of a vector gives the co	mponent.							
B) The component of a vector is a scalar multiplying with unit vector.	and can be converted to a vector components by							
1) both A & B are correct	2) both A & B are wrong							
3) A is correct but B is wrong	4) B is correct but A is wrong							
<u>Comprehension type:</u>								
 ♦ This section contains paragraph. Based upon economic answered. Each question has 4 choices (A), (B), 	ich paragraph multiple choice questions have to be (C) and (D) out of which ONLY ONE i s correct. Choose							
the correct option. 7. A vector whose 2D rectangular component	nts along X and Y the ratio 3:4							
i) The vector is								
IX - CLASS	74							

PHY	SICS				VECTORS				
	A) 4i + 3j	B) 3i + 4j	C) i +	j	D) none				
	ii) Unit vector of tl	ne above vector is							
	A) (4i + 3j) / 5	B) (3i + 4j)) / 5 C) (i ·	+ j) / √2	D) none				
	LEARNER'S TASK								
		<₽∎ BEGI	NNERS (Level	<u>-)</u> ∢)	H1 #				
1.	If vertical compor vector with x-axis	nent of a vector is equa	l to its horizontal o	component, t	he angle made by the				
	1) 0 ⁰	2) 45°	3) 90°	4)	120 ⁰				
2.	If one of the rectan	gular components of velo	ocity 50ms ⁻¹ is 30ms	⁻¹ , the other c	omponent is				
	1) 20ms ⁻¹	2) 40ms ⁻¹	3) 80ms-1	4)	$\left(\frac{50}{\sqrt{2}}ms^{-1}\right)$				
3.	A force of 10N is with the force the	resolved into the perpen magnitudes of the comp	dicular componento	ts, 1f the first	component makes 30º				
	1) 5N, 5N	2) 5√2N, 5 N	3) 5√ <u>3</u> N, 5N	4)	10 N, 10√3N				
4.	A car weighing 10 component of ca)0kg is on a slope that r's weight parallel to th	makes an angle 3 e slope is (g=10m	0° with the h ıs ⁻²)	orizontal. The				
	1) 500 N	2) 1000 N	3) 15,000 N	4)	20,000 N				
~ '		ACHIE	VERS (Level - I	<u>I)</u> ∢ ∎⊣					
<u>Solv</u> 1.	<u>e the numericals:</u> A vector has com the vector as sun	ponents 3 units along 3 n of rectangular compc	X direction and 4 u ment vectors. Wh	units along Y at is the mag	direction. Express				
2.	Find the magnitud	de of the vector . $\vec{A} = \vec{i}$.	$+2\vec{j}-\vec{k}$						
3.	A vector is repres	sented as $\begin{vmatrix} \hat{3}i + 4j + 5k \end{vmatrix}$.	Fine the length of	f the vector.					
4.	Find the unit vect	or along $3\bar{i} - 4\bar{j}$							
5.	Find the unit vect	or along the resultant o	of $8i - 3j$ and $4i$.	$-2\overline{j}$					
6.	Find the value of	x if the 0.4i + xj represe	ents a unit vector						
7.	Find the unit vect	or along the direction 3	$\overline{i} - 3\sqrt{3}\overline{j}$						
8.	A certain vector h other reference s	has rectangular compre ystem the rectangular	ents 5 and 3 in a r components are x	eference sy and 2. Find	stem and in some X.				
9.	Find the vector \overline{a}	if the resultant vector	of \overline{a} , $\overline{b} = 6\overline{i} - 9\overline{j}$	and $\overline{c} = 3\overline{i}$	$+7\overline{j}$ is $\overline{0}$				
10.	$\overline{a} = 4\overline{i} + 3\overline{j}$, $\overline{b} = -$	$-5\overline{i} + 2\overline{j}, \ \overline{c} = x\overline{i} + y\overline{j}$ fin	nd $\frac{\hat{c}}{c}$ if the resultar	t of $\overline{a}, \overline{b}, and$	$l\bar{c}$ is $\bar{0}$				
IX -	CLASS				75				

PHYS	ICS VECTORS								
11.	Find the unit vector along the resultant of the vectors $\vec{a} = 6\vec{i} - 7\vec{j}$, $\vec{b} = 3\vec{i} - 2\vec{j}$, $\vec{c} = 5\vec{i} - 8\vec{j}$								
12.	If \hat{a} is the unit unit vector along \overline{a} then find the angle between them								
13.	What is the sum of the squares of the rectangle components of the unit vector?								
14.	Find the unit vector along the direction of vector whose rectangular components are 3, 4 & 5 along X, Y and Z								
	<t#t <u="" ►="">EXPLORERS(Level - III) <t#t th="" ►<=""></t#t></t#t>								
Asser	tion A and Reason R:								
♦ Stateme the corr	This section contains certain number of questions. Each question contains Statement -1 (Assertion) and $ $ and -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose rect option.								
	A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A' B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A' C)'A' is true and 'R' is false								
1.	 (A) : Vector sum of three coplanar forces can be zero (R) : Minimum number of unequal coplanar vectors required to keep a point in equilibrium is three 								
2.	 (A): When a vector is rotated, its magnitude remains constant. (R): The magnitude of a vector is independent of the coordinate system. 								
3.	(A) : The projection of $(3\hat{j}-4\hat{k})$ on the y-axis is 3 units (B) : The projection of \vec{A} along y-axis is $\vec{A} \neq \vec{i}$								
4	(A) : A vector is described by $\overline{A} = A_{1} \overline{i} + A_{1} \overline{i} + A_{1} \overline{k}$ and 'A ' is a scalar								
	(R): The projection of a vector is a scalar (\mathbf{R})								
<u>Multi c</u>	option type								
♦ T.	his section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D),out of which								
ONE or	• MORE is correct. Choose the correct options								
5.	Consider the following statements A and B given below and identify the correct answer.								
	 a) The projection of a vector gives the component. b) The component of a vector is a scalar and can be converted to a vector components by multiplying with unit vector. 								
	A) both a & b are correct B) both a & b are wrong								
	C) a is correct but b is wrong 4) b is correct but a is wrong								
6.	Which of the following statements is / are false ?								
	a) Mass, speed and energy are scalar quantities.								
	b) Momentum, force and torque are vector quantities.								
	c) Distance is a scalar quantity but displacement is a vector quantity.								
	a) A vector has only magnitude, where as a scalar has both magnitude and direction								
	A) only a is taise B) only b is taise C) only c is taise D) only d is taise								
IX - C	TLASS 76								

٦

Match the following :									
◆ This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example.									
should l	If the correct matches are A - p , A - s , B - r , B - r , C - p , C - q and D - s , then the correct bubbled 4*4 matrix nould be as follows:								
 7.	<u>LIST - I</u>	<u>LIST - II</u>			-				
' 	A) Component of \vec{a} along \vec{b}	1) a² + b²	a	Ĩ	R				
 	B) Component of \vec{b} along \vec{a}	2) 0		θα					
 	C) Component of R along \vec{a}	3) R sin α			Ď				
	D) Component of R along \vec{b}	4) R cos α							
	A) a − 1, b − 2, c − 3, d − 4	B) a –	2, b – 2, c – 3,	d – 4					
İ	C) c – 2, d – 4, a – 2, d – 2	D) a –	2, b – 1, c – 4,	d – 3					
Comp	rehension type:		1211						
 ≠ 	This section contains paragraph. Based u answered. Each question has 4 choices (A) the correct option	pon each paragra) , (B) ,(C) and (D	ph multiple choice) out of which ON	e questio LY ONE	ons have to be S i s correct. Choose				
 8.	A vector whose 3D rectangular com	ponents along >	k, Y and Z are in	n the ra	tio 1:1:1				
ĺ	i) The vector is	01-6							
 	A) i + j + k ii) Unit vector of the above vector is		C) i + j + 2k		D) none				
l	A) $(i + j + k) / \sqrt{3}$ B) $(3i + 4j + 5)$	k) / $5\sqrt{2}$	C) (i + j + 2k) /	$\sqrt{6}$	D) none				
 <u>High c</u>	order thinking skills (HOTS):								
9. 	If the components of a force are P magnitude of	and P along e	east and north	directic	ons, the force has				
 	1) P 2) P/2		3) √2 P		4) 2P				
 10. 	If a vector has an x component of -25.0 and direction of this vector is	Ounits and a y co	omponent of 40.0) units, t	then the magnitude				
 	1) $5\sqrt{89}$ units; $\sin^{-1}\frac{-5}{\sqrt{89}}$ with x-axis	$(5, 2)$ $5\sqrt{89}$ units	$c;\cos^{-1}\frac{-5}{\sqrt{89}}$ with	h x-axis	; ;				
 	3) 45 <i>units</i> ; $\cos^{-1} \frac{-5}{9}$ with x-axis	4) 45	units; $\sin^{-1}\frac{-5}{9}$	with x-	axis				
 11. 	Three forces $F_1 = a(i-j+k)1 F_2 = 2i-3j+particle$. If the particle is in equilibrium	-4k and F ₃ = m, the value of	8i-7j+6k act sirr a is	nultanec	ously on a				
	1) 10 2) -10	3) 8		4) 2					

KEY							
΄ <u>Φ</u> Φ Τ	EACHING TASK :						
	1) 4, 2) 3, 3) 2,	4) 2, 5) 4,	6) 1, 7) i)	B, ii) B		l	
Ι Ι <u>ΦΦ</u> <u>Ι</u>	<u>EARNER'STASK</u> :					l	
і П В	EGINNERS :					İ	
	1) 2, 2) 2, 3) 3, CHIEVERS :	4) 1					
	1) 3i+4j, 5 units,	2) $\sqrt{6}$,	3) _{5√2} ,	4) (3i-4j)/5,	5) (12i-5j)/13,	ļ	
	6) $\sqrt{0.84}$, 7) (3i-3)	3√ <u>3</u> j)/6,	8) 10/3,	9) -9i+2j,	10) (i-5j)/ $\sqrt{26}$,	l	
İ	11) (14i -17j)/ $\sqrt{485}$,	12) zero,	13) 1unit,	14) (3i+4j+5k)/	$5\sqrt{2}$		
	XPLORERS :						
	1)A, 2)A, 3)A,	4) A, 5) A,	6) D, 7) B,	8) i) A, ii) A	9) 3, 10) 2,	11) 2	
				4:0	· · · ·		
į		W	orksheet-			į	
<u>§§</u>	Parallelogram law o	of vector addi	<u>tion</u>	1000			
State	ment: If two vectors ar	re represented	both in magni	ude and directio	on as the adjacent	sides	
	the resultant both in	awn from a po magnitude and	direction.	al passing throu	gn that point repre	sents	
	Let \overline{OA} and \overline{OA}	\overline{OR} represent to	vo vectors \overline{P} a	and \overline{O} both in m	agnitude and dire	ction.	
	Let θ be the angle b	etween the vec	ctors. If we con	struct a parallelo	ogram OABD with	\overline{P} and \mid	
l	\overline{O} as adjacent sides	then the diago	nal <u>op</u> represe	ents the resultan	t both in magnitude	e and	
1	direction.	anon ano diagoi)		
ا <u>88</u>	MAGNITUDE OF T	HE RESULTAI	<u>NT</u>	1	·7	D	
	From the picture			0/	R		
	$OD^2 = OC^2 + CD^2$			×/	° i		
	$= (OA+AC)^2 + CD^2$						
	= $(OA+AD \cos \theta)^2$ +	$(AD \sin \theta)^2$		0 1	A	2	
	$R^2 = P^2 + Q^2 \cos^2 \theta + 2$	$2PQ \cos\theta + Q^2$	$\sin^2 heta$				
	$R^2 = P^2 + Q^2 + 2PQ co$	sθ					
	$R = \sqrt{P^2 + Q^2 + 2PQ}$	$\cos\theta$					
 <u>§§</u>	DIRECTION OF RE	SULTANT					
 	Let the resultant \overline{R} m	nakes an angle	lpha with the d	irection of \overline{P} . Fi	om the figure		
	In triangle OCD, tan	$\alpha = \frac{CD}{OC} \Rightarrow \tan \alpha$	$n\alpha = \frac{CD}{D4 \pm 4C}$				
IX - 0	CLASS		UNTAC			78	

Г

$\Rightarrow \tan \alpha = \frac{AD \sin \theta}{OA + AD \cos \theta} \Rightarrow \tan \alpha = \frac{Q \sin \theta}{P + Q \cos \theta}$
If eta is the angle made by the resultant \overline{R} with the direction of $\overline{\mathcal{Q}}$ then
$\tan\beta = \frac{P\sin\theta}{Q + P\cos\theta}$
Note:
1) If \overline{P} and \overline{Q} are in the same direction i.e. $\theta=0^{\circ}$, $ \overline{R} = \overline{P} + \overline{Q} $
2) If \overline{P} and \overline{Q} in opposite direction i.e. $\theta = 180^{\circ} \overline{R} = \overline{P} - \overline{Q} $
If $\overline{\mathbf{p}}$ and $\overline{\mathbf{Q}}$ are perpendicular to each other i.e. $\theta = 90^0 \left \overline{\mathbf{R}}\right = \sqrt{\mathbf{P}^2 + \mathbf{Q}^2}$
4) If the magnitude of \overline{P} is equal to the magnitude of \overline{Q} , then $ \overline{R} = 2P\cos\frac{\theta}{2}$ and $\alpha = \frac{\theta}{2}$.
5) If $ \overline{P} = \overline{Q} $ and $\theta = 120^{\circ}$, then $ \overline{R} = \overline{P} $.
6). Using parallelogram law of vectors $ (\overline{a} - \overline{b}) = \sqrt{a^2 + b^2 - 2ab\cos\theta}$
7) The magnitude of resultant that can be obtained from the vectors of magnitude P & Q will in be between P+Q & P-Q
Two forces each of magnitude 10N act at a point with an angle 60 ⁰ between them. Find the magnitude and direction of resultant.
solution: we know that R = $R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$
$R = \sqrt{10^2 + 10^2 + 2 \times 10 \times 10 \times \cos 60^0} = 10\sqrt{3}N$
$\tan \alpha = \frac{Q \sin \theta}{P + Q \cos \theta} \Longrightarrow \tan \alpha = \frac{10 \sin 60^0}{10 + 10 \cos 60^0} = \frac{1}{\sqrt{3}} \Longrightarrow \alpha = 30^0$
Example:2
Find the maximum and minimum value of two forces that can be ontained from the forces 3N & 5N
solution: maximum value = 3+5 = 8N, minimum value = 5-3 = 2N
Example: 3 Maximum and minimum resultants of two forces are in the ratio 4:3. Find the ratio of the forces
Solution $\frac{F_1 + F_2}{F_1 - F_2} = \frac{4}{3} \Rightarrow 3F_1 + 3F_2 = 4F_1 + 4F_2 \Rightarrow 7F_2 = F_1 \Rightarrow \frac{F_1}{F_2} = \frac{7}{1} \Rightarrow F_1 : F_2 = 7:1$
IX - CLASS 79

Example: 4 The resultant of two forces 2p and $\sqrt{2}$ p is $\sqrt{10}$ p. Find the angle between the forces solution: $R^2 = P^2 + Q^2 + 2PQ\cos\theta$ $\left(\sqrt{10}p\right)^2 = (2p)^2 + \left(\sqrt{2}p\right)^2 + 2p \times \sqrt{2} \times 2 \times \cos\theta \Longrightarrow 10p^2 = 4p^2 + 2p^2 + 4\sqrt{2}p^2 \cos\theta$ $10p^2 - 6p^2 = 4\sqrt{2}p^2 \cos\theta \Rightarrow \qquad \cos\theta = \frac{1}{\sqrt{2}} \Rightarrow \therefore \theta = 45^\circ$ Example: 5 The greatest and least resultant of two forces acting at a point are 29N and 5N. If each force it increased by 3N and applied by 3N and applied at right angles on a particle then find the new resultant force **solution:** $F_1 + F_2 = 29$, $F_1 - F_2 = 05$ by sloving $2F_1 = 34$ $F_1 = 17N \Longrightarrow F_2 = 12N$ $F_1^1 = 17 + 3 = 20N$ $F_2^1 = 12 + 3 = 15N$ Example 6: The resultant of P newton and 1N Foundat is 1N and is perpendicular to 1N. Find the magnitude and direction of P **solution:** The resultant of $\overline{OA} \& \overline{OB}$ is \overline{OC} which can be found using triangular law of vector addition by sliding \overline{OB} as shown The closing side \overline{OC} of triangle OAC represents the resultant of P newton and 1N from the geometry $P^2 = 1^2 + 1^2 \implies P = \sqrt{2} \implies \theta = 135^\circ$ Example:7 The resultant of two forces at right angles is 17N. The maximum possible resultant with these forces is 23N. Find the greater force P+Q=23N solution: $P^{2} + Q^{2} = 17^{2} \implies P^{2} + Q^{2} = 289 \implies (P+Q)^{2} = (23)^{2} \implies P^{2} + Q^{2} + 2PQ = 529$ $2PQ = 529 - 289 \implies PQ = \frac{240}{2} \implies (P - Q) = P^2 + Q^2 - 2PQ = 289 - 240 = 49$ P - Q = 7, P + Q = 23 by solving $2P = 30 \implies P = 15N$ **Example: 8** Two forces F₁ and F₂ acting at a point have a resultant F. If F₂ is doubled F also doubled. If F_2 is reversed then also F is double. Find $F_1:F_2:F$ $F^{2} = F_{1}^{2} + F_{2}^{2} + 2F_{1}F_{2}\cos\theta$ ----(1) solution: $4F^{2} = F_{1}^{2} + 4F_{2}^{2} + 4F_{1}F_{2}\cos\theta \qquad -----(2)$ $4F^{2} = F_{1}^{2} + F_{2}^{2} + 2F_{1}F_{2}\cos(180^{\circ} - \theta)$ $4F^{2} = F_{1}^{2} + 4F_{2}^{2} - 2F_{1}F_{2}\cos\theta \qquad -----(3)$

IX - CLASS

80

VECTORS

(i) + (3)
$$\rightarrow 5F^2 = 2F_1^2 + F_2^3$$
 -------(4)
(2) - 2×(1) $\rightarrow 2F^2 = -F_1^2 + 2F_2^2$ -------(5)
F₁ = F, $F_2 = \frac{\sqrt{3}}{\sqrt{2}}F'$ F₁, F_2 ; $F_2 = F: \frac{\sqrt{3}}{\sqrt{2}}F': F \Rightarrow F_1$; F_2 ; $F_2 = \sqrt{2}: \sqrt{3}: \sqrt{2}$
TEACHING TASK
Choose the correct option
1. The maximum and minimum resultants of two forces are in the ratio 4:3. The forces are in the ratio
1) $T:1$ 2) 1:5 3) 4:7 4) 3:7
2. If three vectors \bar{P}, \bar{Q} and \bar{R} are related as $\bar{P} - \bar{Q} = \bar{R}$ and P-Q=R, the angle between the vectors \bar{P} and \bar{Q} is
1) 0 2) 30° 3) 60°
3. The angle made by $\bar{j} + \bar{k}$ with y-axis is
1) 60° 2) 30° 3) 45° 4) 90°
4. A particle has a displacement of 12m towards east then 5m towards north and then 6m vertically
upwards. The resultant displacement is
1) 10.04 m 2) 12.10 m 3) 14.32 m 4) 12.6 m
5. The resultant of two forces 2P and $\sqrt{2}$ P is $\sqrt{10}$ P. The angle between the ofroces is
1) 30° 2) 60° 3) 45° 4) 90°
6. If the angle between two vectors of equal magnitude P is ρ , the magnitude of the difference of
the vectors is
1) $2P \cos \frac{q}{2}$ 2) $2P \sin \frac{q}{2}$ 3) P \cos \frac{q}{2} 4) P $\sin \frac{q}{2}$
7. The resultant of two forces is perpendicular to one of them. If the forces are 500gm wt and
250gm wt, the angle between the forces is
1) 60° 2) 120° 3) $150^\circ 4$) 0°
Assertion A and Reason R:
8. A: When $\overline{P} + \overline{Q} = \overline{R}$ and $P + Q = R$, the angle between $\overline{P} \otimes \overline{Q}$ must be 0° .
R : Here $q = 0^\circ$, $R = \sqrt{P^2 + 2PQ\cos 0^\circ} = P + Q$
1) Both 'A and R' are true and 'R is is not correct explanation of 'A'
2) Both 'A and R' are true and 'R is is not correct explanation of 'A'
2) Both 'A and R' are true and 'R is is not correct explanation of 'A'
2) Both 'A and R' are true and 'R is is not correct explanation of 'A'
2) Both 'A and R' are true and 'R is is not correct explanation of 'A'
2) Both 'A and 'R' are true and 'R is is not correct explanation of 'A'
2) Both 'A and 'R' are true and 'R is is not correct explanation of 'A'
2) Both 'A and 'R' are tru

PHYS	HYSICS	VECTORS
5.	The minimum number of unequal forces in a plane that can keep a particle	in equilibrium is
1	1) 42) 23) 34) 6	
6.	The minimum number of non coplanar forces that can keep a particle in eq	uilibrium is
 _	1) 1 2) 2 3) 3 4) 4	
'7. 	If we add two vectors of equal magnitudes but in opposite directions, we ge	et
	The maximum resultant of two concurrent forces is 10N and their minimum	resultant is <i>A</i> N
0. 	The magnitude of large force is	r resultant is 4N.
ĺ	1) 5N 2) 7N 3) 3N 4) 14N	
 9.	If $\overline{P}+\overline{Q}=\overline{R}$ and \overline{P} - $\overline{Q}=\overline{S}$ then R^2 + S^2 is equal to	
 	1) $P^2 + Q^2$ 2) $2(P^2 - Q^2)$ 3) $2(P^2 + Q^2)$ 4) $4PQ$	
 10.	1. The resultant of forces $\vec{F}_1 = 3\vec{i}-4\vec{j}+2\vec{k}$, $\vec{F}_2 = 2\vec{i}+3\vec{j}-\vec{k}$, $\vec{F}_3 = 2\vec{i}+4\vec{j}-5\vec{k}$ is	
 	1) $7\vec{i}-11\vec{j}-8\vec{k}$ 2) $7\vec{i}+3\vec{j}-6\vec{k}$ 3) $7\vec{i}+3\vec{j}-4\vec{k}$ 4) $7\vec{i}-3\vec{j}$	$+4\vec{k}$
11.	. The maximum value of magnitude of $\left (\overline{A} \cdot \overline{B})\right $ is	
	1) A - B 2) A + B 3) A ² + B ² 4) A ² - B ²	
 12.	If unit vectors \overline{A} and \overline{B} are inclined at an angle θ , then $ \overline{A} \cdot \overline{B} $	
ļ	(θ) (θ)	
 	1) $2\cos\left(\frac{\sigma}{2}\right)$ 2) $2\sin\left(\frac{\sigma}{2}\right)$ 3) 1 4) 0	
 13.	B. If $\bar{A} = \bar{B} + \bar{C}$ and the magnitudes of $\bar{A}, \bar{B}, \bar{C}$ are 5,4 and 3 units respe	ctively the angle
	hetween z and z is	
1		
 	1) $Cos^{-1}\left(\frac{3}{5}\right)$ 2) $Cos^{-1}\left(\frac{4}{5}\right)$ 3) $\frac{\pi}{2}$ 4) Sin^{-1}	$\left(\frac{3}{4}\right)$
 14.	I. To get a resultant displacement of 10 m two displacement vectors, one of m	agnitude 6m and
ĺ	another of 8m should be combined.	
	$\begin{array}{c} 2 \\ 3 \\ 3 \\ at an angle 60^{\circ} \\ 4 \\ berpendicular to each other \\ $	
 15.	Two forces each of 20N act on a body at 120°. The magnitude and direction	of the resultant is
 	1) 20N; $\phi = 60^{\circ}$ 2) 20 $\sqrt{2}$ N; $\phi = 60^{\circ}$ 3) 10 $\sqrt{2}$ N; $\phi = 0^{\circ}$ 4) 10 $\sqrt{2}$ N; $\phi = 1$	20^{0}
 	5. Two forces each of 10N act at an angle 60 ^o with each other. The magnitude the resultant with respect to one of the vectors is	and direction of
	1) $\sqrt{10}$ N, 30° 2) 10 $\sqrt{3}$ N, 30° 3) 20N, 120° 4) 10 $\sqrt{2}$ N, 120°	0
 17. 	Two equal forces act at a point perpendicular to each other. If the resultan magnitude of each force is	t is 1414N, then
 	1) 500N 2) 1000N 3) $1000\sqrt{2}$ N 4) $500\sqrt{2}$ N	
IX - (X - CLASS	83

PHYS	ICS			VECTORS
18. 	Two vectors of n magnitude 10. Th	nagnitudes 8 and ne angle between t	6 are acting at a poin the two vectors is	t so as to produce a resultant of
İ	1) $Cos^{-1}\left(\frac{3}{4}\right)$ 2)	$\cos^{-1}\left(\frac{4}{3}\right)$	3) $Cos^{-1}\left(\frac{7}{5}\right)$	4) 90 ⁰
 19. 	Two forces each force is	of magnitude 'f' a	nd making an angle ϕ	act on a body, then the resultant
 	1) $f\sqrt{2(1-\sin\phi)}$	2) $f\sqrt{2(1+\sin\phi)}$	$\overline{)}$ 3) $2f.\sin\left(\frac{\phi}{2}\right)$	4) $2f.\cos\left(\frac{\phi}{2}\right)$
20. 	The vectors having the vectors will be	ng same magnitude e	e have a resultant equa	l to either, then the angle between
	1) 30º	2)60°	3)90°	4)120º
21.	When forces F_1 ,	F_2, F_3 are acting o	n a particle of mass m	such that F_2 and F_3 are mutually
 	perpendicular, th acceleration of th	en the particle rer le particle is	mains stationary. If th	e force F_1 is now removed then
	1) F ₁ /m	2) $F_1F_3 / m F_1$	3) $(F_2 - F_3)/r$	n 4) F_2/m
22.	Two forces whose them is 60°, the r	e magnitudes arein nagnitude of each	the ratio 3:5 give a rest force is	ultant of 35N. If the angle between
	1) 3N, 5N	2) 9N, 25N	3) 15N, 25N	4) 21N, 35N
23. 	Two forces acting angles to each oth	on a particle in oppo er, the resultant is 60	site directions have a rea) kg wt. The forces are (i	sultant of 10 kg wt. If they act at right n kg. wt)
	1) 47.1, 37.1	2) 14.3, 24.3	3) 40, 30	4) 60, 70
' 24. 	A body suffers fro angles to each of	om two simultaneo ther. The magnitud	us displacements of 30 e of the resultant is	00 m and 400 m which are at right
ĺ	1) 500m	2) 700m	3) 900m	4) 1300m
25. 	Resultant of two The magnitude o	vectors is $20\sqrt{3}$ and f other vector is	and makes an angle 3	0° with a vector of magnitude 20.
 	1) 10	2) 20	 3) 10√3 	4) $20\sqrt{3}$
26. 	A particle is simu on the particle is.	ltaneously acted up	oon by two forces of ma	agnitude 3N and 4N. The net force
	1) 7N	2) 5N	3) 1N	4) Between 1N and 7N
27. 	Two forces of ma the angle betwee	gnitude 8N and 15 In the forces is.	N respectively act at a	point. If the resultant force is 17N,
ĺ	1) 60°	2)45°	3)90°	4) 30°
		<	ACHIEVERS (Level	<u>-)</u>
<u>Solve</u>	the below numer	ricals		
1. 	Two forces each magnitude and d	of magnitude 20N irection of resultan	acting at a point at an t.	angle 60 ⁰ with each other find the ┃ ┃
2. 	Two forces each find the resultant	of magnitude 15N force.	are acting at a point at	an angle 120 [°] with each other
3.	The maximum ar	nd minimum values	s of possible results of	two forces are 7N and 1N
IX - C	CLASS			84

PHYS	ICS VECTORS
	respectively. Find the forces.
4 .	The maximum and minimum values of resultants of two vectors are 8N, 2N respectively. The magnitude of the vectors areandand
5. 	The maximum and minimum values of resultant that can be produced by using the forces 10N and 5N is and
6.	The maximum value of magnitude of the vector $\overline{a} - \overline{b}$ is
 7.	$\sqrt{P^2 + Q^2 - PQ}$ the angle between \overline{P} and \overline{Q} is
8.	The magnitude of $\overline{A} + \overline{B}$ is (pick the right options)
	1) equal to A+B2) not greater than A+B
ļ	3) not greater than or equal to A+B
1	4) may be equal to A+B 5) not less than A-B
9. 	A man travels 1 mile due east then 5mile due south then 2mile due east and finally 9 mile due north ; how far is he from the starting point?
10. 	The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the two forces. What is the angle between the two forces?
11. 	Two forces $F_1 = 5N$ and $F_2 = 10N$ are acting on a body at right angles to each other as shown in figure
	1) Find the resultant force
	2) If the resultant force makes an angle θ
	with 5N force then $\tan \theta =$
1 12 .	Find the magnitude of resultant of the following forces $\mathbf{A}^{\mathbf{F}_{z}=10N}$
ļ	acting at a point as shown below
	F,=ioN
1	450
ļ	$V_{\rm F_3}=10$ N
13. 	The sum of the magnitude of 2 forces acting at a point is 18 and the magnitude of their resultant is 12 if the resultant is at 90 [°] with the force of smaller magnitude, what are the magnitudes of force?
14. 	The resultant of two forces acting at an angle of 150 [°] is 10 kgwt, perpendicular to one of the forces. What is the smaller force?
15.	If $\overline{A} = \overline{B} + \overline{C}$ and the magnitudes of $\overline{A}, \overline{B} \otimes \overline{C}$ are 5,4 and 3 units respectively, what is the
	angle between $\overline{A} \otimes \overline{C}$?
16.	If the forces shown in figure are in equilibrium then F/Mg = T^{T}
1	F
	Mg
ļ	
IX - C	CLASS 85

PHYSICS	VECTORS
EXPLORERS (Level - III)	
Assertion A and Reason R:	
This section contains certain number of questions. Each question contains State Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONI the correct option.	ment – 1 (Assertion) and L Y ONE is correct Choose
 A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A' B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A' C)'A' is true and 'R' is false D) 'A' is false and 'R' is true 	
 A: Two forces 7N and 5N are acting at a point and their resultant can be resulted at a point their resultant can have a P + Q. 	be 3N. value between P–Q to
2. A: The resultant of \overline{p} and \overline{Q} makes the angles α and β with \overline{p} and \overline{Q} rest then $\beta > \alpha$	spectively. If $ \overline{P} \ge \overline{Q} $
R: Resultant is always closer to the vector of larger magnitude	
Multi choice type (Choose the correct)	
 This section contains multiple choice questions. Each question has 4 choices (A), (B) ONE or MORE is correct. Choose the correct options), (C),(D),out of which
3. If $ \vec{A} + \vec{B} = \vec{A} - \vec{B} $ then a) The angle between \vec{A} and \vec{B} is 90° b) $\vec{B} = 0$ c) $\vec{A} = 0$ d) The angle between \vec{A} and \vec{E}	3 is 120º
A) a, b & c are correct B) b, c & d are correct	
C) c, d & a are correct D) d, a & b are true	
4. Consider the following statements A and B given below and identify th	e correct answer.
A) The sum and difference of two vectors will be equal in magnitude perpendicular to each other.	when two vectors are
B) The sum and difference of two vectors will have the same direct unequal magnitudes act in the same direction.	tion, when vectors of
A) both A and B are true B) A is true but B is false	è
C) B is true but A false D) both A and B are false	e
Match the following	
◆ This section contains Matrix-Match Type questions. Each question contains stated columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched as illust example.	nents given in two ed with statements (p, q, r, trated in the following
<i>If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled</i> should be as follows:	1 4*4 matrix
5. The relations between the three vectors A, B, C are given column I. The relations between the three vectors A, B, C are given column I.	ne angles between the
IX - CLASS	86

į	vectors are given in column II in a random order.						
 	a) $\overrightarrow{A} - \overrightarrow{B} = \overrightarrow{C}$ and $\overrightarrow{A} - \overrightarrow{B} = \overrightarrow{C}$	e) π					
 	b) $\vec{A} + \vec{B} = \vec{C}$ and $A - B = C$	f) 2 <i>π</i> /3					
	c) $\vec{A} - \vec{B} = \vec{C}$ and $A^2 + B^2 = C^2$	g) 0					
 	d) $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}$ and A= B =C	h) <i>π</i> /2					
	A) $a \rightarrow g; b \rightarrow h; c \rightarrow f; d \rightarrow e$	B) $a \rightarrow h; b \rightarrow e; c \rightarrow g; d \rightarrow f$					
	C) $a \rightarrow f; b \rightarrow e; c \rightarrow h; d \rightarrow g$	D) $a \rightarrow g; b \rightarrow e; c \rightarrow h; d \rightarrow f$					
Com	prehention type questions:						
◆ 	This section contains paragraph. Based upon each answered. Each question has 4 choices (A), (B), (b) the correct option. Give F_1 , F_2 and 100N are in equilibrium	Ach paragraph multiple choice questions have (C) and (D) out of which ONLY ONE is corre	to be ect. Choose				
	i) Find the velue of F ₁						
	A) 60 N B) 80 N C) 10	00 N D) 0					
 	A) 60 N B) 80 N C) 10	00 N D) 0					
	iii) What is the angle between $\rm F_1$ and $\rm F_2$						
 Lliab	A) 0^{0} B) 90^{0} C) 18	80° D) 360°					
<u>Hign</u> 	order thinking skills (HOTS):						
7. 	A vector \vec{Q} has a magnitude of 8 is addec	ed to the vector $\stackrel{ ightarrow}{\mathrm{P}}$ which lies along the λ	(-axis. The				
	resultant of these two vectors is a third vector	or $\stackrel{ ightarrow}{R}$ which lies along the Y-axis and has a	a magnitude				
 	twice that of $\stackrel{ ightarrow}{P}$. The magnitude of $\stackrel{ ightarrow}{P}$ is						
ļ	1) $6/\sqrt{5}$ 2) $8/\sqrt{5}$	3) $12/\sqrt{5}$ 4) $16/\sqrt{5}$					
 8. 	Two forces of 1 N and $P \text{ N}$ act at a point so that the 1 N . The value of P in newtons and the angle be	the magnitude of resultant is 1 N and it is pen between the 1 N and P N are	pendicular to				
IX - 0	CLASS		87				

PHYS	SICS			VECTOR	S
 	1)√2,135°	2) $\sqrt{2}$,120°	3) 1,45°	4) 2,150°	
 9.	The angle between t	wo Forces (X+Y) and (X-Y), if their res	sultant is $\sqrt{2(x^2 + y^2)}$	
	1) 90º	2)60°	3)45°	4)30°	Ì
10.	Two vectors \overline{A} and	\overline{B} have precise	ly equal magnitudes. I	f magnitude of $\overline{A} + \overline{B}$ to be larg	ger İ
 	than the magnitude	of $\overline{A} - \overline{B}$ by a factor	ctor n, the angle betwe	en them is	
, 	1) $2 \tan^{-1}(1/n)$	2) $\tan^{-1}(1/n)$	3) $\tan^{-1}(1/2n)$) 4) $2 \tan^{-1}(1/2n)$	İ
11. 	The greatest and lea respectively. If each forces acting at right	ast resultant of t n force is increa t angles to each	wo forces acting at a sed by 3 Kg wt. the r other is	point are 29 Kg wt. and 5 Kg w nagnitude of the resultant of ne	wt.j ewj
į	1) 45 kg wt.	2) 35 kg wt.	3) 25 kg wt.	4) 15 kg wt.	į
		P	KEV		
 			KET (
<u>ן סס ד</u> י	$\frac{\mathbf{EACHING TASK}}{1 \times 1} = \frac{1}{2} \times \frac{1}{2$	1) 3 5) 3	6) 2 7) 2 8) 1		
י סס נ	EARNER'STASK :	4) 3, 3) 3,	0)2, 7)2, 0)1,	5)4, 10)1)D, 11)C	
	EGINNERS :		ada.		Ì
 	1)1, 2)2, 3)3, 13)1, 14)4, 15)1 24)1, 25)2, 26)4,	4) 2, 5) 3, , 16) 2, 17) 2, 27) 3	6) 4, 7) 3, 8) 2, 18) 4, 19) 4, 20) 4,	9) 3, 10) 3, 11) 2, 12) 2, 21) 1, 22) 3, 23)1,	'
	CHIEVERS :		01-66		
' 	1.20 $\sqrt{3}$, $\tan^{-1}(\sqrt{20})$	/3), 2.15 N	, 3 .8 N, 6 N,	4.5 N, 3 N 5.15 N, 5 N,	İ
İ	6.a + b, 7.120	⁰ , 8.2,4,5	5, 9.5 miles,	10.120 [°] ,11.5 $\sqrt{5}$ N, 2,	İ
 	12.zero, 16.1				
ים בי	XPLORERS :				j
	1)A, 2)A, 3)A,	4) A, 5) D,	6) i) A, ii) B, iii) B	7)2, 8)1, 9)1, 10)1, 11	3
		10/-	wheels at 1		
		<u>vvc</u>	<u>orksneet-4</u>		
<u>88</u> 	Triangular law of v	ector addition	recented both in		
ļ	magnitude and direc	tion as the adia	presented both in		ļ
1				Resultant	
İ	taken in order, then	the closing side	taken in reverse order	\overline{B}	į
				$\overline{\overline{A}}$	
	represents the resul	tant both in mag	nitude and direction.		
 	Statement - 2: If thr they can be represe	ee vectors are s nted both in mag	uch that their resultant gnitude and direction a	t is zero vector or null vector the s the adjacent sides of a triangl	en le
ļ	taken in order, $\overline{A}, \overline{B},$	\overline{C} are acting at a	a point such that		į
IX - (IX - CLASS 88				

VECTORS

PHYS	ICS				VECTORS
	1) 4 : 3 2) 3 : 4	4 3) 4 : 5	4) 5 : 4		1
4.	In case of three vector	or quantities of same	type where resu	Iltant can be zero?	
l	1) 10,10,10	2) 10,10,20	3) 10,20,30	4) 10,20,40	
5.	Three forces $\vec{A} = \{\hat{i} \in \hat{A}\}$	$(\hat{j} + \hat{k}), \ \vec{B} = \{2\hat{i} - \hat{j} + \hat{k}\}$	$3\hat{k}\}$ and \bar{c}	\dot{f} acting on a body.	To keep it in
, 	equilibrium value of \vec{c} is				
 	1) $-\{3\hat{i}+4\hat{k}\}$	2) $-\{4\hat{i}+3\hat{k}\}$	3) $3\hat{i} + 4\hat{j}$	4) $2\hat{i} - 3\hat{k}$	
6.	4 forces each of mag vectors is 90 ⁰ . Find t	initude 10N are acting he resultant force) at a point. The	angle between succe	essive
İ	1) 0	2) 10 N 3) 10	$\sqrt{2}$	4) none	i
 <u>Assert</u>	tion A and Reason R	<u>:</u>			
♦ Stateme the corr	This section contains cer nt – 2 (Reason). Each que. rect option.	tain number of question. stion has 4 choices (A), (E	s. Each question of 3), (C) and (D) out	contains Statement – 1 (2 of which ONLY ONE is a	Assertion) and correct Choose
7.	A : If n forcs each of s	ame magnitude are a	cting at a point v	vith the angle 360/n b	etween them
 R: If n-1 forces of equal magnitude are acting at a point such that each vector makes an angle 360/n with the preceding one then the magnitude of resultant force is equal zero. A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A' B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A' C)'A' is true and 'R' is false D) 'A' is false and 'R' is true 					
s) in Co example	lumn–II . The answers to	these questions have to b	e appropriately bi	bbled as illustrated in th	e following
should I	If the correct matches are	2 A-p,A-s,B-r,B-r,C-p,C-q	and D-s,then the c	orrect bubbled 4*4 matri:	x
8.	Forces in the figure s	hown keep the partic	e in equilibrium	. Then match the follo	owing
				7 7	
	a) angle between F_1	and F ₂ is	1) 60°	r ₁	ļ
	b) angle between 25	N and F_2 is	2) 150° 		- <u>30</u> ° F2
	c) Force F ₁ =		3) 25 √3 N		
	d) Force $F_2 =$		4) 25 N	25NV	
	A) a-1, b-2, c-3, d-4	B) a-2, b-1, c-3, d-4			
	C) a-2, b-1, c-4, d-3	∪) a-4, b-3, c-2, d-1			i
<u> comp</u> ▲	This section contains as	nagraph Based upor sa	ah navagyanh will	into choice questions bar	va to ha
- 	answered. Each question the correct option.	has 4 choices (A) , (B) ,(C) and (D) out of	which ONLY ONE i s cor	rect. Choose

PHYS	ICS					VECTORS
9.	Forces in the figu i) Force F ₁ is	ire shown are in ec	quilibrium		F,	F ₂
	A) 15 N	B) 15 √3 N	C) √3 N	D) zero	30°	60°
	ii) Force F ₂ is		, , -			
	A) 15 N	B) 15 √3 N	C) √3 N	D) zero		30N
Solve	e the following:		, , -		<u></u>	
10.	Find the forces T the forces t	$T_1 \& T_2$ in the figure he particle in equili	shown if brium	<i>T</i> ₂	×45°	
		LEA	RNER'S TAS	к	40kgwt	
		◆ ₽ ₽ ₽ ■ BEGIN	NERS (Lev	<u>vel - I)</u>	+H#	I
<u>Choo</u>	se the correct op	<u>tion:</u>			4	
1.	The vectors $\overline{a} = \frac{1}{2}$	$2\hat{i}+\hat{j}+\hat{k}\hat{k}=-4\hat{i}$	$-2\hat{j}+3\hat{k}$ and	\overline{c} are represe	ented as the a	adjacent sides
	of a triangle take	n in order. Then \vec{c}	=	nda		l
	1) $-(-2i - j + 4k)$) 2) $-(2i+j-4k)$	3) <i>–2i – j</i> +	4 <i>k</i> 4)	6i + 3j + 4k	
2.	Two vectors \overline{a} –	$2\hat{i}$, \hat{i} , \hat{k} \hat{k} \hat{b} $-2\hat{i}$	+2 i k are	represented	as the adiace	nt sides of a
	triangle taken in a_{-}	order. Write the clo	+2 f + k are sing side take	en in reverse d	order	
	1) $5i + 3j$	2) $-(5i+3j)$	3) 3	i + 5 j	4) –(3 <i>i</i> +	-5 <i>j</i>)
3.	If a particle poss	esses three velocit	ies simultane	ously, represe	ented by the th	nree sides of a
	1) zero	order, then what is	velocity of the 2) n	on zero		
	3) can't be decide	ed	4) da	ata not sufficie	ent	l
4.	When 3 coplana	forces are in equi	librium then m	nagnitude of e	ach force is	
	proportional to th	e of th	e angles betv	veen the other	two forces	
5	1) sine A bob of mass m	2) cosine	3) ta ceiling by me	ingent ans of a light:	4) cosec string is pulle	ant d by a horizon-
	tal force F and th vertical then F =	e tension T are in e	equilibrium. If	the string nov	v makes an a	ngle θ with
	1) mg $\cos \theta$	2) mg sin θ	3) m	ng cot θ	4) mg ta	n <i>ə</i> İ
6.	An iron sphere of length 2m. The h position is	f mass 100kg is su norizontal force req	pended freely uired to displ	from a rigid s ace it through	upport by me an angle 60 ⁰	ans of a rope of ⁾ from the mean
	1) 490√3 <i>N</i>	2) 980√3 <i>N</i>	3) -	$\frac{190}{\sqrt{3}}N$	4) $\frac{980}{\sqrt{3}}$ A	т
i I						
IX - C	CLASS					93

7.	Three forces $F_1 = 2\overline{i} + \overline{j} - \overline{k} N F_2 = 2\overline{i} + 3\overline{j} - 3\overline{k} N F_3 = a\left(\overline{i} + \overline{j} - \overline{k}\right) N$ act simultaneously or	ן ר ו				
 	a particle. The value of 'a' so that particle may be in equilibrium is					
, 	1) 4 2) - 4 3)2 4)6					
 8.	If the magnitudes of $\bar{A}, \bar{B}, \bar{C}$ are 12,5,13 units respectively and $\bar{A}+\bar{B}=\bar{C}$, then the ang	ו jle				
 	between \bar{A}, \bar{B} is					
	1) 0 2) π 3) $\pi/2$ 4) $\pi/4$					
9. 	Five equal forces each of 20N are acting at a point in the same plane. If the angles betwee them are same, the resultant of these forces is	en 				
	1) 0 2) 40N 3) 20N 4) $20\sqrt{2}$					
10. 	11 forces each of magnitude 5N are acting on a particle simultaneously. If each force makes an angle 30 ⁰ with the previous one, find the resultant of all the forces.					
	1) zero 2) 5 N 3) 25 N4) 55 N	İ				
11. 	6 forces each of magnitude 10N are acting at a point. The angle between successive vectors is 60° Find the resultant force					
	1) zero 2) 6 N 3) 10 N 4) 60 N					
12. 	3 forces each of magnitude 5N are acting on a particle simultaneously. If each force make an angle 90° with the previous one, find the resultant of all the forces	ا s: ا				
1	1) zero 2) 5 N 3) 3 N 4) 15 N					
 	the following					
 	^{20N} 120°					
1.	If the forces 20N, 20N and F are in equilibrium $F k'$					
 	as shown then find F					
 2. 	Find T and F if these forces along with 150N					
 	keeps the particle in equilibrium					
 3. 	Find the forces $T_1 \& T_2$ in the figure shown if the					
	forces keep the particle in equilibrium					
IX - C	IX - CLASS 94					

PHYS	SICS			VECTORS
<u>Asse</u>	★■■■★ ertion A and Reason R:	EXPLORE	<u>RS(Level - III)</u>	<111×
♦ Statem the co:	This section contains certain nent – 2 (Reason). Each question rrect option.	number of questi has 4 choices (A)	ons. Each question contai , (B), (C) and (D) out of wh	ins Statement – 1 (Assertion) and hich ONLY ONE is correct Choose
Opior	ns: A) Both 'A' and 'R' are tru	ie and 'R' is the	e correct explanation of	f 'A'
	B) Both 'A' and 'R' are tru	e and 'R' is not	correct explanation of	'A'
	C)'A' is true and 'R' is fals	е		
	D) 'A' is false and 'R' is tr			
1.	A: Vector sum of three co	planar forces o	can be zero	
	R : Minimum number of ur	equal coplanar	vectors required to kee	ep a point in equilibrium is three
2.	A: When a vector is rotat	ed, its magnitu	de remains constant.	
	R : The magnitude of a ve	ector is indeper	dent of the coordinate	system.
Multi	choice type (Choose the	<u>correct)</u>		
*	This section contains multiple c	hoice questions. I	Each question has 4 choice	es (A), (B), (C),(D),out of which
ONE (or MORE is correct. Choose the	correct options	4)!'
3.	Which of the following se	t of forces may	y produce a zero result	tant?
	a) 3N, 7N, 11N b)	4N, 6N, 5N	c) 6N, 7N, 12N	d) 10N, 6N, 7N
	A) a, b only correct	B) b, c on	ly correct	
	C) a, b, c only correct	D) b, c, d	only correct	
4.	Lami's theorem is applica	able for the vec	tors which are	
	a) 3 in number b)	coplanar	c) concurrent	d) in equilibrium
	A) a, b only correct	B) a, b, c	only correct	
	C) a, b, c only correct	D) all are	correct	
Matc	h the following			
♦ columi r; s) in	This section contains Matrix- ns which have to be matched. St Column–II . The answers to the	Match Type quest atements (A, B, C ase questions have	tions. Each question conta , D) in Column–I have to l e to be appropriately bubb	ins statements given in two be matched with statements (p, q, led as illustrated in the following
examp	le. If the correct matches are 4 n	AsBrBrCnC	Γ_{a} and D_{s} then the correct	at hubbled 1*1 matrix
shoula	l be as follows:	<i>.A-</i> 5, <i>B-</i> 1, <i>B-</i> 1,C <i>-p</i> ,C	-q unu D-s,inen ine correc	ι οποσιεά τ' τ παιτιχ
5.	In the figure the particle in	n equilibrium. T	hen match the follwoin	ng r
	a) net force on the particl	e	1) zero	T '_604
	b) angle between T and 1	00 N is	2) 90 ⁰	Ţ.
	c) Value of F is		3) 200 N	∑≯
	d) value of T is		4) 50 / 3 N	120"
	A) a-1.b-2 c-3 d-4	B) a-4 b-3	B.c-2.d-1	100N
	C) a-1.b-2.c-4.d-3	D) a-3 b-1	l.c-3.d-2	
Com	prehention type question	_,	·,,	
<u>ي د الم</u>	This section contains nargar	<u></u> inh Rased unon	each naraoranh multinle	choice questions have to be
•	answered. Each question has	4 choices (A) , (B	(C), (C) and (D) out of which	h ONLY ONE is correct. Choose
				~ =

PHYSICS VECTORS the correct option. All the forces are in equilibrium in the figure shown 6. θ i) The angle θ should be A) 45⁰ B) 90⁰ C) 135⁰ D) 180⁰ 10 V2 N ii) The velue of P should be A) zeroB) $10\sqrt{2}$ N C) $20\sqrt{2}$ N D) $\sqrt{2}$ N 10N High order thinking skills (HOTS): 7. A person follows the path $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$ The coordinates A, B, C, D and E are respectively (0,0) (0,3) (3,4) (2,5) & (1,0) Find the magnitude of displacement. 2)(0, 0)1)(1, 0)(4, 0)4) (2, 3) 8. A body of mass m is suspended by a string of length " and pulled to a side through horizontal a distance 'r' by means of horizontal force. Then the tension in the string is 1) $\frac{mg \sqrt{l^2 - r^2}}{l}$ 3) $\frac{mgl}{r}$ 2) $\frac{mgr}{l}$ (4) $\frac{mgl}{\sqrt{l^2 - r^2}}$ 9. If a particle possesses several velocities simultaneously, represented by the adjacent sides of a polygon taken in order, then what is velocity of the particle. 1) zero 2) sevaral velocities 3) one none zero velocity 4) none The plane which can be formed with the vectors $\bar{a} = 3\bar{i} - 4\bar{j} + 2\bar{k}$, $\bar{b} = 2\bar{i} - \bar{j} - 6\bar{k}$, 10. $\overline{c} = 5\,\overline{i} - 5\,\overline{j} - 4\,\overline{k}$ is. 1) Quadralateral 2) Triangle 4) Hyperbola 3) Circle **KEY** $\Phi\Phi$ TEACHING TASK : 9)i) A,ii) B, 10) 80 N, 40 $\sqrt{2}$ N 4)1, 5)1, 6)1, 7)C, 8)B, 1)3, 2)3, 3)2, $\Phi\Phi$ LEARNER'STASK : □ BEGINNERS : 1) 1, 2) 1, 3) 1, 4) 1, 5) 4, 6) 2, 7) 2, 8) 3, 9) 1, 10) 2, 11) 1, 12) 2 **ACHIEVERS** : 2.150 N, 150 √3 N, $3.60\sqrt{3}$ N, 60 N 1.20 N. **EXPLORERS** : 3) D, 4) D, 5) A, 6) i) C, ii) C, 7) 1, 8) 4, 1) A, 2)A, 9) 1, 10) 2

VECTORS

7.
$$\hat{i}\cdot\hat{i} = |\hat{i}||\hat{i}|\cos 0 = 1 \times 1 \times 1 = 1$$
$$\hat{i}\cdot\hat{j} = |\hat{i}||\hat{j}|\cos 90^{0} = 1 \times 1 \times 0 = 0$$
$$\hat{j}\cdot\hat{j} = |\hat{j}||\hat{j}|\cos 0 = 1 \times 1 \times 1 = 1$$
$$\hat{k}\cdot\hat{j} = |\hat{k}||\hat{j}|\cos 90^{0} = 1 \times 1 \times 0 = 0$$
$$\hat{k}\cdot\hat{k} = |\hat{k}|\hat{k}|\cos 0 = 1 \times 1 \times 1 = 1$$
$$\hat{i}\cdot\hat{k} = |\hat{k}|\hat{k}|\cos 90^{0} = 1 \times 1 \times 0 = 0$$
8. Dot product of two vectors in terms of unit vectors $(\hat{i},\hat{j},\hat{k},\hat{k})$
If $\hat{a} = a, \hat{i} + a, \hat{j} + a, \hat{k} & \hat{k} = b, \hat{i} + b, \hat{j} + b, \hat{k}$ then $\bar{a}.\bar{b} = a_{i}b_{i} + a_{2}b_{2} + a_{3}b_{3}$
9. Angle between two vectors in terms of their dot product
$$\therefore \bar{a}\cdot\bar{b} = |\vec{a}||\vec{b}|\cos\theta \qquad \therefore \cos \theta = \frac{\bar{a}\cdot\bar{b}}{|\vec{a}|\vec{b}|}$$
in terms of unit vectors $(\hat{i},\hat{j},\hat{k},\hat{k})$
If $\bar{a} = a, \hat{i} + a, \hat{j} + a, \hat{k} & \hat{k} = b, \hat{i} + b, \hat{j} + b, \hat{k}$ then $\cos\theta = \frac{a_{i}b_{i} + a_{2}b_{2} + a, \hat{b}_{3}}{\sqrt{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}}\sqrt{b_{1}^{2} + b_{2}^{2} + b_{3}^{2}}}$
Solved Examples
1. Find the dot product of the vectors $(2t + \bar{j} + \bar{k})$ and $(3\bar{i} + 2\bar{j} + 2\bar{k})$
 $(2\bar{i} + \bar{j} + 2\bar{k}), (3\bar{i} + 2\bar{j} + 2\bar{k}) = 2X3 + 1X2 + 2X2 = 12$
2. Find the dot product of the vectors $a_{i}i - 3\bar{j} + 3\bar{k}$ and $3\bar{j} + 8\bar{j} + 4\bar{k}$
 $(4\bar{i} - 3\bar{j} + 3\bar{k}), (3\bar{i} + 8\bar{j} + 4\bar{k}) = 4X3 + (-3X8) + 3X4 = 0$
3. Find the dot product of the vectors $(\bar{i} - 2\bar{j} - 3\bar{k})$ and $(-2\bar{i} - c\bar{j} + \bar{k})$ is 90° then find the value of 'c' $-2t + 2c - 3 = 0 \Rightarrow 2c = 5 \Rightarrow c = 2.5$
5. If $|\bar{k} + \bar{k}| = |\bar{k} - \bar{k}|$ then find the angle between \bar{k} and \bar{k}
Given $|\bar{k} + \bar{k}| = |\bar{k} - \bar{k}| = 1 \Rightarrow |\bar{k} + \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = -2\bar{A} \cdot \bar{k} + \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = -2\bar{A} \cdot \bar{k} + \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = -2\bar{A} \cdot \bar{k} + \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = -2\bar{A} \cdot \bar{k} + \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = -2\bar{A} \cdot \bar{k} + \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = -2\bar{A} \cdot \bar{k} + \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = -2\bar{A} \cdot \bar{k} + \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = -2\bar{A} \cdot \bar{k} + \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = |\bar{k} - \bar{k}|^{2} = -2\bar{$

PHYSICS

1

the angle between \overline{A} and \overline{B} is 90°

<u>§§</u> Angle between vectors

The angle between two vectors \overline{a} and \overline{b} is given by $\cos\theta = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}||\overline{b}|}$

Example:1 Find the angle between the vectors $(\bar{i} + 2\bar{j} + \bar{k})$ and $2\bar{i} + \bar{j} + \bar{k}$

$$\cos\theta = \frac{\overline{a} \cdot \overline{b}}{\left|\overline{a}\right|\left|\overline{b}\right|} = \frac{\left(\overline{i} + 2\overline{j} + \overline{k}\right)\left(2\overline{i} + \overline{j} + \overline{k}\right)}{\sqrt{6}\sqrt{6}} = \frac{2 + 2 + 1}{6} = \frac{5}{6} \implies \qquad \theta = \cos^{-1}\left(\frac{5}{6}\right)$$

Example:2 Find the angle between the vectors $(\bar{i} - 2\bar{j} + \bar{k})$ and $2\bar{i} - 2\bar{j} + \bar{k}$

$$\cos\theta = \frac{\overline{a} \cdot \overline{b}}{\left|\overline{a}\right| \overline{b}\right|} = \frac{\left(\overline{i} - 2\overline{j} + \overline{k}\right)\left(2\overline{i} - 2\overline{j} + \overline{k}\right)}{\sqrt{6}\sqrt{9}} = \frac{2 + 4 + 1}{3\sqrt{6}} = \frac{7}{3\sqrt{6}} \Rightarrow \qquad \theta = \cos^{-1}\left(\frac{7}{3\sqrt{6}}\right)$$

Example:3 \overline{A} and \overline{B} be two vectors with an angle θ between them. Find the magnitude of the resultant.

$$\begin{aligned} \left|\overline{A} + \overline{B}\right|^2 &= \left(\overline{A} + \overline{B}\right) \cdot \left(\overline{A} + \overline{B}\right) \quad \overline{A} \cdot \overline{A} + 2 \overline{A} \cdot \overline{B} + \overline{B} \cdot \overline{B} \Rightarrow A^2 + 2 AB \cos \theta + B^2 \\ \Rightarrow \left|\overline{A} + \overline{B}\right| &= \sqrt{A^2 + 2AB \cos \theta + B^2} \end{aligned}$$

Examp

solutio

Dete:4 If the angle between
$$\overline{A}$$
 and \overline{B} is θ then find $|\overline{A} - \overline{B}|$
on $|\overline{A} + (-\overline{B})|^2 = (\overline{A} + (-\overline{B})) \cdot (\overline{A} + (-\overline{B}))$
 $\overline{A} \cdot \overline{A} + 2\overline{A} \cdot (-\overline{B}) + (-\overline{B}) \cdot (-\overline{B})$
 $A^2 + 2AB \cos(180^\circ - \theta) + B^2$
 $A^2 - 2AB \cos \theta + B^2$
 $|\overline{A} - \overline{B}| = \sqrt{A^2 - 2AB \cos \theta + B^2}$

Example:5 If $\left|\overline{A} - \overline{B}\right| = \sqrt{A^2 + AB + B^2}$ then find the angle between \overline{A} and \overline{B} **solution**: let angle between \overline{A} and \overline{B} be θ

$$\overline{A} - \overline{B} = \sqrt{A^2 - 2AB\cos\theta + B^2} \implies \left|\overline{A} - \overline{B}\right| = \sqrt{A^2 + AB + B^2}$$

PHYS	ICS			VECTORS			
	1) -1.5	2) 1.5	3) 3	4) zero			
3.	If $\vec{A} = i + j$ and $\vec{B} = j - k$ then angle between \vec{A} and \vec{B} is						
	1) 30º	2) 45 ⁰	3) 90 ⁰	4) 60 ⁰			
4. 	If $\overline{A} = 2\hat{i} + 3\hat{j}$ its com	ponent along $\vec{B} = 2\hat{j} +$	$3\hat{k}$ is	I			
' 	1) 6	2) 1/6	3) 2	4) 6/ \ 13			
5. 	If $\vec{A}=5\hat{i}-2\hat{j}+3\hat{k}$ ar	nd $\vec{B} = 2\hat{i} + \hat{j} + 2\hat{k}$, com	ponent of $ {\Bar{B}} $ along $ {\Aar{A}} $	is I			
: 	1) $\frac{\sqrt{14}}{38}$	2) $\frac{28}{\sqrt{38}}$	3) $\frac{\sqrt{28}}{38}$	4) $\frac{14}{\sqrt{38}}$			
6.	The vlaue of dot proc	duct of two vectors $ {ar a} $ a	and $ec{\mathbf{b}}$ is 'x', then				
	1) 0 < x < ab	2) – ab < x < 03) – a	$b \le x \le ab$ 4) – a	b < x < ab			
7. 	A vector perpendicular	r to the vector (3i+5j) is					
8	1) 5I-3K The magnitude of tw	2) 5I+3J o vectors are 3 and 4 i	3) 3I-5J 4) 5K	r scalar product is 6 untis			
0.	the angle between th	nem is					
	1) $\pi/3$	2) π/6	3) π/2	4) π/4			
'9. 	The angle between t	he vectors (i + j + k) ar	nd (r-j-k) is				
 	1) $\sin^{-1}\frac{\sqrt{8}}{3}$	2) $\cos^{-1}\left(-\frac{1}{3}\right)$	3) $\cos^{-1}\frac{\sqrt{8}}{3}$	4) $\cos^{-1}\sqrt{\frac{8}{3}}$			
10.	Because of the appli	cation of force $\overline{F} = 4i-5$	ōj newton, the velocity	of a body at any instant is			
	given by $v = 2i-7j$ ms	⁻ '. The instantaneous p	ower is	(1) zoro			
 Asser	tion A and Reason R	2)43 VV :	3) 21.3 W				
	This section contains cer	- rtain number of auestions.	Each question contains	Statement – 1 (Assertion) and			
Stateme the corr	ent – 2 (Reason). Each que rect option.	estion has 4 choices (A), (B)), (C) and (D) out of which	ONLY ONE is correct Choose			
 	 A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A' B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A' C)'A' is true and 'R' is false D) 'A' is false and 'R' is true 						
11.	A : \overline{A} . $(\overline{B} + \overline{C})$ is a sca	alar					
	R: The dot product of	of two vectors is a scala	ar				
12.	A: The peripendicula	ar vector of $(i + j + k)$ i	s(i+2j+k)				
	R : Two vectors are	peripendicular if their d	ot product is zero.				

<u>Multi</u>	ple option type:							
♦ 7	• This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D),out of which							
ONE of	ONE or MORE is correct. Choose the correct options							
13.	Consider the followin	g statements A and B	given below and identi	fy the correct answer				
	A) If $\stackrel{\rightarrow}{\Lambda}$ is a vector th	en the magnitude of the	e vector is given by $\sqrt{2}$	$\rightarrow \rightarrow 1 A$				
		-	- • • • • •	\				
 	B) If $\vec{a} = m \vec{b}$ where 'm' is a scalar the value of 'm' is equal to $\frac{a \cdot b}{b^2}$							
' 	 both A & B are co A is wrong but B i 	rrect 2) A is s correct 4) bot	s correct but B is wron th A and B are wrong	g				
 14.	If $\stackrel{\rightarrow}{A}$ = 4i + 2j + 6k, se	et the following values	in increasng order.					
	a) Ă.í	b) $\vec{A} \cdot \vec{j}$	c) $\vec{A} \cdot \vec{k}$					
	1) a, b, c	2) b, c, a	3) a, c, b	4) b, a, c				
Match ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	the following: This section contains Ma s which have to be matche olumn–II. The answers to e	utrix-Match Type questions d. Statements (A, B, C, D) these questions have to be	:. Each question contains s in Column–I have to be ma appropriately bubbled as	tatements given in two atched with statements (p, q, r, illustrated in the following				
	If the correct matches ar	e A-p,A-s,B-r,B-r,C-p,C-q a	nd D-s, then the correct but	bbled 4*4 matrix				
should	be as follows:		2					
15.	A certain vector is given the second se	ven by $\overline{P} = 3\overline{i} + 4\overline{j} + 7\overline{k}$. Then choose the cor	rect				
	a) Magnitude of the v	vector is 1) $\sqrt{7^2}$	4					
 	b) angle made by it	with x-axis is	2) $Cos^{-1}\left(\frac{3}{\sqrt{74}}\right)$					
	c) angle made by it v	<i>v</i> ith y-axis is	3) $Cos^{-1}\left(\frac{4}{\sqrt{74}}\right)$					
	d) angle made by it v	vith z-axis is	4) $Cos^{-1}\left(\frac{7}{\sqrt{74}}\right)$					
 	A) a-1, b-2, c-3, d-4	B) a-4, b-3, c-2, d-1	C) a-1, b-3, c-2, d-1	D) a-4, b-2, c-3, d-1				
<u>Comp</u> 	 Comprehension type: This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option. 							
16.	If $\overline{a} \cdot (\overline{a} - \overline{b}) = 0$ then							
 	i) $\overline{a} \cdot \overline{b} =$							
	A) <i>a</i>	B) <i>b</i>	C) a^{2}	D) <i>b</i> ²				
	ii) The component of	\overline{b} along the direction of	of \overline{a} is					
İ	A) <i>a</i>	B) <i>b</i>	C) a^2	D) <i>b</i> ²				
1								

PHY	SICS					VEC	TORS
			P	KEY			
ΦΦ '	TEACHING TAS	SK :					
	1) 2, 8) 1, 14) 4,	2) 2, 9) 1, 15) 1,	3) 4, 10) 2, 16) i) C, ii)	4) 4, 11)A, A	5) 4, 12) D,	6) 3, 13) 1,	7) 4,
			LEARNE	R'S TASK			
		+ 1 1	BEGINNER	<u>S (Level - I)</u>	+1+1 X		
Choo	ose the correct	option:					
Ι.	The angle bet	ween the two	vectors $\bar{A} =$	$i+2\bar{j}-\bar{k}$ and \bar{B}	$\dot{j} = -i + \bar{j} - 2\bar{k}$	is	
	1) 90º	2) 30	0	3) 45°	4) 60	D ₀	
2.	The angle bet	ween two veo	ctors $\bar{A} = (4, -)$	$-2,5)$ and $\bar{B} = (3, -2)$	1,-2) is		
	1) 60º	2) 3	00	3) 90°	4) 45	5°	
3.	The scalar pro	oduct of two v	ectors $\bar{A} = (4, -)$	-2,0) and $\bar{B} = (1,2)$	2,3) is		
	1) 0	2)-2		3)6	4)-6		
4.	Velocity and a a magnetic fie the value of 'c	cceleration ve eld at a given c' is	ectors of chai instant of tim	ged particle movi e are $\vec{v} = 2\hat{i} + c\hat{j}$	and $\vec{a} = 3\hat{i} + 4$	lar to the dire \hat{j} respective	ection o ly. Ther
	1) 3	2) 1.	5	3) -1.5	4) -3	3	
5.	The vector \bar{A} angle of	$=\bar{i}+\bar{j}$ where with X-axis	\bar{i}, \bar{j} are unit	vectors along X	and Y axes re	spectively m	akes ar
	1) 0 ⁰	2) 45	50	3)60º	4)90	0	
ò.	The angle ma	de by the ve	ector $\overline{A} = 2\overline{i}$	$+3\overline{j}$ with Y-axis	is		
	1) $\tan(1)\left(\frac{3}{2}\right)$	2) ^{ta}	$n-1\left(\frac{2}{3}\right)$	3) $\sin^{-1}\left(\frac{2}{3}\right)$	4) ^c	$\cos^{-1}\left(\frac{3}{2}\right)$	
7.	The angle bet	ween the two	vectors _2i	$+3\bar{j}-\bar{k}$ and $i+2$	$2\bar{j}+4\bar{k}$ is		
	1) 0º	2) 90	0	3)180º	4)45	50	
8.	The angle bet	ween the vec	tors $(\vec{i} + \vec{j} + \vec{k})$) and $\left(\vec{i}-\vec{j}-\vec{k}\right)$ is	6		
	1) $\sin^{-1}\frac{\sqrt{8}}{3}$	2) ^{si}	$n^{-1}\left(\frac{1}{3}\right)$	3) $\cos^{-1}\frac{\sqrt{8}}{3}$	4) c	$\cos^{-1}\sqrt{\frac{8}{3}}$	

9.	The angle between two vectors $\bar{P} = 3i + 2\bar{j} + 3\bar{k}$, $\bar{Q} = 2i - \bar{j} + 3\bar{k}$ is					
 	$1) \cos^{-1} \left[\frac{6.5}{\sqrt{77}} \right]$	2) $\cos^{-1}\left[\frac{\sqrt{77}}{6.5}\right]$	3) $Sin^{-1} \left[\frac{6.5}{\sqrt{77}} \right]$	4) $Sin^{-1}\left[\frac{\sqrt{77}}{6.5}\right]$		
10.	If $\bar{A} = ai + 2\bar{j} - 5\bar{k}, \bar{B}$	$\hat{s} = 2i - j - 4\bar{k}$ are perp	endicular of each other	; the value of 'a' is		
ļ	1) 9	2) -9	3) 4	4) -4		
 11. 	Given two vectors \overline{A} axis is	$=\hat{i}-2\hat{j}-3\hat{k}$ and $\overline{B}=$	$4\hat{i}-2\hat{j}+6\hat{k}$. The and	gle made by $\left(\overline{A} + \overline{B}\right)$ with X-		
	1. 30 [°]	2) 45 [°]	3) 60º	4) 90º		
 12.	Two vectors \bar{A} and	\bar{B} are at right angles t	o each other when			
	1) $\bar{A} + \bar{B} = 0$	2) $\bar{A} - \bar{B} = 0$	$3) \ \bar{A} x \bar{B} = 0$	$4) \ \bar{A} \cdot \bar{B} = 0$		
 13.	If $\bar{A}.\bar{B}=0$ the angle	between the vectors A	and B will be	n		
	1) 0º	2) 60°	3) 90°	4)180º		
14.	The angle between	$V_1 = \bar{i} + 2 \bar{j} + 2 \bar{k}, \ V_2 = 2$	$\overline{i}+3\overline{j}-4\overline{k}$ is			
	1) 0 ⁰	2)45°	3)90°	4)120º		
 15.	A force $\bar{F} = 2\bar{i} + 4\bar{j}$	$+ar{k}$ acts on a body a	nd produces a displa	acement of $\bar{S} = 3\bar{i} + 2\bar{j} + 5\bar{k}$		
 	work done is 1) 10 units	2) 19 units 20	3) 29 units	4) zero		
16.	The angle between v	vectors $\bar{A} = i - 5 \bar{j}$ and	$\bar{B} = 2i - 10 \bar{j}$ is			
	1) 90°	2) 180° 3) 60°	4) 0 ⁰)		
 17.	The angle made by t	he vector $\bar{A} = \bar{i} + \bar{j}$ wi	th x-axis is			
	1) 90º	2)45°	3)22.5° 4)30	o I		
18.	Angle (in rad) made	by the vector $\sqrt{3}\hat{i}+\hat{j}$ w	ith the X-axis			
 	1) $\frac{\pi}{6}$	2) $\frac{\pi}{4}$	3) $\frac{\pi}{3}$	4) $\frac{\pi}{2}$		
19.	If A and B are two p	erpendicular vectors g	iven by $\bar{A} = 5\bar{i} + 10\bar{j}$	$-3\bar{k}$, and $\bar{B} = 2\bar{i} + 4\bar{j} - c\bar{k}$		
 	then the value of c is 1) 1/6	2) 3/2	3) 5/6	4) -50/3		
20. 	The angle between t	wo vectors $6\bar{i}+6\bar{j}-3$	\bar{k} and $7\bar{i}+4\bar{j}-4\bar{k}^{\dagger}$	s		
 	1) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ 2) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$	$-1\left(\frac{5}{\sqrt{3}}\right)$ 3) Sin	$-1\left(\frac{2}{\sqrt{3}}\right)$ 4) C	$os^{-1}\left(\frac{26}{27}\right)$		
				104		

PHYS	SICS			VECTORS
21.	The vector $\bar{P} = a\bar{i}$	$\bar{I} + a \bar{j} + 3 \bar{k}$ and $\bar{Q} = a \bar{i}$.	$-2\bar{j}-\bar{k}$ are perpendicular	to each other. The positive
	1) 3	2)2	3)1	4) 0
22.	A force $\bar{F} = 3\bar{i} + 6$	$c\overline{i}+2\overline{k}$ N acting on a	a particle causes a displa	cement $\bar{S} = -4\bar{i} + 2\bar{j} - 3\bar{k}$
	m. If the work don	e is 6 joule, the value	of c is	
	1) 0	2) 1	3) 12	4)6
23.	The angle betwee	en the two vectors \hat{i}	$_+\hat{j}$ and $\hat{j}{+}\hat{k}$ is	
	1) 30º	2)45°	3)60°	4)90°
24.	$\vec{A} + \vec{B} = \vec{C}, \left \vec{A} \right = \left \vec{A} \right $	$\vec{B} = \left \vec{C} \right $, then the ang	le between $ar{A}$ and $ar{B}$ is	3
	1) 45º	2) 60°	3) 90 ⁰	4)120 ⁰
25.	A force of 1200 N a in a direction incline	cting on a stone by mea ed at 60º to the force. T	ans of a rope slides the sto The work done by the force	ne through a distance of 10m e is
	1) $6000\sqrt{3}J$	2) 6000 <i>J</i>	3) 12000 <i>J</i>	4) 8000 J
				⊙
<u>Solv</u>	e the following: ▲	ACHIEVER	<u>RS (Level - II)</u>	1-1 8
1.	Find the angle ma	ade by the vector \overline{i} +	$\sqrt{3}j$ with Y-axis.	
2.	Find angle made	by $\overline{i} + \overline{j} + 2\overline{k}$ with Z	-axis.	
3.	Find the angle ma	ade by the vector $ar{i}$ +	\overline{j} + 2 \overline{k} with X-axis.	
4.	Find the angle ma	ade by the vector \overline{i} -	$-\overline{j}$ with Z-axis	
5.	What is the angle	e made by the $\overline{A} = 2\overline{i}$	$\overline{i} + 3\overline{j}$ with Y-axis.	
6.	A particle displac made by the disp	es from the position v lacement vector with	vector $\overline{i} + \overline{j} - 2\overline{k}$ to $2\overline{i} - \overline{k}$ A X-axis ?	$\overline{j} + 3\overline{k}$ what is the angle
7.	$\left \mathbf{f} \right \overline{A} - \overline{B} \right = \left A - \overline{B} \right $	^B then find angle bet	ween \overline{A} and \overline{B} .	
8 .	What is the angle	between the vectors	$(\overline{i}+\overline{j}) \& (\overline{j}+\overline{k})?$	
9.	Find the angle be	tween the vectors $$	$\overline{3i} + \overline{j}$ and $\overline{i} + \sqrt{3j}$.	
10.	If the vectors $2\overline{i}$ the value c.	$+\overline{j}+c\overline{k}$ and $\overline{i}-2\overline{j}$	$\overline{j} + \overline{k}$ are perpendicular	to each other then find
11.	Find the angle be	tween the vectors 2	$\hat{\vec{i}}+\hat{\vec{j}}+3\vec{k};\hat{\vec{i}}+\hat{\vec{j}}+\vec{k}$	
IX - 0	CLASS			10
				10

	EXPLO	ORERS (Level - III)	◆ ₽₩₽>				
<u>Assei</u> 	rtion A and Reason R:						
♦ Statem the cor	This section contains certain num ent -2 (Reason). Each question has rect option.	ber of questions. Each qu 4 choices (A), (B), (C) and	uestion contains Stater (D) out of which ONL	ment – 1 (Assertion) and Y ONE is correct Choose			
ĺ	A) Both 'A' and 'R' are true ar	nd 'R' is the correct exp	lanation of 'A'	ĺ			
	B) Both 'A' and 'R' are true ar	nd 'R' is not correct exp	lanation of 'A'				
 	C)'A' is true and 'R' is false						
l	D) 'A' is false and 'R' is true						
1.	A: Scalar product of two vec	ctors can be zero					
 	R : If two vectors are periper	ndicular to each other,	their scalar product	is zero.			
2. 	A : If \vec{P} . $\vec{Q} = PQ$, then angle	between \overrightarrow{P} & \overrightarrow{Q} is 0°.					
 	R : Angle between \vec{P} & \vec{Q} ca	an be from 0° to 180° .					
<u>Multi</u>	ple option type:		. and				
	This section contains multiple choice or MORE is correct. Choose the corr	e questions. Each question rect options	has 4 choices (A), (B)), (C),(D),out of which			
3.	Choose the correct statement	nts.					
	a) The product of a scalar an	nd a vector is a vector o	quantity.				
1	b) Two vectors of different m	agnitude can be comb	ined to give a zero	resultant.			
i	c) Three vectors of different	magnitudes may be co	ombined to give a z	ero resultant.			
	d)All the above are wrong sta	atements.					
 	1) a & b are correct	2) a & d are correct					
	3) a & c are correct	4) b & c are correct		۱ 			
4 .	Dot product is used in the de	etermination of					
	a) work done by a force	tomobile maving with	uniform valacity				
 	b) Power developed by an at	a opil kent in megneti	uniform velocity.				
İ	d) The force acting on a cond	ductor carrying current	c neiu. kent in a magnetic	field			
	1) a d are true?) b d are true		A) c d are true				
 5	Set the angles made by follow	wing vectors with X-ax	is in the increasing	order			
	a) 3i + 4i	h) $4i + 3i$	c) i + i				
ļ	1) a b c	2) c b a	3) b c a	4) a c b			
 Matcl	h the followina:	<i>_</i> / <i>o</i> , <i>b</i> , <i>a</i>	0, 0, 0, 0	., ., ., .			
↓ columr s) in C exampl	This section contains Matrix-Mata as which have to be matched. Statem column–II. The answers to these que le.	ch Type questions. Each qu ents (A, B, C, D) in Colum estions have to be appropr	uestion contains staten n–I have to be matche iately bubbled as illust	nents given in two ad with statements (p, q, r, trated in the following			
 should	If the correct matches are A-p,A-s, be as follows:	B-r,B-r,C-p,C-q and D-s,th	en the correct bubblea	4*4 matrix			
6)	a) $\overline{i.i} = \overline{j.j} = \overline{k.k} =$	1) 0					
IX - (CLASS			106			

 	b) $\overline{i}.\overline{j} = \overline{j}.\overline{k} = \overline{k}.\overline{i} =$	2) 1		
 	c) $\overline{i}.\overline{i} + \overline{j}.\overline{j} + \overline{k}.\overline{k} =$	3) 2		
 	d) $\bar{i}.(\bar{i}+\bar{j}+\bar{k})+\bar{j}.(\bar{i}+\bar{j})$	$(\bar{k} + \bar{k}) =$ 4) 3		
	A) a-1, b-2, c-3, d-4	B) a-2, b-1, c	-4. d-3	
İ	C) a-4, b-3, c-2, d-1	D) a-1, b-2, c	-4. d-3	
	rehention type:	, , ,	, -	
	This section contains par answered. Each question the correct option	ragraph. Based upon each has 4 choices (A) , (B) ,(C	h paragraph multiple C) and (D) out of whic	choice questions have to be h ONLY ONE i s correct.
7	A force $E = 5^2 + 2^2 +$	$2\hat{k}$ moves a particle f	$rom = 2\hat{i} + 7\hat{i} + 2$	$1\hat{k}$ to $\frac{1}{2}$, $5\hat{k}$, $2\hat{k}$, $8\hat{k}$
· /.	i) Displacement of the	2κ moves a particle is	$r_1 = 2l + 7j + 2$	$r_2 = 5l + 2j + 8k$
	1) $5^2 \cdot 2^2 \cdot 9^2$	$2) \hat{2} \cdot \pi \hat{2} \cdot 4\hat{1}$	$2) 2^{2} = 5^{2} \cdot 4^{2}$	4) 2° 5° 4Î
 	i) $5l + 2j + 8k$	2) $2l + j + 4k$	3j 3l - 5j + 4k	4) $5l - 5j - 4k$
İ	1) 48 units	2) 32 units	3) 38 units	4) 24 units
 8.	The angle between th	The vectors $\overline{a} \& \overline{b}$ is 60°		011
l	i) $\overline{a}.\overline{b} =$		ada	
	1)) 0	2) ab	3) ab/2	4) 1
	ii) The component ve	ctor of \overline{b} along \overline{a} is		
 	1) $b\hat{a}$	$(2) a \hat{\overline{b}}$	3) $2b\overline{a}$	4) $\frac{b}{2}\hat{a}$
<u>High c</u> 	order thinking skills	<u>(HOTS):</u>		
ĺ		$1-\bar{a}.\bar{b}$		
9. 	\bar{a} and \bar{b} are unit vec	stors then $\frac{1}{1+\bar{a}.\bar{b}}$ =		
l	$\therefore 2 \theta$	$a = 2 \theta$	$_{2}\theta$	$\alpha \alpha^2 \theta$
 	1) $Sin \frac{1}{2}$	2) $\cos \frac{1}{2}$	3) $\tan \frac{1}{2}$	4) Cot $\frac{-}{2}$
10.	The angle between the	ne diagonals of a cube	with edges of leng	gth is
	1) $\sin^{-1}(1/3)$ 2) cos	$^{-1}(1/3)$ 3) tar	$n^{-1}(1/3)$ 4)	$\cot^{-1}(1/3)$
 11	lf - or a - cī a	\bar{z} \bar{z} \bar{z} \bar{z} \bar{z} \bar{z}	hen the value of	$\left[\bar{a}+\bar{b}\right]\left(\bar{a}-\bar{b}\right)$ is
	a = 9l - 7 J + 5K and	b = 3l - 2j - 6k		
	1) 206	2) 128	3) 106	4) -17
 		KEY		
∣ <u> ΦΦ</u> <u>L</u>	EARNER'STASK :			
	GINNERS :			
 	1) 4, 2) 3, 3) 1, 13) 3, 14) 3, 15) 2,	4) 3, 5) 2, 6) 2, 16) 4, 17) 2, 18) 1,	7) 2, 8) 1, 9) 19) 4, 20) 4, 21	1, 10) 2, 11) 2, 12) 4, 1) 3, 22) 3, 23) 3, 24) 4,

25) 2. □ ACHIEVERS : 1) 30°, 2) $\cos^{-1}(2/\sqrt{6})$, 3) $\cos^{-1}(1/\sqrt{6})$, 4) 90°, 5) $\cos^{-1}(3/\sqrt{13})$, 6) $\cos^{-1}(1/\sqrt{30})$, 7) 0°, 8) 60°, 9) 30°, 10) zero, 11) $\cos^{-1}(\sqrt{6/7})$. □ EXPLORERS : 1) A, 2) B, 3) 3, 4) 3, 5) 2, 6) B, 7)i)3,ii)3, 8)i)3, ii)4 9)3, 10)2, 11)3

Worksheet-5

The cross product of two vectors $\vec{a}_{and} \vec{b}$ with an angle θ between them is a vector of magnitude

$$\vec{a} \| \vec{b} \| \sin \theta$$
, normal to the plane containing both $\vec{a} \ll \vec{b}$
 $\vec{a} \times \vec{b} = \| \vec{a} \| \vec{b} \| \sin \theta \hat{n}$

 $\vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin \theta \vec{n}$

whose direction is given by right hand screw rule or right hand thumb hole

$\P\P$ **Right hand screw rules**

It states that, if a right handed screw be placed normal to the plane containing the two vectors $(say \overline{a} and \overline{b})$ and rotated such that the first vector (\overline{a}) is turned towards the second vector (\overline{b}) through the smaller angle, then the screw would advance along the direction of cross product of the two vectors $(i.e.\ \overline{a} \times \overline{b})$

$\P\P$ Right hand thumb rule:

To find the direction of $\bar{a} \times \bar{b}$, the first vector (\bar{a}) is rotated on to the direction of the second vector

 (\overline{b}) through the smaller angle. Make the curling of right hand fingers coincide with the direc-

tion of rotation. The direction of thumb then represents the direction of (\overline{n})

$\P\P$ **Right hand system:**

In the right hand system the three unit vectors along the $\hat{i}, \hat{j} \otimes \hat{k}$ three mutually

perpendicular directions are so chosen that $\hat{i} \times \hat{j} = \hat{k}$ or $\hat{j} \times \hat{k} = \hat{i}$ or $\hat{k} \times \hat{i} = \hat{i}$

$\P\P$ **Properties:**

1. The quantity obtained as a cross product of two vectors is a vector quantity again.

 $|\overline{a} \times \overline{b}|$ is maximum when $\sin \theta$ is maximum = 1 $\therefore |\overline{a} \times \overline{b}|_{max} = |\overline{a}||\overline{b}|$ when $\theta = 90^{\circ}$ 2.

 $|\vec{a} \times \vec{b}|$ is minimum when $\sin \theta$ is min $(for 0 \le \theta \le \pi) \sin \theta$ is minimum for $for \theta = 0$ or π $(\sin\theta)_{\min} = 0$ $\therefore \left|\overline{a} \times \overline{b}\right|_{\min} = 0$ This forms the condition of parallelism of two vectors. Thus of two non-zero vectors are collinear (or parallel) with either for $\theta = 0$ or π then their cross product is necessarily zero | 3. Cross product does not obey commutative law $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \vec{n}$ is a unit vector along $(\vec{a} \times \vec{b}) = -(\vec{b} \times \vec{a})$ and $\vec{b} \times \vec{a} = \left| \vec{b} \right| \left| \vec{a} \right| \sin \theta \left(-\vec{n} \right)$ $\therefore \vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$ thus the vector $(\vec{a} \times \vec{b})$ and $(\vec{b} \times \vec{a})$ are two vectors of equal magnitudes but opposite directions. 14. Vector products obeys distributive law provided, the order is maintained eg: $\vec{a} \times (\vec{b} + \vec{c} + \vec{d}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) + \dots \neq (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) + \dots$ Vector product of two vectors is zero vector. Thus $\vec{a} \times \vec{a} = |\vec{a}| |\vec{a}| \sin 0 \hat{n} = 0$ 5. Cross product of unit vectors $(\hat{i}, \hat{j} \& \hat{k})$ 16. $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0 \quad \hat{i} \times \hat{j} = \hat{k}; \quad \hat{j} \times \hat{k} = \hat{i}; \quad \hat{k} \times \hat{i} = \hat{j} \qquad \hat{j} \times \hat{i} = -\hat{k}; \quad \hat{k} \times \hat{j} = -\hat{i}; \quad \hat{i} \times \hat{k} = -\hat{j}$ cross product of two vectors in terms of $\hat{i}, \hat{j} \otimes \hat{k}$ 17. let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then $\vec{a} \times \vec{b} = \left(a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \right) \times \left(b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right) = \left(a_2 b_3 - a_3 b_2 \right) \hat{i} - \left(a_1 b_3 - a_3 b_1 \right) \hat{j} + \left(a_1 b_2 - a_2 b_1 \right) \hat{k}$ using $\hat{i} \times \hat{i} = 0$; $\hat{j} \times \hat{k} = \hat{i}$ etc. also $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

8. If θ be the angle between \vec{a} and \vec{b} then $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \Rightarrow \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|}$

in terms of unit vectors
$$\sin \theta = \frac{\sqrt{\sum (a_2 b_3 - a_3 b_2)^2}}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

Note: from the above formula for $\sin \theta$ the value θ cannot be evaluated

 \therefore for θ lying in [0, 180°] for each value of $\sin \theta$ there are two vectors of θ .

the values of θ can be determined from $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

* The torque or turning effect of a force \overline{F} is given by

 $\overline{\tau} = \overline{r} \times \overline{F}$ where \overline{r} is the position vector of point of application of force.

§§ Geometrical interpretation:

Let \vec{a} and \vec{b} be any two vectors shown by \overline{OA} and \overline{OB} respectively, with θ as the angle between them then

$$\left|\vec{a} \times \vec{b}\right| = \left|\vec{a}\right| \left|\vec{b}\right| \sin \theta = \left(\left|\vec{a}\right|\right) \left(\left|\vec{b}\right| \sin \theta\right) = (OA)(OB \sin \theta) = (OB)(BM)$$

= area of the parallelogram OACB

Thus the modulus of the cross product between two vectors, is the area of the parallelogram formed with the two vectors drawn in magnitude and direction as its two adjacent sides.

Note: 1. The area of the triangle formed by two vectors $\vec{a}_{and} \vec{b}$ taken as the two sides will be $\frac{1}{2} |\vec{a} \times \vec{b}|$

2. $\frac{1}{2}(\vec{a} \times \vec{b})$ or $(\vec{a} \times \vec{b})$ will denote the vector areas of the triangle or parallelogram respectively

formed by taking the two vectors as the adjacent sides drawn

Example:1 Two vectors having magnitudes 5 units and 12 units respectively. Find their cross product if the angle between them is 30[°]

$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n} \Rightarrow \vec{a} \times \vec{b} = (5)(12) \sin 30^\circ \hat{n} = 30 \hat{n}$$

thus the cross product is a vector of magnitude 30 units, along the direction normal to the plane containing the two vectors in accordance with the right hand screw rule.

Example:2 Two vectors are given $\hat{6_{i+3}j-2_k}$ and $\hat{3_{i+12}j-4_k}$ what is the angle between them?

 $\vec{a} = 6\vec{i}+3\vec{j}-2\vec{k}; \vec{b} = 3\vec{i}+12\vec{j}-4\vec{k}, \ \sin\theta = \frac{|\vec{a}\times\vec{b}|}{|\vec{a}||\vec{b}|}$

$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 3 & -2 \\ 3 & 12 & -4 \end{vmatrix} = \hat{i}(-12+24) - \hat{j}(-24+6) + \hat{k}(72-9) = 12\hat{i} - 18\hat{j} + 63\hat{k}$						
$\therefore \left \vec{a} \times \vec{b} \right = \sqrt{12^2 + 18^2 + 63^2} = \sqrt{4437} = 3\sqrt{493}$						
and $\left \vec{a} \right = \sqrt{6^2 + 3^2 + 2^2} = 7$, $\left \vec{b} \right = \sqrt{3^2 + 12^2 + (-14)^2} = 13$						
$\sin\theta = \frac{4\sqrt{493}}{7\times13} = \frac{3}{91}\sqrt{493}$						
alternatively $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \vec{b} } = \frac{18 + 36 + 8}{7 \times 13} = \frac{62}{91}$ AB = 62 AC=91						
$BC = \sqrt{91^2 - 62^2} = \sqrt{4437} = 3\sqrt{493} \qquad \qquad \sin \theta = \frac{BC}{AC} = \frac{3\sqrt{493}}{91}$						
Example:3 If $\hat{2i-3j+4k}$ and $\hat{3i+\lambda j+\mu k}$ be collinear vectors, then find the values of μ and λ						
solution $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\vec{b} = 3\hat{i} + \lambda\hat{j} + \mu\hat{k}$ given \vec{a} and \vec{b} are collinear $\therefore \vec{a} \times \vec{b} = 0$ (see property 2) i.e. $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 4 \\ 3 & \lambda & \mu \end{vmatrix} = \vec{0}$						
$\Rightarrow (-3\mu - 4\lambda)\hat{i} - (2\mu - 12)\hat{j} + (2\lambda + 9)\hat{k} = \vec{0}$						
equating the coefficients of \hat{i}, \hat{j} and \hat{k} on both sides of the equation						
we have $-3\mu - 4\lambda - 12 = 0$ and $2\lambda + 9 = 0$: $\mu = 6$, $\lambda = -9/2$						
Example:4 \vec{a} and \vec{b} are two vectors with moduli 1 and 5 respectively. If the magnitude of their						
cross product be 3 units; then find the tangent of the angle between \vec{a} and \vec{b}						
solution $\vec{a} \times \vec{b} = \vec{a} \vec{b} \sin \theta$ using $\sin \theta = \frac{ \vec{a} \times \vec{b} }{ \vec{a} \vec{b} }$ $\therefore \tan \theta = \frac{3}{1.5} = \frac{3}{5}$						

$$\therefore \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}} = \frac{(3/5)}{\sqrt{1 - (3/5)^2}} = \frac{(3/5)}{\pm (4/5)} = \pm \frac{3}{4}$$
Example: 5 If $\vec{a} = 3\hat{i} - 2\hat{j} + 2\hat{k}$ and $\vec{b} = 5\hat{i} - \hat{j} - \hat{k}$ then what is the area and vector are of the triangle formed by taking \vec{a} and \vec{b} as its two sides?
solution: vector area is given by $\frac{1}{2}(\vec{a} \times \vec{b}) = \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -2 & 2 \\ 5 & -1 & -1 \end{vmatrix}$

$$= \frac{1}{2} [(2 + 2)\hat{i} - (-3 - 10)\hat{j} + (-3 + 10)\hat{k}] = \frac{1}{2} [4\hat{i} + 13\hat{j} + 7\hat{k}] squarits$$

$$\boxed{\text{TEACHING TASK}}$$
Choose the correct option
1. The cross product of the vectors $(2\hat{i} - 3\hat{j} + 4\hat{k})$ and $(\hat{i} + 4\hat{j} - 5\hat{k})$ is
1.)- $\hat{i} + 3\hat{j} + 11\hat{k} = 2\hat{j} + 14\hat{j} + 11\hat{k} = 3\hat{j} + 14\hat{j} + 11\hat{k} = 4\hat{j} - 1\hat{i} + 14\hat{j} + 5\hat{k}$
2. Cross product of the vectors cannot be more than
1.0.5 20,1 3),2 40,3
3. The radius vector $r = 2\hat{i} + 5\hat{k}$ and the angular velocity of a particle is $\overline{w} = 3\hat{i} - 4\hat{k}$. Then the linear velocity of the particle is
1.15 - 8\hat{j} + 6\hat{k} = 2\hat{j} + 2\hat{i} + \hat{k} = 3\hat{j} + 2\hat{k} = 6\hat{k} = 4\hat{j} - 2\hat{j}\hat{i} = 1\hat{j} - 2\hat{k} = 2\hat{j} + 2\hat{k} = 3\hat{j} - 4\hat{k}. Then the linear velocity of the particle is
1.16.4 units $2\hat{j} \sqrt{6\hat{i}4}$ units $3\hat{j} \sqrt{57\hat{j}3}$ units $4\hat{j} \cdot 32$ units
5. The area of the parallelogram whose adjacent sides are $(3\hat{i} - \hat{j} - \hat{k})$ is
1.16.4 units $2\hat{j} \sqrt{6\hat{i}4}$ units $3\hat{j} \sqrt{57\hat{j}3}$ units $4\hat{j} \cdot 32$ units
6. If the dot product of two vectors is equal to the magnitude of the cross product of the same vectors, then the angle between the vectors $\vec{a} \cdot \hat{k} \cdot \hat{b} = 0$ the value of $|\vec{a} \times \vec{b}|$ is
1.10 2) ab $3\hat{j} \sqrt{ab} = 4\hat{j} a db$
8. If $\vec{k} = 4N, \vec{B} = 3N$ the value of $|\vec{k} \times \vec{k}|^2 + |\vec{k} \cdot \vec{k}|^2$ then
1.15 N 2) 25 N 3) 144 N 4) 169 N
1.24

PHYSICS VECTORS 9 The resultant of vectors of magnitude 3 units and 4 units is 1 unit then the magnitude of their cross product is 1) -12 units 2) 7 units 3) -1 unit 4) zero Assertion A and Reason R: . This section contains certain number of questions. Each question contains Statement -1 (Assertion) and Statement -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct Choose the correct option. Opions: A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A' B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A' C)'A' is true and 'R' is false D) 'A' is false and 'R' is tr 10. **A** : If \vec{A} is parallel to \vec{B} , then $\vec{A} \times \vec{B}$ is a null vector **R** : The cross product of two vectors is given by $\vec{A} \times \vec{B} = AB \sin \theta \hat{n}$ A: If $\vec{A} \times \vec{B} = \vec{C} \times \vec{B}$, then \vec{C} must be equal to \vec{A} . 11. **R**: The magnitude of the cross product of two vectors depends upon the angle between them. Multiple option type: This section contains multiple choice questions. Each question has 4 choices (A), (B), (C), (D), out of which . Found & 100 C + 100 C **ONE or MORE** is correct. Choose the correct options 12. If $\vec{P} \times \vec{Q} = \vec{R}$; $\vec{Q} \times \vec{R} = \vec{P}$ and $\vec{R} \times \vec{P} = \vec{Q}$ then a) $\overrightarrow{P}.\overrightarrow{Q}$ and \overrightarrow{R} are coplanar b) angle between \vec{P} and \vec{Q} may be less than 90° c) $\vec{P}_{+}\vec{O}_{+}\vec{R}$ cannot be equal to zero. d) \vec{P}, \vec{O} and \vec{R} are mutually perpendicular 1) both c & d 2) a, b & c 3) both a & b 4) both d & b Match the following: This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in **Column–I** have to be matched with statements (p, q, r)s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows: 13. Study the following table. a) $\vec{i} \cdot (\vec{j} \times \vec{k}) + \vec{j} \cdot (\vec{k} \times \vec{i}) + \vec{k} \cdot (\vec{i} \times \vec{j}) = e) 0$ b) $(\vec{i}, \vec{i}) + (\vec{i} \times \vec{i}) =$ f) 1 $c)(\vec{A}.\vec{B})(\vec{A}\times\vec{B}) + (\vec{B}.\vec{A})(\vec{B}\times\vec{A}) =$ g) 3

	d) $(\vec{i} + \vec{j}) \cdot (2\vec{i} + 2\vec{k}) =$	=	h) 2			
	1) $a \rightarrow e; b \rightarrow f; c \rightarrow$	$g; d \rightarrow h$	2) a -	\rightarrow g; b \rightarrow h; c \rightarrow f	$; d \rightarrow e$	
	3) $a \rightarrow g; b \rightarrow f; c \rightarrow$	$e; d \rightarrow h$	4) a -	\rightarrow f; b \rightarrow g; c \rightarrow h	; $d \rightarrow e$	
Comp	prehention type:					
◆ 	This section contains pa answered. Each question the correct option.	aragraph. Based n has 4 choices (2	upon eac 4) , (B) ,(C	h paragraph multip. [) and (D) out of wh	le choice questions have to be hich ONLY ONE i s correct. Choo)se
14.	Two vectors $ar{A},ar{B}$ ar	e such that \bar{A}	$=4\bar{i}-\bar{j}$	$-\bar{k}$ and $\bar{B}=4\bar{i}+$	$\bar{j}-4\bar{k}$	
į	i) $\vec{A} \times \vec{B} =$					
	1) $5\bar{i}-5\bar{j}+5\bar{k}$	2) $\pm (5\bar{i}+12)$	$\bar{j}+8\bar{k})$	3) $\bar{i}+3\bar{j}+\bar{k}$	4) $5\bar{i}-5\bar{j}+5\bar{k}$	
	ii) The unit vector pe	rpendicular to	the plan	e containing \bar{A}, \bar{B}	is	
 	1) $\frac{5\bar{i}-5\bar{j}+5\bar{k}}{\sqrt{3}}$	2) $\pm \frac{5\bar{i}+12}{\sqrt{2}}$	$\overline{j+8\overline{k}}$	$3) \frac{\bar{i}+3\bar{j}+\bar{k}}{11}$	() $5\bar{i}-5\bar{j}+5\bar{k}$	
 		LEAR	NER'S 1	TASK		
	< 1-2 8	BEGINNE	RS (Le	<u>evel -11)</u> +1	H I 8	
Choos	se the correct option	<u>n</u>	0			
1.	$ \mathbf{A} \mathbf{x} \mathbf{B} ^2 + (\mathbf{A} \cdot \mathbf{B})^2$ is	s equal to	204			
	1) A ² + B ²	2) A ² B ²		3) 2A ² B ²	4) Zero	
2.	Two sides of a triang	lle are given by	/ i+j+i	\hat{k} and $-\hat{i}+2\hat{j}+3\hat{k}$, then area of triangle is	
	1) $\sqrt{26}$	2) $\sqrt{26}$ / 2		3) $\sqrt{46}$	4) 26	
 3. 	Area of the triangle w is	hose base is gi	iven by	$\overline{A} = i + j + k$ and or	ne of the two sides by $\overline{B} = 4j$	+ 3k
	1) $\sqrt{26}$	2) $\sqrt{26}$ /2		3) 5/2	4) 5	
4.	If the radius vector	is $\overline{\mathbf{r}} = 6\mathbf{i} + \mathbf{j} + 3\mathbf{i}$	$_{3\mathrm{k}}$ and th	ne force $\overline{F} = i - 4$	j_{j+k} , the torque is	
	1) 11i + 9j + 25k	2) -11i + 9j +	25k	3) -11i - 9j - 25k	4) 13i - 3j - 25k	
 5. 	Area of a parallelogr	am formed by	vectors	$\left(3\hat{i}-2\hat{j}+\hat{k} ight)$ m and	d $\left(\hat{i}+2\hat{j}+3\hat{k} ight)$ m is	
	1) $3\sqrt{8} \text{ m}^2$	2) 24 m ²		3) $8\sqrt{3}m^2$	4) $4\sqrt{3}m^{2}$	
6.	The unit vector perpe	endicular to \overline{A}	$=2\hat{i}+3$	$\hat{j} + \hat{k}$ and $\overline{B} = \hat{i} - \hat{k}$	$\hat{j} + \hat{k}$ is	
 IX - (CLASS					114

	SICS			VECTOR3		
	1) $\frac{4\hat{i}-\hat{j}-5\hat{k}}{\sqrt{42}}$	$2) \ \frac{4\hat{i} - \hat{j} + 5\hat{k}}{\sqrt{42}}$	$3) \frac{4\hat{i} + \hat{j} + 5\hat{k}}{\sqrt{42}}$	4) $\frac{4\hat{i}+\hat{j}-5\hat{k}}{\sqrt{42}}$		
	Of the vectors give	en below, the parallel v	vectors are,			
	$\vec{A} = 6\hat{i} + 8\hat{j} \qquad \vec{B} =$	$= 210\hat{i} + 280\hat{k} \qquad \overrightarrow{C}$	$= 5.1\hat{i} + 6.8\hat{j} \qquad \overline{D}$	$\hat{D} = 3.6\hat{i} + 8\hat{J} + 48\hat{k}$		
	1) \vec{A} and \vec{B}	2) \vec{A} and \vec{C}	3) \vec{A} and \vec{D}	4) \vec{C} and \vec{D}		
	On rotating a whee of application. The 1) 80 Nm	el of radius 4m, a force e resulting torque on th 2) 60 Nm	of 20N is applied at an ne wheel is 3) 40 Nm	angle 30° to the radius at poir		
	The area of the tria	angle whose adjacent	sides are represented	I by the vector $\left(4\bar{i}+3\bar{j}+4\bar{k}\right)$		
	and 5 \overline{i} in sq. unit	s is		×		
	1) 25	2) 12.5	3) 50	4) 45		
).	The angular veloc	ity of a rotating body	is $\bar{\omega} = 4\bar{i} + \bar{j} - 2\bar{k} \cdot \mathbf{T}$	he linear velocity of the boo		
	whose position ve	ctor $2\bar{i}+3\bar{j}-3\bar{k}$ is	adati	01		
	1) $\bar{5}\bar{i}+8\bar{j}+14\bar{k}$	2) $3\bar{i}+8\bar{j}+10\bar{k}$	3) $8\bar{i}-3\bar{j}+2k$	4) $-8\bar{i}+3\bar{j}+2\bar{k}$		
	If $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$, then the angle between \vec{A} and \vec{B} is					
	1) <i>π</i>	2) $\frac{\pi}{3}$	3) $\frac{\pi}{2}$	4) $\frac{\pi}{4}$		
2.	Let \vec{F} be the force force about the ori	e acting on a particle l gin then	naving position vector	$ec{r}$ and $ec{ au}$ be the torque of thi		
	1) $\vec{r}.\vec{F}=0$ and $\vec{F}.$	$\vec{\tau} \neq 0$ 2)	$\vec{r}.\vec{\tau} \neq 0$ and $\vec{F}.\vec{\tau} = 0$			
	3) $\vec{r}.\vec{\tau} \neq 0$ and $\vec{F}.\vec{\tau}$	$\vec{r} \neq 0$ 4)	$\vec{r}.\vec{\tau}=0 \ and \ \vec{F}.\vec{\tau}=0$			
8.	The area of the past, sq. units)	arallelogram whose a	djacent sides are \bar{P} =	$\bar{3}\bar{i}+4\bar{j}$, $\bar{Q}=-5\bar{i}+7\bar{j}$ is (i		
	1) 20.5	2) 82	3)41	4) 46		
	-					
olve	• the following:					
	If $5\overline{i} - 4\overline{j} - m\overline{k} \& 2$	$2\bar{i} + 2\bar{j} + 4\bar{k}$ are norma	l to each other then fir	nd the value of m		
	If the scalar produ	ct between $3\overline{i} + 4\overline{i} - 7$	$\overline{k} \& 2\overline{i} + 4\overline{i} + n\overline{k}$ is 81	then find p		
			<i>J P P P</i>	·		
		ha angle hatwaan T				

	Find the angle made by the vector \overline{z}
•	Find the angle made by the vector $i = \sqrt{3} j$
•	Find the component vector of $2\overline{i} + \overline{j} - \overline{k}$ along $\overline{i} + \overline{j} + \overline{k}$
sser	tion A and Reason R:
tateme e corr	This section contains certain number of questions. Each question contains Statement -1 (Assertion) and ent -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose rect option.
pions	s: A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'
	B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A'
	C)'A' is true and 'R' is false D) 'A' is false and 'R' is tr
-	A : If $ \vec{P} \times \vec{Q} = PQ$, then \vec{P} must be perpendicular to \vec{Q} .
	R : It will hold even if $\vec{P} \parallel \vec{Q}$.
	A : $\overline{A}x\overline{B} = \overline{C}$ where \overline{C} is a vector normal to both \overline{A} and \overline{B}
	R: Direction of cross product obeys right hand thumb rule
lulti o	correct option type
This	section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D),out of which ONE
r MOR	RE is correct. Choose the correct options
	If vectors \vec{A} and \vec{B} are given by $\vec{A} = 5$; $\vec{A} = 2$;
•	followings correct ?
	a) \vec{A} and \vec{B} are mutually perpendicular b) product of $\vec{A} \times \vec{B}$ is same as $\vec{B} \times \vec{A}$
	c) The magnitude of $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ are equal d) The magnitude of $\stackrel{\rightarrow}{A},\stackrel{\rightarrow}{B}$ is zero.
	1) a, d are correct 2) b, c are correct 3) c, d are correct 4) b, a are correct Which of the following statements is/are correct?
	a) The magnitude of the vector $3\hat{i} + 4\hat{j}$ is 5
	b) A force $(3\hat{i}+4\hat{j})$ N acting on a particle causes a displacement $6\hat{j}$ m. The work done by the force is 30 Joule
	c) If $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ represent two adjacent sides of a parallelogram, then $ \stackrel{\rightarrow}{A} \times \stackrel{\rightarrow}{B} $ gives the area of that parallelogram.
	d) A force has magnitude 20N. It component in a direction making an angle 60° with the force is $10\sqrt{3}$ N.
	1) a & b are correct 2) a & c are correct 3) a & d are correct 4) all are correct Consider the following statements A and B given below and identify the correct answer.
X - C	1) a & b are correct 2) a & c are correct 3) a & d are correct 4) all are correct Consider the following statements A and B given below and identify the correct answer.

VECTORS

A)If $ \vec{A}+\vec{B} =\vec{A}\cdot\vec{B}$, then angle betwee	$n^{ ightarrow}_{A}$ and $^{ ightarrow}_{B}$ is 90°
B) If $\vec{A} \times \vec{B} = 0$, then $\vec{A} \cdot \vec{B} = AB$	
1) both A and B are true	2) A is true but B is false
3) B is true but A is false	4) both A and B are false

Match the following:

This section contains Matrix-Match Type questions. Each question contains statements given in two
 columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example.

*If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows:*

Choose the correct option.

 9. Two vectors \$\vec{\alpha}\$ = \$j_i - 2j + k \$\vec{k}\$ \$\vec{\beta}\$ = \$i_1 + 2j_i + 3k\$ are acting as parallel sides then i) Area of triangle formed by them is A) \$3\sqrt{8}\$ sq units B) 24 \$\vec{S}\$ qunits C) \$4\sqrt{3}\$ sq units D) none ii) The area of parallelogram formed is A) \$6\sqrt{8}\$ sq units B) 42 \$\vec{S}\$ qunits C) \$\$8\sqrt{3}\$ sq units D) none High order thinking skills (HOTS): 10. If \$\vec{\alpha} = 2i + 3j + 6k\$ and \$\vec{B} = 3i - 6j + 2k\$ then vector perpendicular to both \$\vec{A}\$ and \$\vec{B}\$ has magnitude K times that of \$6j + 2j - 3k\$. Then \$\ket{S}\$ = \$1\$ and \$1\$ are coplanar. The value of 'a' is \$1\$ and \$2\$ and \$2\$ and \$2\$ and \$2\$ and \$2\$ and \$2\$ are coplanar. The value of 'a' is \$1\$ and \$2\$ and \$2\$ and \$3\$ and \$2\$ and \$3\$ and \$2\$ and \$3\$ and \$4\$ best are coplanar. The value of 'a' is \$1\$ and points towards north. The ratio between \$\vec{A}\$, \$\vec{B}\$, \$\vec{B}\$ and \$ \vec{A} \times \vec{B}\$ is \$1\$ and points towards north. The ratio between \$\vec{A}\$, \$\vec{B}\$, \$\vec{B}\$ and \$ \vec{A} \times \vec{B}\$ is \$1\$ and \$2\$ best and \$2\$ and					
 i) Area of triangle formed by them is A) 3√8 sq units B) 24 Sq units C) 4√3 sq units D) none ii) The area of parallelogram formed is A) 6√8 sq units B) 42 Sq units C) 8√3 sq units D) none High order thinking skills (HOTS): 10. If x̄ = 2i + 3j + 6k and B = 3i - 6j + 2k then vector perpendicular to both x̄ and B has magnitude K times that of 6j + 2j - 3k. Then K = 1) 1 2) 3 3) 7 4) 9 11. Three vectors ai - 4j + 5k, i - 2j + 3k and 2i - j + k are coplanar. The value of 'a' is 1) 3 2) 4 3) -5 4) 5 12. A vector x̄ has magnitude of 3 units and points towards east while another vector ȳ has magnitude of 4 units and points towards north. The ratio between x̄ B and x̄ × B̄ is 1)1:1 2) 1:0 3) 0:12 4)12:0 • ### · Choose the correct option: 1. The component of vector a = a, i + a, j + a, k along the direction of i - j is (2008E) 1) a, -a, +a, 2) a, -a, 3) a, -a, -a, -a, -(-√2) 4) (a, +a, +a, -) 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are v = 2i + cj and a = 3i + 4j respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors 4 i - 4 j + 7 k and 2 i + 2 j + 5 k m respectively. If the velocity of the first particle is 0.4 i ms⁻¹, the velocity of second particle in ms⁻¹ if they collide after 10 sec is [2004E] 1) 6(i - j + 1√5 k) 2) 0.6(i - j + k / 3) 3) 0.6(i + j + k / 3) 4) 0.6(i + j - k / 3) m are moving with velocities r₁ = (4 i + 3 j) ms⁻¹ and r₂ = (-a i + 4 j) ms⁻¹. If they collide after 2 seconds, with velocities r₁ = (4 i + 3 j) ms⁻¹ and r₂ = (-a i + 4 j) ms⁻¹. If they collide after 2 seconds with velocities r₁ = (4 i + 3 j) ms⁻¹ and r₂ = (-a i + 4 j) ms⁻¹. If they collide after 2 seconds with velocities r₁ = (4 i + 3 j) ms⁻¹ and r₂ = (-a i + 4 j) ms⁻¹. If they collide after 2 seconds wit	9.	Two vectors $\vec{A} = 3i$	$-2j + k \& \overrightarrow{B} = i + 2j +$	3k are acting as paral	lel sides then
A) $3\sqrt{8}$ sq units B) 24 Sq units C) $4\sqrt{3}$ sq units D) none ii) The area of parallelogram formed is A) $6\sqrt{8}$ sq units B) 42 Sq units C) $8\sqrt{3}$ sq units D) none High order thinking skills (HOTS): 10. If $\vec{k} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ and $\vec{B} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ then vector perpendicular to both \vec{A} and \vec{B} has magnitude K times that of $6\hat{i} + 2\hat{j} - 3\hat{k}$. Then K = 1) 1 2) 3 3) 7 4) 9 11. Three vectors $a\hat{i} - 4\hat{j} + 5\hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}$ and $2\hat{i} - \hat{j} + \hat{k}$ are coplanar. The value of 'a' is 1) 3 2) 4 3) -5 4) 5 12. A vector \vec{A} has magnitude of 3 units and points towards east while another vector \vec{B} has magnitude of 4 units and points towards north. The ratio between \vec{A}, \vec{B} and $ \vec{A} \times \vec{B} $ is 1)1:1 2) 1:0 3) 0:12 4)12:0 FIEF RESEARCHERS (Level IV) 1. The component of vector $\vec{A} = a_x\hat{i} + a_y\hat{j} + a_x\hat{k}$ along the direction of $\hat{i} - \hat{j}$ is (2008E) 1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_z)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\hat{i} = 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $0.4\hat{i} - 3\hat{i} + 3\hat{j}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ or $(2004E]$ 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k})$ 2) $0.6(\hat{i} - \hat{j} + \frac{\vec{k}}{3})$ 3) $0.6(\hat{i} + \hat{j} + \frac{\vec{k}}{3})$ 4) $0.6(\hat{i} + \hat{j} - \frac{\vec{k}}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (3\hat{i} + 5\hat{j})m$ and $\vec{r}_2 = (-5\hat{i} + 3\hat{j})m$ are moving with velocities $\vec{V}_1 = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{V}_2 = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds,		i) Area of triangle fo	ormed by them is		
ii) The area of parallelogram formed is A) $6\sqrt{8}$ sq units B) 42 Sq units C) $8\sqrt{3}$ sq units D) none High order thinking skills (HOTS): 10. If $\hat{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ and $\overline{B} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ then vector perpendicular to both \hat{A} and \hat{B} has magnitude K times that of $6\hat{i} + 2\hat{j} - 3\hat{k}$. Then K = 1) 1 2) 3 3) 7 4) 9 11. Three vectors $a\hat{i} - 4\hat{j} + 5\hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}$ and $2\hat{i} - \hat{j} + \hat{k}$ are coplanar. The value of 'a' is 1) 3 2) 4 3) -5 4) 5 12. A vector \hat{A} has magnitude of 3 units and points towards east while another vector \hat{B} has magnitude of 4 units and points towards north. The ratio between \hat{A}, \hat{B} and $ \hat{A} \times \hat{B} $ is 1)1:1 2) 1:0 3) 0.12 4)12:0 4 units and points towards north. The ratio between \hat{A}, \hat{B} and $ \hat{A} \times \hat{B} $ is 1)1:1 2) 1:0 3) 0.12 4)12:0 4 Units and points towards north. The ratio between \hat{A}, \hat{B} and $ \hat{A} \times \hat{B} $ is 1)1:1 2) 1:0 3) 0.12 4)12:0 4 Units and points towards north. The ratio between \hat{A}, \hat{B} and $ \hat{A} \times \hat{B} $ is 1)1:1 2) 1:0 3) 0.12 4)12:0 4 Units and points towards north. The ratio between \hat{A}, \hat{B} and $ \hat{A} \times \hat{B} $ is 1)1:1 2) 1:0 3) 0.12 4)12:0 4 Units and points towards north. The ratio between \hat{A}, \hat{B} and $ \hat{A} \times \hat{B} $ is 1)1:1 2) 1:0 3) 0.12 4)12:0 4 Units and points towards north. The ratio between $\hat{A}, \hat{B} $ and $ \hat{A} \times \hat{B} $ is 1)3 2) 1:5 3) 0.12 4)12:0 4 Units and points towards north. The ratio between $\hat{A}, \hat{B} $ and $\hat{I} = \hat{J}, \hat{I} + \hat{J}, \hat{I}$ and $\hat{I} = 3\hat{I} + 4\hat{J}$ respectively. Then the value of 'c 'is 1)3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $\hat{I}, \hat{I} = 4\hat{I}, \hat{I} + 7\hat{K}$ and $\hat{I} = \hat{I}, \hat{I}, \hat{I}, \hat{I}, \hat{I}, \hat{I}, \hat{I}$ and $\hat{I}, \hat{I} = (\hat{I}, I$		A) $3\sqrt{8}$ sq units	B) 24 Sq units	C) $4\sqrt{3}$ sq units	D) none
A) $6\sqrt{8}$ sq units B) 42 Sq units C) $8\sqrt{3}$ sq units D) none High order thinking skills (HOTS): 10. If $\vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ and $\vec{B} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ then vector perpendicular to both \vec{A} and \vec{B} has magnitude K times that of $6\hat{i} + 2\hat{j} - 3\hat{k}$. Then K = 1) 1 2) 3 3) 7 4) 9 11. Three vectors $a\hat{i} - 4\hat{j} + 5\hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}$ and $2\hat{i} - \hat{j} + \hat{k}$ are coplanar. The value of 'a' is 1) 3 2) 4 3) -5 4) 5 12. A vector \vec{A} has magnitude of 3 units and points towards east while another vector \vec{B} has magnitude of 4 units and points towards north. The ratio between $\vec{A} \cdot \vec{B} \cdot \vec{B}$ is 1)1:1 2) 1:0 3) 0:12 4)12:0 FIFE RESEARCHERS (Level - IV) FIFE 1. The component of vector $\vec{A} = a_x\hat{i} + a_y\hat{j} + a_z\hat{k}$ along the direction of $\hat{i} - \hat{j}$ is (2008E) 1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_z)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\hat{i} - 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $(0.4\hat{i} \hat{i} \text{ ms}^{-1}$, the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k})$ 2) $0.6(\hat{i} - \hat{j} + \frac{\hat{k}}{3})$ 3) $0.6(\hat{i} + \hat{j} + \frac{\hat{k}}{3})$ 4) $0.6(\hat{i} + \hat{j} - \frac{\hat{k}}{3})$ 4. Two particles having position vectors $\vec{r_1} = (3\hat{i} + 5\hat{j})$ m and $\vec{r_2} = (-5\hat{i} + 3\hat{j})$ m are moving with velocities $\vec{r_1} = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{r_2} = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds, V (1) 145		ii) The area of para	llelogram formed is		
High order thinking skills (HOTS): 10. If $\vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ and $\vec{B} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ then vector perpendicular to both \vec{A} and \vec{B} has magnitude K times that of $6\hat{i} + 2\hat{j} - 3\hat{k}$. Then K = 1) 1 2) 3 3) 7 4) 9 11. Three vectors $a\hat{i} - 4\hat{j} + 5\hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}$ and $2\hat{i} - \hat{j} + \hat{k}$ are coplanar. The value of 'a' is 1) 3 2) 4 3) -5 4) 5 12. A vector \vec{A} has magnitude of 3 units and points towards east while another vector \vec{B} has magnitude of 4 units and points towards north. The ratio between \vec{A},\vec{B} and $ \vec{A} \times \vec{B} $ is 1)1:1 2) 1:0 3) 0:12 4)12:0 *### . RESEARCHERS (Level - IV) *### . Choose the correct option: 1. The component of vector $\vec{A} = a_x\hat{i} + a_y\hat{j} + a_z\hat{k}$ along the direction of $\hat{i} - \hat{j}$ is (2008E) 1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_z)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\hat{i} - 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $0.4\hat{i} + ms^{-1}$, the velocity of second particle in ms^{-1} if they collide after 10 sec is [2004E] 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k})$ 2) $0.6(\hat{i} - \hat{j} + \frac{\hat{k}}{3})$ 3) $0.6(\hat{i} + \hat{j} + \frac{\hat{k}}{3})$ 4) $0.6(\hat{i} + \hat{j} - \frac{\hat{k}}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (3\hat{i} + 5\hat{j})m$ and $\vec{r}_2 = (-5\hat{i} + 3\hat{j})m$ are moving with velocities $\vec{r}_1 = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{r}_2 = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds,		A) $6\sqrt{8}$ sq units	B) 42 Sq units	C) $8\sqrt{3}$ sq units	D) none
 10. If A = 2i+3j+6k and B = 3i-6j+2k then vector perpendicular to both A and B has magnitude K times that of 6i + 2j-3k. Then K = 1)1 2)3 3)7 4)9 11. Three vectors ai-4j+5k, i-2j+3k and 2i-j+k are coplanar. The value of 'a' is 1)3 2)4 3)-5 4)5 12. A vector A has magnitude of 3 units and points towards east while another vector B has magnitude of 4 units and points towards north. The ratio between A B and A ± B is 1)1:1 2)1:0 3)0:12 4)12:0 ************************************	<u>High</u>	order thinking skill	<u>s (HOTS):</u>		
magnitude K times that of $6\hat{i} + 2\hat{j} - 3\hat{k}$. Then K = 1) 1 2) 3 3) 7 4) 9 11. Three vectors $a\hat{i} - 4\hat{j} + 5\hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}$ and $2\hat{i} - \hat{j} + \hat{k}$ are coplanar. The value of 'a' is 1) 3 2) 4 3) -5 4) 5 12. A vector \hat{A} has magnitude of 3 units and points towards east while another vector \hat{B} has magnitude of 4 units and points towards north. The ratio between \hat{A}, \hat{B} and $ \hat{A} \times \hat{B} $ is 1)1:1 2) 1:0 3) 0:12 4)12:0 *JUB+ RESEARCHERS (Level - IV) 1. The component of vector $\hat{A} = a_x\hat{i} + a_x\hat{j} + a_x\hat{k}$ along the direction of $\hat{i} - \hat{j}$ is (2008E) 1) $a_x - a_y + a_x^2$ 2) $a_x - a_y^2$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_x)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\hat{i} - 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $0.4\hat{i} \text{ ms}^{-1}$, the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k}) = 2) 0.6(\hat{i} - \hat{j} + \frac{\hat{k}}{3}) = 3) 0.6(\hat{i} + \hat{j} + \frac{\hat{k}}{3}) = 4) 0.6(\hat{i} + \hat{j} - \frac{\hat{k}}{3})$ 4. Two particles having position vectors $\vec{r_1} = (3\hat{i} + 5\hat{j})m$ and $\vec{r_2} = (-5\hat{i} + 3\hat{j})m$ are moving with velocities $\vec{V_1} = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{V_2} = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds,	10.	If $\vec{A}=2\hat{i}+3\hat{j}+6\hat{k}$ as	nd $\vec{B} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ the	n vector perpendicu	lar to both $ec{A}$ and $ec{B}$ has
1) 1 2) 3 3) 7 4) 9 Three vectors $ai - 4j + 5k, i - 2j + 3k$ and $2i - j + k$ are coplanar. The value of 'a' is 1) 3 2) 4 3) -5 4) 5 12. A vector \overline{A} has magnitude of 3 units and points towards east while another vector \overline{B} has magnitude of 4 units and points towards north. The ratio between $\overline{A}, \overline{B}$ and $ \overline{A} \times \overline{B} $ is 1)1:1 2) 1:0 3) 0:12 4)12:0 Choose the correct option: 1. The component of vector $\overline{A} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ along the direction of $\hat{i} - \hat{j}$ is (2008E) 1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_z)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\overline{y} = 2\hat{i} + c\hat{j}$ and $\overline{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\hat{i} - 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $0.4\hat{i} \text{ ms}^{-1}$, the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k})$ 2) $0.6(\hat{i} - \hat{j} + \frac{\hat{k}}{3})$ 3) $0.6(\hat{i} + \hat{j} + \frac{\hat{k}}{3})$ 4) $0.6(\hat{i} + \hat{j} - \frac{\hat{k}}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (3\hat{i} + 5\hat{j})m$ and $\vec{r}_2 = (-5\hat{i} + 3\hat{j})m$ are moving with velocities $\vec{V}_1 = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{V}_2 = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds, 10 $\hat{k} = 14$		magnitude K times	that of $6\hat{i} + 2\hat{j} - 3\hat{k}$. Th	ien K =	
11. Three vectors $\vec{a}_1 - 4\vec{j}_1 + 5\vec{k}_1 - 2\vec{j}_1 + 3\vec{k}$ and $2\vec{l}_1 - \vec{j}_1 + \vec{k}$ are coplanar. The value of a is 1) 3 2) 4 3) -5 4) 5 12. A vector \vec{k} has magnitude of 3 units and points towards east while another vector \vec{b} has magnitude of 4 units and points towards north. The ratio between $\vec{k}_1\vec{b}$ and $ \vec{A} \times \vec{B} $ is 1)1:1 2) 1:0 3) 0:12 4)12:0 FILL RESEARCHERS (Level - IV) FILL Choose the correct option: 1. The component of vector $\vec{A} = a_i\hat{i} + a_i\hat{j} + a_i\hat{k}$ along the direction of $\hat{i}_1 - \hat{j}$ is (2008E) 1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_z)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\vec{i} - 4\vec{j} + 7\vec{k}$ and $2\vec{i} + 2\vec{j} + 5\vec{k}$ m respectively. If the velocity of the first particle is $0.4\vec{i} \text{ ms}^{-1}$, the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\vec{i} - \vec{j} + \frac{1}{\sqrt{5}}\vec{k})$ 2) $0.6(\vec{i} - \vec{j} + \frac{\vec{k}}{3})$ 3) $0.6(\vec{i} + \vec{j} + \frac{\vec{k}}{3})$ 4) $0.6(\vec{i} + \vec{j} - \frac{\vec{k}}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (3\vec{i} + 5\vec{j})m$ and $\vec{r}_2 = (-5\vec{i} + 3\vec{j})m$ are moving with velocities $\vec{k}_1 = (4\vec{i} + 3\vec{j})ms^{-1}$ and $\vec{k}_2 = (-a\vec{i} + 4\vec{j})ms^{-1}$. If they collide after 2 seconds		1) 1	2) 3	3) 7	4) 9 The second
12. A vector \vec{A} has magnitude of 3 units and points towards east while another vector \vec{B} has magnitude of 4 units and points towards north. The ratio between \vec{A} , \vec{B} and $ \vec{A} \times \vec{B} $ is 1)1:1 2)1:0 3)0:12 4)12:0 *###* RESEARCHERS (Level - IV) *###* Choose the correct option: 1. The component of vector $\vec{A} = a_x \hat{i} + a_x \hat{j} + a_z \hat{k}$ along the direction of $\hat{i} - \hat{j}$ is (2008E) 1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_z)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\hat{i} - 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $0.4\hat{i} \text{ ms}^{-1}$, the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k})$ 2) $0.6(\hat{i} - \hat{j} + \frac{\hat{k}}{3})$ 3) $0.6(\hat{i} + \hat{j} + \frac{\hat{k}}{3})$ 4) $0.6(\hat{i} + \hat{j} - \frac{\hat{k}}{3})$ 4. Two particles having position vectors $\vec{r_1} = (3\hat{i} + 5\hat{j})m$ and $\vec{r_2} = (-5\hat{i} + 3\hat{j})m$ are moving with velocities $\vec{r_1} = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{r_2} = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds	11.	I hree vectors al - 4	4j + 5K, 1 - 2j + 3K and 2) 4	2I - J + K are coplanar. 3) -5	1 he value of 'a' is 4) 5
 A vector has magnitude of 3 units and points towards east while another vector B has magnitude of 4 units and points towards north. The ratio between B and Â×B is 1)1:1 2)1:0 3)0:12 4)12:0 ************************************		1) 5	2) 1		-, , , , , , , , , , , , , , , , , , ,
4 units and points towards north. The ratio between $\bar{A} \bar{B}$ and $ \bar{A} \times \bar{B} $ is 1)1:1 2)1:0 3)0:12 4)12:0 RESEARCHERS (Level - IV) Choose the correct option: 1. The component of vector $\bar{A} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ along the direction of $\hat{i} - \hat{j}$ is (2008E) 1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_z)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\vec{i} - 4\vec{j} + 7\vec{k}$ and $2\vec{i} + 2\vec{j} + 5\vec{k}$ m respectively. If the velocity of the first particle is $0.4\vec{i} \text{ ms}^{-1}$, the velocity of second particle in ms^{-1} if they collide after 10 sec is [2004E] 1) $6(\vec{i} - \vec{j} + \frac{1}{\sqrt{5}}\vec{k})$ 2) $0.6(\vec{i} - \vec{j} + \frac{\vec{k}}{3})$ 3) $0.6(\vec{i} + \vec{j} + \frac{\vec{k}}{3})$ 4) $0.6(\vec{i} + \vec{j} - \frac{\vec{k}}{3})$ 4. Two particles having position vectors $\vec{r_1} = (3\vec{i} + 5\vec{j})m$ and $\vec{r_2} = (-5\vec{i} + 3\vec{j})m$ are moving with velocities $\vec{V_1} = (4\vec{i} + 3\vec{j})ms^{-1}$ and $\vec{V_2} = (-a\vec{i} + 4\vec{j})ms^{-1}$. If they collide after 2 seconds	12.	A vector \bar{A} has mage	nitude of 3 units and point	s towards east while anot	her vector \bar{B} has magnitude of
1)1:1 2) 1:0 3) 0:12 4)12:0 Choose the correct option: The component of vector $\vec{A} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ along the direction of $\hat{i} - \hat{j}$ is (2008E) 1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_z)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\hat{i} - 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $0.4\hat{i} \text{ ms}^{-1}$, the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k})$ 2) $0.6(\hat{i} - \hat{j} + \frac{\hat{k}}{3})$ 3) $0.6(\hat{i} + \hat{j} + \frac{\hat{k}}{3})$ 4) $0.6(\hat{i} + \hat{j} - \frac{\hat{k}}{3})$ 4. Two particles having position vectors $\vec{r_1} = (3\hat{i} + 5\hat{j})m$ and $\vec{r_2} = (-5\hat{i} + 3\hat{j})m$ are moving with velocities $\vec{v_1} = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{v_2} = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds, $\vec{v_1} = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{v_2} = (-a\hat{i} + 4\hat{j})ms^{-1}$.		4 units and points tow	vards north. The ratio be	tween $\bar{A}.\bar{B}$ and $ \vec{A}\times\vec{B} $	S
1. The component of vector $\vec{A} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ along the direction of $\hat{i} - \hat{j}$ is (2008E) 1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $(a_x + a_y + a_z)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\hat{i} - 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $0.4\hat{i}$ ms ⁻¹ , the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k})$ 2) $0.6(\hat{i} - \hat{j} + \frac{\hat{k}}{3})$ 3) $0.6(\hat{i} + \hat{j} + \frac{\hat{k}}{3})$ 4) $0.6(\hat{i} + \hat{j} - \frac{\hat{k}}{3})$ 4. Two particles having position vectors $\vec{r_1} = (3\hat{i} + 5\hat{j})m$ and $\vec{r_2} = (-5\hat{i} + 3\hat{j})m$ are moving with velocities $\vec{V_1} = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{V_2} = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds		1)1:1	2) 1:0	3) 0:12 4)12	:0
 Choose the correct option: The component of vector \$\vec{A} = a_x \hloc{1} + a_y \hloc{1} + a_z \klocks along the direction of \$\hlock{1} - \hlocks is \$\$\$ (2008E) 1) \$a_x - a_y + a_z\$ 2) \$a_x - a_y\$ 3) \$\frac{a_x - a_y}{\sqrt{2}}\$ 4) \$(a_x + a_y + a_z)\$ Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are \$\vec{v} = 2\hlocksin + c\hlocksin and \$\vec{a} = 3\hlocksin + 4\hlocksin \$\$ respectively. Then the value of 'c' is 3) \$-1.5\$ 4) \$-3\$ At given instant of time two particles are having the position vectors \$\$4\vec{i} - 4\vec{j} + 7\vec{k}\$ and \$\$2\vec{i} + 2\vec{j} + 5\vec{k}\$ m respectively. If the velocity of the first particle is \$\$0.4\vec{i} 1 ms^{-1}\$, the velocity of second particle in ms^{-1}\$ if they collide after 10 sec is 6(\vec{i} - \vec{j} + \frac{1}{\sqrt{5}}\vec{k}\$) 0.6(\vec{i} - \vec{j} + \vec{k}{\sqrt{3}}) 0.6(\vec{i} + \vec{j} + \vec{k}{\sqrt{3}}) 0.6(\vec{i} + \vec{j} + \vec{k}{\sqrt{3}}) 0.6(\vec{i} + \vec{j} + \vec{k}{\sqrt{3}}) 0.6(\vec{i} + \vec{j} + \vec{k}{\sqrt{3}}) 0.6(\vec{i} + \vec{j} + \vec{k}{\sqrt{3}}) 0.6(\vec{i} + \vec{j} + \vec{k}{\sqrt{3}}) 0.6(\vec{i} + \vec{j} + \vec{k}{\sqrt{3}}) m and \$\vec{r}{r_2} = (-5\vec{i} + 3\vec{j}{\sqrt{3}})m are moving with velocities \$\vec{v}{1} = (4\vec{i} + 3\vec{j}{\sqrt{3}})ms^{-1}\$ and \$\vec{v}{2} = (-a\vec{i} + 4\vec{j}{\sqrt{j}})ms^{-1}\$. If they collide after 2 seconds, \$\vec{vec{k}} = (4\vec{k}{\vec{k}} + 3\vec{j}{\sqrt{k}})ms^{-1}\$ and \$\vec{k}{\vec{k}} = (-4\vec{k}{\vec{k}} + 4\vec{k})ms^{-1}\$. If they		* 8 # 8 *	RESEARCHERS (_evel = IV) + # # # *	
 The component of vector \$\vec{A} = a_x^2 + a_y^2 + a_z^2\$k\$ along the direction of \$\vec{i} - \vec{j}\$ is (2008E) 1) \$a_x - a_y + a_z\$ 2) \$a_x - a_y\$ 3) \$\vec{a_x - a_y}{\sqrt{2}}\$ 4) \$(a_x + a_y + a_z)\$ Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are \$\vec{v} = 2\vec{i} + c\vec{j}\$ and \$\vec{a} = 3\vec{i} + 4\vec{j}\$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 At given instant of time two particles are having the position vectors \$4\vec{i} - 4\vec{j} + 7\vec{k}\$ and \$2\vec{i} + 2\vec{j} + 5\vec{k}\$ m respectively. If the velocity of the first particle is \$0.4\vec{i}\$ ms^{-1}\$, the velocity of second particle in ms^{-1}\$ if they collide after 10 sec is 1) \$6(\vec{i} - \vec{j} + \frac{1}{\sqrt{5}}\vec{k})\$ 2) \$0.6(\vec{i} - \vec{j} + \frac{k}{3})\$ 3) \$0.6(\vec{i} + \vec{j} + \frac{k}{3})\$ 4) \$0.6(\vec{i} + \vec{j} - \frac{k}{3})\$ m are moving with velocities \$\vec{k}_1 = (4\vec{i} + 3\vec{j})ms^{-1}\$ and \$\vec{k}_2 = (-a\vec{i} + 4\vec{j})ms^{-1}\$. If they collide after 2 seconds, 	I.	Choose the corre	ct option:	1-6-	
1) $a_x - a_y + a_z$ 2) $a_x - a_y$ 3) $\frac{a_x - a_y}{\sqrt{2}}$ 4) $\left(a_x + a_y + a_z\right)$ 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are $\vec{v} = 2\hat{i} + c\hat{j}$ and $\vec{a} = 3\hat{i} + 4\hat{j}$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\hat{i} - 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $0.4\hat{i} \text{ ms}^{-1}$, the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k})$ 2) $0.6(\hat{i} - \hat{j} + \frac{\hat{k}}{3})$ 3) $0.6(\hat{i} + \hat{j} + \frac{\hat{k}}{3})$ 4) $0.6(\hat{i} + \hat{j} - \frac{\hat{k}}{3})$ 4. Two particles having position vectors $\vec{r_1} = (3\hat{i} + 5\hat{j})m$ and $\vec{r_2} = (-5\hat{i} + 3\hat{j})m$ are moving with velocities $\vec{V_1} = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{V_2} = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds,	1.	The component of	vector $\overline{A} = a_x \hat{i} + a_y \hat{j} + c_y \hat{j}$	$a_z \hat{k}$ along the direction	n of $\hat{i} - \hat{j}$ is (2008E)
 1) a_x - a_y + a_z = 1 2) a_x - a_y 3) -√√2 4) (a_x + a_y + a_z) 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are v = 2i + cj and a = 3i + 4j respectively. Then the value of 'c' is 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors 4i - 4j + 7k and 2i + 2j + 5k m respectively. If the velocity of the first particle is 0.4i ms⁻¹, the velocity of second particle in ms⁻¹ if they collide after 10 sec is 6(i - j + 1/√5k) 0.6(i - j + k/3) 4. Two particles having position vectors r₁ = (3i + 5j)m and r₂ = (-5i + 3j)m are moving with velocities r₁ = (4i + 3j)ms⁻¹ and r₂ = (-ai + 4j)ms⁻¹. If they collide after 2 seconds, and the second second second second seconds. 				$a_x - a_y$	
 2. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of a magnetic field at a given instant of time are v = 2i + cj and a = 3i + 4j respectively. Then the value of 'c' is 3. At given instant of time two particles are having the position vectors 4i - 4j + 7k and 2i + 2j + 5k m respectively. If the velocity of the first particle is 0.4i ms⁻¹, the velocity of second particle in ms⁻¹ if they collide after 10 sec is [2004E] 1) 6(i - j + 1√5 k) = 2) 0.6(i - j + k/3) = 3) 0.6(i + j + k/3) = 4) 0.6(i + j - k/3) 4. Two particles having position vectors r₁ = (3i + 5j)m and r₂ = (-5i + 3j)m are moving with velocities v₁ = (4i + 3j)ms⁻¹ and v₂ = (-ai + 4j)ms⁻¹. If they collide after 2 seconds, with velocities v₁ = (4i + 3j)ms⁻¹ and v₂ = (-ai + 4j)ms⁻¹. 		1) $a_x - a_y + a_z$	2) $a_x - a_y$ 3) -	$\sqrt{2}$ 4) (2	$a_x + a_y + a_z$)
a magnetic field at a given instant of time are $\vec{v} = 2i + cj$ and $\vec{a} = 3i + 4j$ respectively. Then the value of 'c' is 1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\vec{i} - 4\vec{j} + 7\vec{k}$ and $2\vec{i} + 2\vec{j} + 5\vec{k}$ m respectively. If the velocity of the first particle is $0.4\vec{i}$ ms ⁻¹ , the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\vec{i} - \vec{j} + \frac{1}{\sqrt{5}}\vec{k})$ 2) $0.6(\vec{i} - \vec{j} + \frac{\vec{k}}{3})$ 3) $0.6(\vec{i} + \vec{j} + \frac{\vec{k}}{3})$ 4) $0.6(\vec{i} + \vec{j} - \frac{\vec{k}}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (3\vec{i} + 5\vec{j})m$ and $\vec{r}_2 = (-5\vec{i} + 3\vec{j})m$ are moving with velocities $\vec{V}_1 = (4\vec{i} + 3\vec{j})ms^{-1}$ and $\vec{V}_2 = (-a\vec{i} + 4\vec{j})ms^{-1}$. If they collide after 2 seconds	2.	Velocity and accele	ration vectors of charg	ed particle moving perp	pendicular to the direction of
1) 3 2) 1.5 3) -1.5 4) -3 3. At given instant of time two particles are having the position vectors $4\vec{i} - 4\vec{j} + 7\vec{k}$ and $2\vec{i} + 2\vec{j} + 5\vec{k}$ m respectively. If the velocity of the first particle is $0.4\vec{i}$ ms ⁻¹ , the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\vec{i} - \vec{j} + \frac{1}{\sqrt{5}}\vec{k})$ 2) $0.6(\vec{i} - \vec{j} + \frac{\vec{k}}{3})$ 3) $0.6(\vec{i} + \vec{j} + \frac{\vec{k}}{3})$ 4) $0.6(\vec{i} + \vec{j} - \frac{\vec{k}}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (\vec{3} \cdot \vec{i} + 5 \cdot \vec{j})m$ and $\vec{r}_2 = (-5 \cdot \vec{i} + 3 \cdot \vec{j})m$ are moving with velocities $\vec{V}_1 = (4 \cdot \vec{i} + 3 \cdot \vec{j})ms^{-1}$ and $\vec{V}_2 = (-a \cdot \vec{i} + 4 \cdot \vec{j})ms^{-1}$. If they collide after 2 seconds,		a magnetic field at	a given instant of time	are $\vec{v} = 2i + cj$ and $\vec{a} =$	= 3i + 4j respectively. Then
3. At given instant of time two particles are having the position vectors $4\vec{i}-4\vec{j}+7\vec{k}$ and $2\vec{i}+2\vec{j}+5\vec{k}$ m respectively. If the velocity of the first particle is $0.4\vec{i}$ ms ⁻¹ , the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\vec{i}-\vec{j}+\frac{1}{\sqrt{5}}\vec{k})$ 2) $0.6(\vec{i}-\vec{j}+\frac{\vec{k}}{3})$ 3) $0.6(\vec{i}+\vec{j}+\frac{\vec{k}}{3})$ 4) $0.6(\vec{i}+\vec{j}-\frac{\vec{k}}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (3\vec{i}+5\vec{j})m$ and $\vec{r}_2 = (-5\vec{i}+3\vec{j})m$ are moving with velocities $\vec{V}_1 = (4\vec{i}+3\vec{j})ms^{-1}$ and $\vec{V}_2 = (-a\vec{i}+4\vec{j})ms^{-1}$. If they collide after 2 seconds,		1) 3	2) 1.5	3) -1.5	4) -3
3. At given instant of time two particles are having the position vectors $4\hat{i} - 4\hat{j} + 7\hat{k}$ and $2\hat{i} + 2\hat{j} + 5\hat{k}$ m respectively. If the velocity of the first particle is $0.4\hat{i}$ ms ⁻¹ , the velocity of second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\hat{i} - \hat{j} + \frac{1}{\sqrt{5}}\hat{k})$ 2) $0.6(\hat{i} - \hat{j} + \frac{\hat{k}}{3})$ 3) $0.6(\hat{i} + \hat{j} + \frac{\hat{k}}{3})$ 4) $0.6(\hat{i} + \hat{j} - \frac{\hat{k}}{3})$ 4. Two particles having position vectors $\vec{r_1} = (3\hat{i} + 5\hat{j})m$ and $\vec{r_2} = (-5\hat{i} + 3\hat{j})m$ are moving with velocities $\vec{V_1} = (4\hat{i} + 3\hat{j})ms^{-1}$ and $\vec{V_2} = (-a\hat{i} + 4\hat{j})ms^{-1}$. If they collide after 2 seconds,	2	At sives instant of	, i time two perticles of	, 	$\rightarrow \rightarrow \rightarrow \rightarrow$
$2\vec{i}+2\vec{j}+5\vec{k} \text{ m respectively. If the velocity of the first particle is } 0.4\vec{i} \text{ ms}^{-1}, \text{ the velocity of second particle in ms}^{-1} \text{ if they collide after 10 sec is} \qquad [2004E]$ $1) \vec{6}(\vec{i}-\vec{j}+\frac{1}{\sqrt{5}}\vec{k}) = 2) \vec{0.6}(\vec{i}-\vec{j}+\frac{\vec{k}}{3}) = 3) \vec{0.6}(\vec{i}+\vec{j}+\frac{\vec{k}}{3}) = 4) \vec{0.6}(\vec{i}+\vec{j}-\frac{\vec{k}}{3})$ $4. \text{ Two particles having position vectors } \vec{r_1} = (3\vec{i}+5\vec{j})m \text{ and } \vec{r_2} = (-5\vec{i}+3\vec{j})m \text{ are moving with velocities } \vec{k_1} = (4\vec{i}+3\vec{j})ms^{-1} \text{ and } \vec{k_2} = (-a\vec{i}+4\vec{j})ms^{-1}. \text{ If they collide after 2 seconds,}$	3.	At given instant of	time two particles an	e naving the position	vectors $4i - 4j + 7k$ and
second particle in ms ⁻¹ if they collide after 10 sec is [2004E] 1) $6(\vec{i}-\vec{j}+\frac{1}{\sqrt{5}}\vec{k})$ 2) $0.6(\vec{i}-\vec{j}+\frac{\vec{k}}{3})$ 3) $0.6(\vec{i}+\vec{j}+\frac{\vec{k}}{3})$ 4) $0.6(\vec{i}+\vec{j}-\frac{\vec{k}}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (3\vec{i}+5\vec{j})m$ and $\vec{r}_2 = (-5\vec{i}+3\vec{j})m$ are moving with velocities $\vec{V}_1 = (4\vec{i}+3\vec{j})ms^{-1}$ and $\vec{V}_2 = (-a\vec{i}+4\vec{j})ms^{-1}$. If they collide after 2 seconds,		$2\vec{i}+2\vec{j}+5\vec{k}$ m res	spectively. If the veloc	ity of the first particle i	s $\stackrel{ ightarrow}{0.4\widetilde{i}\mathrm{ms}^{-1}}$, the velocity of
1) $6(\vec{i}-\vec{j}+\frac{1}{\sqrt{5}}\vec{k})$ 2) $0.6(\vec{i}-\vec{j}+\frac{\vec{k}}{3})$ 3) $0.6(\vec{i}+\vec{j}+\frac{\vec{k}}{3})$ 4) $0.6(\vec{i}+\vec{j}-\frac{\vec{k}}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (3\vec{i}+5\vec{j})m$ and $\vec{r}_2 = (-5\vec{i}+3\vec{j})m$ are moving with velocities $\vec{V}_1 = (4\vec{i}+3\vec{j})ms^{-1}$ and $\vec{V}_2 = (-a\vec{i}+4\vec{j})ms^{-1}$. If they collide after 2 seconds,		second particle in r	ns⁻¹ if they collide afte	r 10 sec is	[2004E]
1) $6(1-j+\frac{1}{\sqrt{5}}K)$ 2) $0.6(1-j+\frac{1}{3})$ 3) $0.6(1+j+\frac{1}{3})$ 4) $0.6(1+j-\frac{1}{3})$ 4. Two particles having position vectors $\vec{r}_1 = (\vec{3} \cdot \vec{i} + 5 \cdot \vec{j})m$ and $\vec{r}_2 = (-5 \cdot \vec{i} + 3 \cdot \vec{j})m$ are moving with velocities $\vec{V}_1 = (\vec{4} \cdot \vec{i} + 3 \cdot \vec{j})ms^{-1}$ and $\vec{V}_2 = (-a \cdot \vec{i} + 4 \cdot \vec{j})ms^{-1}$. If they collide after 2 seconds,		$\rightarrow \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow$	\rightarrow \rightarrow $\stackrel{\rightarrow}{k}$	\rightarrow \rightarrow \overrightarrow{k}	$\rightarrow $ $\rightarrow $ \overrightarrow{k}
4. Two particles having position vectors $\vec{r_1} = (3\vec{i}+5\vec{j})m$ and $\vec{r_2} = (-5\vec{i}+3\vec{j})m$ are moving with velocities $\vec{V_1} = (4\vec{i}+3\vec{j})ms^{-1}$ and $\vec{V_2} = (-a\vec{i}+4\vec{j})ms^{-1}$. If they collide after 2 seconds,		1) $0(1-j+\frac{1}{\sqrt{5}})$	2) $0.6(1-1+\frac{1}{3})$	3) $0.6(1+1+\frac{1}{3})$	4) $0.6(1+1-3)$
with velocities $\vec{V_1} = (4\vec{i}+3\vec{j})ms^{-1}$ and $\vec{V_2} = (-a\vec{i}+4\vec{j})ms^{-1}$. If they collide after 2 seconds,	4.	Two particles havir	a position vectors \vec{r}	$-(2\overrightarrow{i}+5\overrightarrow{i})$ m and \overrightarrow{r}	-(5i+3i)m are moving
with velocities $V_1 = (4 \ i + 3 \ j)ms^{-1}$ and $V_2 = (-a \ i + 4 \ j)ms^{-1}$. If they collide after 2 seconds,			$\rightarrow \rightarrow -$	$-(31+3))$ in and r_2	-(-31+3J)III are moving
IV CLASS 110		with velocities $V_1 =$	$(4 i + 3 j)ms^{-1}$ and V	$f_2 = (-a \ i + 4 \ j)ms^{-1}$. If	they collide after 2 seconds,
1A - ULA33 118	IX - C	CLASS			118

	the value of 'a' is 1) -2	2) -4	3) - 6	4) - 8	l				
5.	The angle betweer	two vectors $6\overline{i} + 6\overline{i} -$	$3\bar{k}$ and $7\bar{i}+4\bar{i}-4\bar{i}$	k is	(1999E)				
	$1) \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$	$2) \operatorname{Cos}^{-1}\left(\frac{5}{\sqrt{3}}\right)$	$3) \sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$	4) $\cos^{-1}\left(\frac{26}{27}\right)$	$\left(\frac{5}{7}\right)$				
6.	A force $\bar{F} = 3\bar{i} + c\bar{j} + 2\bar{k}$ N acting on a particle causes a displacement $\bar{S} = -4\bar{i} + 2\bar{k}$ the work done is 6 joule, the value of c is								
7.	1) 0 A particle is moving moves with same s	2) 1 g east wards with a velo speed in a time 10 s. T	3) 12 ocity of 15ms ⁻¹ . Sude he average accelera	4)6 nly, it movs towarc tion during this tin	ds north and ne in ms ⁻² is (1997E)				
	1) $\frac{3}{\sqrt{2}}$ NE	2) <u>3.√2</u> NE	$3)\frac{3}{\sqrt{2}}$ NW	4)3.√2 NW					
8.	lf 0.5 \bar{i} + 0.8 \bar{j} + C \bar{k}	is a unit vector, then 0	Cis	-1	(1994E)				
1	1) √89	2) 0.2	3) 0.3	4) √0.11	I				
9.	$\left \bar{A} + \bar{B} \right = \left \bar{A} - \bar{B} \right $ the	en the angle betwen $\bar{\mu}$, Ē ^{is}		(1993E)				
	1) 120° 2)0°	3)9(4)	180º					
10.	If the magnitudes o	of \bar{A} and \bar{B} are a and b	o respectively, the ma	gnitude of the resu	ultant vector (1993F)				
	1) equal to $(a+b)$	1) equal to $(a+b)$ 2) less than $(a+b)$							
	3) greater than (<i>a</i>	+ <i>b</i>) 4)nc	ot greater than $(a+b)$)	l				
11.	If A and B are two value of c is	perpendicular vectors (given by $\bar{A} = 5\bar{i} + 7\bar{j} + 3$	$\bar{k}_{,\bar{k}}$, and $\bar{B} = 2\bar{i} + 2\bar{j} +$	$c \bar{k}$, then the (1991E)				
	1) - 2	2)8	3) -7	4) -8					
12.	If A and B are two perpendicular vectors given by $\bar{A} = 5\bar{i}+10\bar{j}-3\bar{k}$, and $\bar{B} = 2\bar{i}+4\bar{j}-c$								
	1) 1/6	2) 3/2	3) 5/6	4) -50/3	(10012)				
13.	If $\overline{A} = 3\overline{i} + 4\overline{j}$ and $\overline{B} = 7\overline{i} + 24\overline{j}$, then the vector having the same magnitude as that of								
	and parallel to ${}_{ar{A}}$ is	and parallel to \bar{A} is							
	1) $15\bar{i}+20\bar{j}$	2) $15\bar{i}-20\bar{j}$	3) $20\bar{i}+15\bar{j}$	4) $20\bar{i}-15\bar{j}$; ;				
14.	The vector $\bar{A} = \bar{i} +$ angle of with	\overline{j} where $\overline{i},\overline{j}$ are unit v X-axis	vectors along X and Y	Y axes respective	ly makes an (1988E)				
	1) 0°	2) 45°	3)60°	4)90°					
15.	Three forces $A = \{i : A = i\}$	$(+ j + k), B = \{2i - j - 3\}$	k} and C acting on a	a body to keep it in	ا equilibrium ا (2008M) ا				
IX -	CLASS				·119				

PHY	SICS			١	/ECTORS						
	1) $-\left\{3\hat{i}+4\hat{k}\right\}$	2) $-\left\{4\hat{i}+3\hat{k}\right\}$	3) $3\hat{i} + 4\hat{j}$	4) $2\hat{i} - 3\hat{k}$							
 16.	Given two vectors $\overline{A} = \hat{i} - 2\hat{j} - 3\hat{k}$ and $\overline{B} = 4\hat{i} - 2\hat{j} + 6\hat{k}$. The angle made by $(\overline{A} + \overline{B})$ with X-axis										
	is (2007M)										
	1) 30°	2) 45°	3) 60°	4) 90 ^{0 7}							
17. 	Of the vectors given below, the parallel vectors are,										
į	$\vec{A} = 6\hat{i} + 8\hat{j} \qquad \vec{B} =$	$210\hat{i} + 280\hat{k}$ \vec{C}	$\hat{i} = 5.1\hat{i} + 6.8\hat{j}$	$\vec{D} = 3.6\hat{i} + 8\hat{J} + 48\hat{k}$							
 	1) \vec{A} and \vec{B}	2) \vec{A} and \vec{C}	3) \vec{A} and \vec{D}	4) \vec{C} and \vec{D}							
18. 	Angle (in rad) mad	e by the vector $\sqrt{3}\hat{i}$ +	\hat{j} with the X-axis		(2005M)						
	1) $\frac{\pi}{2}$	2) $\frac{\pi}{2}$	$3)\frac{\pi}{2}$	$(\Lambda) \frac{\pi}{2}$							
 	6	2,4	³	-, 2							
19.	A vector $\stackrel{\rightarrow}{Q}$ has a	magnitude of 8 is ado	ded to the vector $\stackrel{\rightarrow}{P}$	which lies along the X	-axis. The						
	resultant of these tw	o vectors is a third ve	ctor $\stackrel{ ightarrow}{R}$ which lies alo	ng the Y-axis and has a	magnitude						
 	twice that of $\stackrel{ ightarrow}{P}$. Th	e magnitude of $\stackrel{ ightarrow}{\mathrm{P}}$ is	dai		[2004M]						
ļ	1) $6/\sqrt{5}$	2) 8/ $\sqrt{5}$	3) 12/	4) 16 4) 16	$\sqrt{5}$						
20.	A stationary body of	A stationary body of mass 3 kg explodes into three equal pieces. Two of the pieces fly of at right									
	angle to each other, one with a velocity $2\vec{i}$ ms ⁻¹ and the other with a velocity $3\vec{j}$ m										
ļ	explosion takes place in 10 ⁻⁵ s, the average force acting on the third piece in newtons is [2003]										
l	1) $(2i+3j) \times 10^{-5}$	2) $-(2i+3j)\times 10^{5}$	3) $(3i-2j) \times 10^{5}$	4) $(2i-3j) \times 10^{-5}$							
21.	The unit vector par	allel to the resultant	of vectors $\overline{A} = 4\overline{i} + 3\overline{j}$	$\bar{i}_{i+6}\bar{k}$ and $\bar{B} = -\bar{i}+3\bar{j}$	$-8k^{-}$ is						
					(2000M)						
ļ	1) $\frac{1}{-}(3\bar{i}+6\bar{j}-2\bar{k})$	2) $-\frac{1}{(3\bar{i}+6\bar{j}-2\bar{k})}$	(i) 3) $\frac{1}{-3}(3\bar{i}+6\bar{j}-2)$	$(2\bar{k})$ 4) $\frac{1}{(3\bar{i}+6\bar{j}-2)}$	\bar{k})						
	7	-, 7 ,	49	y y 47 ° 3	,						
22.	A body of mass 5kg	g starts from origin w	ith an initial velocity	$30\bar{i} + 40\bar{j}ms^{-1}$. If	a constant						
ļ	force $\bar{F} = -6\bar{i} - 5\bar{i}$	\overline{i} N acts on the body,	the time in which the	y-component of veloc	ity become						
	zero is	, , , , , , , , , , , , , , , , , , , ,			(2000M)						
	1) 5s	2) 20s	3)40s	4)80s							
23.	$\vec{A} + \vec{B} = \vec{C}, \left \vec{A} \right = \left \vec{B} \right $	$=\left ec{C} ight $, then the angle	between \bar{A} and \bar{B}	is	(1999M)						
	1) 45 ⁰	2) 60°	3) 90 [°]	4)120°							
 24 .	The vector $\bar{P} = a \bar{i}$	$-a\bar{i}+3\bar{k}$ and $\bar{Q}=a\bar{i}$	$\bar{i}_{-2}\bar{i}_{-\bar{k}}$ are perpen	dicular to each other. T	he positive						
I *** -					140						

PHYS	SICS					VECTORS				
	value of 'a' is					(1998)				
	1) 3	2)2		3)1	4) 0					
25.	The vectors hat the vectors wi	aving same magnit ill be	ude have a r	resultant eq	ual to either, then the	angle between (1996M)				
••	T) 30°	2)60°	a	3)90°	4)120°					
26.	force is (1996M)									
	1) $f\sqrt{2(1-\sin^2 t)}$	(1ϕ) 2) $f\sqrt{2(1-1)}$	⊦sinø)	3) $2f.\sin\left(\frac{q}{2}\right)$	$\left(\frac{\phi}{2}\right) 4 2f.\cos\left(\frac{\phi}{2}\right)$					
II. 1.	Additional we	orksheet for prac of the three	<u>tice:</u>							
	displacement	vectors $\overline{0P}, \overline{PQ}$ and	d \overline{QR} is							
	1) 15 cm	2) 17 cm		Y 5 cm 0 1 370	$\frac{6 \text{ cm}}{Q}$ $\frac{1}{2}$					
	3) $\sqrt{149}$ cm	4) $\sqrt{107}$ cr	n							
2.	The square of two forces by	the resultant of two 12 when they are r	o forces 4N a mutually perp	nd 3N exce pendicular.	eds the square of the The angle between the	resultant of the vectors is				
	1) 30°	2) 60°	3) 90°	96	4) 120°					
3.	The greatest a is increased b	and least resultant by 3N and applied a	of two forces at right angle	acting at a s on a parti	point are 29N and 5N cle, the new resultant	. If each force force is				
	1) 35N	2) 25N	3) √433	N	4) zero					
4.	The resultant are inclined at	of two equal forces t an angle 120º, the	is 141.4N w en the resulta	hen they are ant force wil	e mutually perpendicu I be	lar. When they				
	1) 100 N	2) 141.4 N	3) 196	N	4) Zero					
5.	The resultant force is	of two forces at rigl	ht angle is 17	7N. If the ma	aximum resultant is 23	3N, the greater				
	1) 15N	2) 8N	3) 7N		4) 23N					
6.	Resultant of tw	wo vectors of magr	nitudes P and	d Q is of ma	gnitude 'Q'. If the mag	initude of \vec{Q} is				
	doubled now, then the angle made by new resultant with $\vec{\mathbf{p}}$ is									
	1) 30º	2) 60°		3) 90 ⁰	$\frac{1}{60^{\circ}}$ $\frac{1}{4}$ $\frac{120^{\circ}}{120^{\circ}}$					
7.	When $\overline{f_1}$ and	$\overline{f_2}$ each of magnitu	ıde f, inclined	d to each oth	her resultant is $\sqrt{3}{ m f}$. T	he resultant of				
	$\overline{f_1}\&-\overline{f_2}$ is				600	500				
	1) f	2) $\sqrt{2}$ f		3) √3f	4)°2f A					
8.	Which of the f	following are the re	ectangular co	omponents	of $3\vec{i} + 4\vec{j}$					
	1) –3, 4	2) √5, 2√	/5	3) 1, 2√ <u>6</u>	4) all of the above	•				
IV						101				

PHYS	ICS			VECTORS					
<u>9</u> . 	Four forces of magn order. The magnitud	itude p, 2p, 3p, 4p act e of resultant is	along the four sides o	f a square ABCD in cyclic					
 	1) √2P	2) $\sqrt{8}$ P	3)	4) $\sqrt{3P}$					
10.	Resultant of two forces of magnitudes a and b when act at angle θ is $5(\sqrt{a^2 + b^2})$. When the								
	angle is $90 - \theta$, then	resultant becomes 3(v	$\sqrt{a^2+b^2}$). Then, tan θ						
 	1) 1/2	2) 1/3	3) _{1/√2}	4) $1/\sqrt{3}$					
11. 	The rectangular components of two vectors are (4.8 , 6.4) and (-17.32 , 10), then the angle between the two vectors is								
	1) 90 ⁰	2) 97º	3) 83º	4) 45º					
¦ 12. 	A person moving on a motor cycle in a ground takes a turn through 60° on his left after every 50 m. Then find the magnitude of displacement suffered by him after 9th turn								
	3) $50\sqrt{3}$ m	4) 20 m		1 !					
		., <u>_</u> ,							
¹³ .	ABCDEF is a regular	hexagon, then find AB	+AC+AD+AE+AF	. (O is the centre of regular					
 	hexagon)		null'						
	1) _{60A}	2) _{60B}	3) 6 0 C	4) 6 00					
14. 	Two vectors of equal magnitude are inclined at some angle such that the difference in magnitude of resultant and magnitude of either of the vectors is 0.732 times either of the magnitude of vectors. If the angle between them is increased by half of its initial fractional difference of the vectors								
	1) 2 P	2) √2P	3) 3 P	TSP					
15. 	Two balls are moving on a table. One has velocity components $V_x = \sqrt{3} \text{ ms}^{-1}$ and $V_x = 3\text{ms}^{-1}$ ¹ and the other has compnents $U_x = 2\text{ms}^{-1}$ and $U_y = 2\text{ms}^{-1}$, then find the angle between the directions of motion 1) 30° 2) 45° 3) 15°								
16.	If $\overline{A} + \overline{B} + \overline{C} = \overline{0}$ out of	of $\overline{\mathrm{A}},\overline{\mathrm{B}},\overline{\mathrm{C}}$, if two of then	m are having equal ma	v 100N g					
	$\sqrt{2}$ times the magnitude	ude of either of the two	o angles between \overline{A} .						
ļ	1) 30º 60º 90º	2) 120 120 120	3) 45 45 900	4) 90° 135° 135°					
 17.	If a,b and g are the a	ngles made by a vector	r with X,Y and Z-axes t	hen sin ² a+sin ² b+ sin ² g is					
İ	1) 1	2) 2	3) 3	4) 4					
18. 	A certain vector in th then rotated in the xy 1) 20 m	e xy plane has an x co / plane so its x compoi 2) 7.2 m	omponent of 4m and a nent is doubled. Its nev 3) 5.0 m	y component of 10m. It is w y component is about: 4) 4.5 m					

The resultant of the three vectors $\overline{0A}, \overline{0B}$ and $\overline{0C}$ has magnitude (R=Radius of the circle) 19. 1) $\sqrt{2}$ R 2) $(1+\sqrt{2})$ R 3) $(\sqrt{2} - 1)$ R 4) 2R 20. Two light strings of length 4cm and 3cm are tied to a bob of weight 500gm. The free ends of the strings are tied to pegs in the same horizontal line and separated by 5cm. The ratio of tension in the longer string to that in the shorter string is 1) 4:3 2) 3:4 3) 4:5 4) 5:4 If 'O' is in equilibrium then tensions T_1 and T_2 are $\left(Tan 37^0 = \frac{3}{4}\right)$ 21. 2) 60 N, 80 N 1) 30 N, 50 N 3) 80 N, 60 N 4) 20 N, 40 N For any two vectors A and B. If $|\overline{A}.\overline{B}| = |\overline{A} \times \overline{B}|$, the magnitude of $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$ is 22. 2) $\left|\overline{A} + \overline{B}\right|$ 3) $\sqrt{A^2 + B^2 + \frac{AB}{\sqrt{2}}}$ 4) $\sqrt{A^2 + B^2 + \sqrt{2}AB}$ 1) $\sqrt{A^2 + B^2}$ If $\overline{A} = \overline{B} \ x \ \overline{C}$ the component of \overline{A} along \overline{B} is x, if θ is angle between $\overline{B} \ \& \ \overline{C}$. Then x is 23. 3) C $\cos \theta$ 1) A $\cos \theta$ 2) B $\cos \theta$ $(i + j + k) \times (i + j - k)$ is equal to 24. $\begin{array}{c} (1+j+k) \ x \ (i+j-k) \ is equal to \\ 1) \ 2 \ (i+j) \ 2) \ -2 \ (i-j) \ 3) \ -2 \ (i+k) \ 4) \ 2(j+k) \\ \end{array}$ The unit vector perpendicular to vectors $\vec{a} = 3\hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} - \hat{j} - 5\hat{k}$ is 25. 1) $\pm \frac{(\hat{i}-3\hat{j}+\hat{k})}{\sqrt{11}}$ 2) $\pm \frac{3\hat{i}+\hat{j}}{\sqrt{11}}$ 3) $\frac{2\hat{i}-\hat{j}-5\hat{k}}{\sqrt{30}}$ 4) $\frac{i+j}{\sqrt{2}}$ 26. If \overline{a} is a unit vector along the axis of rotation of a purely rotating body and \overline{b} is a unit vector along the direction of linear velocity of a particle of the body away from axis, then the value \overline{a} , \overline{b} is 2) -1 1) 1 3) 0 4) 1/2 If $\vec{A}, \vec{B}, \vec{C}$ are coplanar. then. $\vec{A} \cdot \left(\vec{B} \times \vec{C} \right)$ is 27. 1) _ $\vec{\Delta}$ 3) 1 4) 0 2) _B If $\vec{A} = (2\hat{i} + 3\hat{j})$ and $\vec{B} = (\hat{i} + \hat{j})$ then component of \vec{A} along \vec{B} is 28. 1) $\frac{5}{2}(\hat{i}+\hat{j})$ 2) $\frac{5}{\sqrt{2}}(\hat{i}+\hat{j})$ 3) $\frac{\sqrt{5}}{2}(\hat{i}+\hat{j})$ 4) $\frac{5}{\sqrt{2}}(\hat{i}+\hat{k})$ \vec{A} and \vec{B} are two vectors such that they are inclined at an angle of 60° and have equal 29. magnitude of 10 unit. Then find $(\vec{A} + \vec{B}) \cdot \vec{C}$ where \vec{C} is another vector of same magnitude as \overrightarrow{A} and \overrightarrow{B} making an angle 60° with the plane containing \overrightarrow{A} and \overrightarrow{B} 2) $50\sqrt{2}$ units 3) $50\sqrt{3}$ units 4) $\frac{50}{\sqrt{3}}$ units 1) 50 units

30.	Diago	Diagonals of a parallelogram are given by $\vec{d}_1 = 2i + 3k$ and $\vec{d}_2 = i - j + 2k$, the area of the triangle											
İ	forme	formed by the sides is			s							į	
 	1) √7.	.0		2)√3.:	5		3) √14.0		4) zero				
 				P		KEY							
$\Phi \Phi$	<u>TEACHII</u>	NG TAS	<u> </u>				(2					
į	1) 3, 3	2) 2, 14) i) 2	3) 4, 2 ii) 2	4) 1,	5) 3,	6) 2,	7) 2,	8) 3,	9) 4,	10) A,	11) B,	12)1,	13)
$\Phi \Phi$	<u>LEARNE</u>	R'STAS	<u>SK</u> :										
Р	BEGINNE	RS:	3) 2	4) 2	5) 4	6) 1	7) 2	8) 3	9) 3	10) 2	11) 1		12
I I	4,	13) 3,	0) 2,	ㅋ) ∠,	0) 4,	0) 1,	<i>1)</i> <u>2</u> ,	0)0,	0)0,	10) 2,	11) 1,		ן <i>ב</i> י
	ACHIEVE	RS : 1.1/	/2,	2.2	3.90 ⁰		4.120 ⁰		5.2/ √3	3			Ì
	EXPLORE	E RS :1) (C, 10\ 3	2) A, 11) <i>A</i>	3) 1, 12) 3	4) 2,	5) 3,	6) 3,	7) 2,	8) 3,	9) i) C,	ii) C	
þ	RESEARC	HERS :	10)0,	· · · ·	12)0				40	1			
¶. 	1) 2, 2,	2) 3, 14) 2,	3) 2, 15) 1,	4) 4, 16) 2,	5) 4, 17) 2,	6) 3, 18) 1,	7) 3, 19) 2,	8) 4, 20) 2,	9) 3, 21) 1,	10) 4, 22) 3,	11) 4, 23) 4,	12) 1, 24) 3,	13) I 25) I
 1.	4, 1) 3,	26) 4 2) 2,	3) 2,	4) 1,	5) 1,	6) 3,	7) 1,	8) 1,	9) 2,	10) 4,	11) 2,	12) 1,	 13)
į	4, 1,	14) 2, 26) 3,	15) 3, 27) 4,	16) 4, 28) 1,	17) 2, 29) 3,	18) 1, 30) 2	19) 2,	20) 2,	21) 2,	22) 4,	23) 4,	2Á) 2,	25)
	,	, ,	, ,	, ,			. 1	2					
Ì						02	1-6						İ
			-11	ľN		206	P						
				<i>.</i>	P								
			P										
Ì													
ļ													ļ
ļ													į
į													
ļ													
													10.1