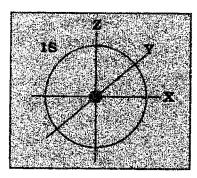


CHEMISTRY

S.No	Concept	Page No's
1.	Atomic Structure	1-8
	Synopsis -1	
2.	Synopsis -2	8-17
3.	Synopsis-3	17-23
4.	Synopsis-4	24-29
5.	Synopsis-5	30-33
6.	Synopsis -6	34-39
7.	Metallurgy	40-49
	Synopsis -1	
8.	Synopsis -2	49-63
9.	Organic Chemistry	64-77
	Synopsis-1	
10.	Synopsis -2	77-91
11.	Synopsis-3	91-104
12.	Synopsis-4	105-116
13.	Synopsis-5	116-129

Synopsis - 1 (Orbit and Orbital Concept)


Orbital:

- i) Orbital is the region where there is maximum probability of electrons
- ii) Orbitals are denoted by the letters s,p,d,f.....
- iii) The shape of the orbitals is determined by the azimuthal quantum number T

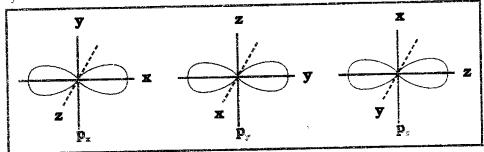
	Orbit		Orbita <i>l</i>
1.	Orbit is a well-defined circular path around the nucleus in which an electron revolves.	1.	It represents the region in space around the nucleus in which the probability of finding the electron is maximum.
2.	It represents the planar motion of an electron.	2.	It represents the three- dimensional motion of an electron around the nucleus.
3.	Orbit gives a definite path of an electron and this concept is not in accordance with the uncertainty principle.	3.	Orbital does not specify definite path and according to this concept, electron may be anywhere in this region. This concept is in accordance with the uncertainty principle.
4.	All orbits are circular.	4.	Orbitals have different shapes. For example, s-orbital is spherical, while p-orbital is dumb bell shaped.
5.	Orbits do not have directional characteristics.	5.	Except s-orbitals, all other orbitals have directional characteristics.
6.	An orbit can accommodate electrons equal to $2n^2$ where n represents the principal quantum number.	6.	An orbital cannot accommodate more than two electrons.

Shape of s - orbital

- i) s- orbital do not vary with angles i.e. they do not have directional dependence. thus all s-orbital are called spherically symmetrical.
- ii) Their size increases with increase in the value of n.
- iii) 1s orbital has no nodal plane (the plane at which zero electron density is noticed). 2s orbital has one nodal plane; 3s orbital has two nodal planes.
- iv) It is thus evident that number of nodal planes increases with increasing value of principal quantum number n.

Shape of p - orbitals:

Each p- orbitals consist of two lobes to form dumb bell shaped structure.


The three p -orbitals along x,y,z axis named as p_x , p_v and p_z orbitals, they are ii) perpendicular to each other respectively.

All the three p-orbitals of a sub shell have the same size and shape but differ from each other in orientation.

The subscripts x,y and z indicate the axis along which orbitals are oriented and possess maximum electron density.

v) The orbitals of a sub shell having same energy are referred as degenerate orbitals.

vi) p_x , p_y and p_z are having same energy, so they are referred as degenerate orbitals.

Shape of d - orbitals

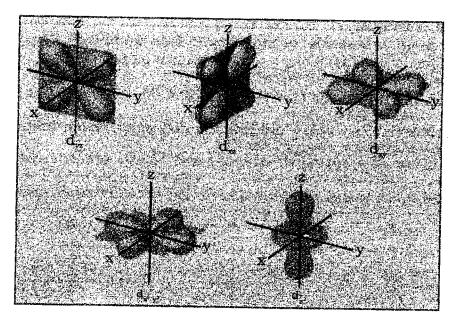
The 'd' sub level consist of five orbitals. They are $d_{xy}, d_{yz}, d_{zx}, d_{x^2-v^2}$ and d_{z^2} orbitals.

Each of the d orbitals possesses same energy but differ in their orientation

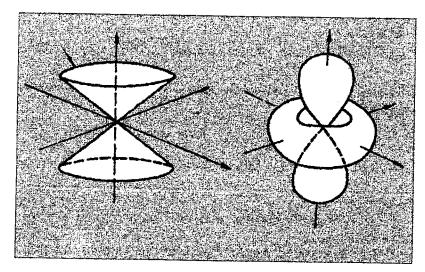
in space (degenerate orbitals).

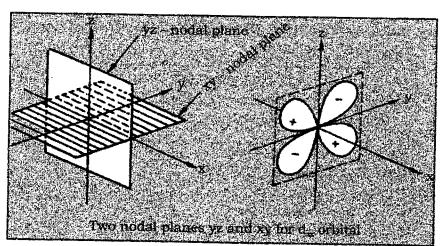
Four of the d-orbitals $\left(d_{xy},d_{yz},d_{xz}\right)$ and $d_{x^2-y^2}$ contain four lobes each, while fifth i.e d_{z^2} consists of only two lobes along z-axis a doughnut in the xy - plane.

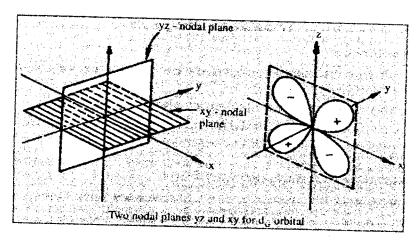
Energies of orbitals:

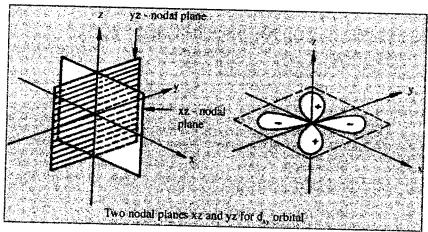

In any given sub-shell all the orbitals have equal energy. Hence they are called degenerate orbitals.

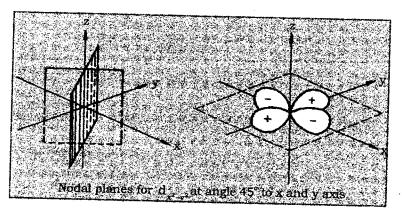
In general the energy of an orbital can be known from its (n + l) value in


absence of any external magnetic field.


As the number of nodal planes increases, the energy of that orbital increases. vii) In any main energy level the order of increasing energy of orbitals is s


- ELECTRONIC CONFIGURATIONS ARE WRITTEN IN nt METHOD. n = principal quantum number (1,2,3,4,.....)
- l = Azimuthal quantum number, here it denotes about name of sub level (s, p, d, f,). x is number of electrons
- If l is s-sub level then $x \le 2$.
- If l is p-sub level then $x \le 6$.
- Iflis d-sublevelthen x≤10.
- Iflisf-sublevelthenx≤14




Nodes and Nodal planes for d - orbitals

Number of nodal planes

Addition of Hodgi b		
Orbitals	Number of nodal planes	Nodal
S	0	
p_{x}	1	Nil
r _x	1	YZ
$egin{array}{l} \mathbf{p_y} \\ \mathbf{p_z} \\ \mathbf{d_{xy}} \end{array}$	1	ZX
$\mathbf{p}_{\mathbf{z}}$	1	
ď	Ô	XY
d _{xx}	2	YZ, ZX
d_{yz}^{xy}	2	ZX, XY
d_{zx}	2	
	2	XY, YZ
$d_{x^2-y^2}$	2	110 011
,	4	YZ, ZX

WORKSHEET - 1

	An orbit i			
Semosti.	1) A regio	n in space defined b angular space	y the properties of t	he wave equation
		er name for electroni	c shell	
		or path around the r		electron revolve.
2.		modate electrons equ		
٠.	1) n ²	2) 21+1	3) n-l-1	4) 2n ²
3.	The size of the orbi	•	,	
0.	1) n value decrease		2) 1 values decrease	es
	3) n value increase		4) n value constant	
4.	,	herically symmetrica	1?	
. ,	1) 5f	2) 4p	3) 3d	4) 3s
5.		ell has double dumb	bell shape?	
•	1) s	2) p	3) d	4) f
6.		directional orbital i	S	
•	1) 2s	2) 2p _x	3) 3d	4) $2p_y$
7.		rbital are free to occu	apy any position witl	h in a
	1) Square	2) Cube	3) Sphere	4) Dum - bell volume
8.	The 2p, 2p, and 2p	orbitals of an atom	have identical shap	es but differ in their
	1) Size	2) Shape	3) Orientation	4) All of these
9.	The d-orbital with t	he orientation along	x and y-axis is call	ed as:
	1) d _{xv}	2) d _{vz}	3) d _{xz}	4) $d_{x^2-y^2}$
10.		not possess radial n	ode?	
10.	1) s	2) p	3) d	4) f
11.		al planes in each p -	′	·
11.	1) Zero	2) One	3) Two	4) Three
		JEE M	AINS	
Sing	le Correct Choice		de dans a vi me	
14.5%	The space	e within an atom, wh	ere there is maximur	n probability of finding
		on at any instant is		
	1) An orb		3) A stationary orbi	it 4) Shell
2.		of electrons that do		
	1) 6 2) 1		3) 2	4) 18
3.		el that can have f o	rbitals is:	
	1) K 2) L		3) M	4) N
4.		directional orbital is	3:	
	1) 3s 2) 2		3) 3d	4) 4f
5.	Energy of atomic o	rbitals in a particula	r shell is in order of	:
	1) s	2) $s > p > d > f$	3) $p < d < f < s$	4) $f > d > s > p$
6.	The number of rad	ial nodes, nodel plan	es for an orbital with	n n = 4; $l = 1$ is
	1) 3, 1	2) 2, 1	3) 2, 0	4) 4, 0
7.	The electron densit	y of $3d_{xy}$ orbital in '	YZ plane is	
	1) 50 %	2) 95 %	3) 33.33 %	4) Zero
	,	•		

[IIT OLYMPIAD TEXT BOOK]

[X CHEMISTRY]

8.	Orbital having	g most of its ori	entation alo	ng the axis is	3	
	1) dx^2-y^2	2) s		3) d _{xv}	4) d_{yz}	
9.	In a main ene	rgy level the orb			nodal planes w	ill have
	1) higher ene			2) lower ener		
	3) either 1 or	2		4) neither 1 r		M-2000)
10.		2) 50%		3) 60%	approximately? (4) 25%	141 2000)
LEV	1) 95% EL-2 11. The	figure given be		•	•	
			×			
					4) $3d_{x^2-y^2}$ orbita	al
12.	Which of the	following orbita		_		
	1) d _{xy}	2) d _{yz}		3) $d_{x^2-y^2}$	4) d_{z^2}	
13.	The $2p_x$, $2p_y$ and $2p_y$ and $2p_y$ are $2p_y$ and $2p_y$ and $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ and $2p_y$ are $2p_y$ ar	and 2p _z orbitals 2) shape	of an atom	have identica 3) orientation	d shapes but dif n 4) spin	fer in their
14.	Which one of				cted along the a	xis? (M-99
	1) P _x	2) $d_{x^2-y^2}$	m2	3) d _{xy}	4) d_{z^2}	
LEX	/EL-3 15. Wh	ich of the follow	ving orbitals	s does not exi	st?	
	1)	$d_{x^2-y^2}$ 2)	$\mathbf{d}_{\mathbf{x^2}-\mathbf{z^2}}$	3) d _{xy}	4) d_{xz}	
16.	The d-orbital	s whose four lo	bes lie alonį	g the axes is		
	1) d ₂	2) d,,		3) d _{yz}	4) $d_{x^2-y^2}$	
17.	, <u>z</u>		bitals has e	electron densi	ty in all three a	xes?
	1) 3d _{xy}	2) 3d _{vz}		3) 3d ₂	4) 3d _{2x}	
18.		an atomic orbit	ta12	-, z	, ZX	
10.		2) 5p		3) 3 <i>p</i>	4) 4 <i>d</i>	
19.	1) 2d The number	of radial nodes	for 3p orbit			
19.	1) 4	2) 3	tor op order	3) 2	4) 1	
	-, .	-,		•		
20.	Number of a	ngular nodes for	r 4d orbital		45.4	
	1) 4	2) 3		3) 2	4) 1	1 *1*
I E	fin 1)	nich of the follow ding an electror Zero along the Zero along the	n in the p _x o X axis	orbital is : 2) Zero along		авшту от
22.	Which of the	following is con	rrect with re	espect to p or	bitals?	
	 Spherical Five fold 	degenerate		directional of directional characters		

ere

their

M-99)

of

C(O()

The zero probability of finding the electron in p_x orbital is:

1) Maximum on two opposite sides of the nucleus along the x-axis.

2) In the nucleus.

3) Same on all sides around the nucleus.

During ionisation of copper atom, the quantum numbers of electron removed maybe

1)
$$n=4$$
 $l=1$ $s=+\frac{1}{2}$

2)
$$n=3$$
 $l=0$ $s=-\frac{1}{2}$

3)
$$n=4 \ l=0$$
 $s=\pm \frac{1}{2}$

4)
$$n=4 \ l=2$$
 $s=-\frac{1}{2}$

LEVEL-5

The spin magnetic momentum of electrons in an ion is 4.84 BM. Its total spin will

2)
$$\pm 2$$

$$3$$
) $\geq \sqrt{\frac{h}{4\pi}}$

JEE ADVANCED

Multi Correct Choice Type

26. Which of the following are true about p-orbital?

1) These are spherical.

2) These are dumbbell in shape.

3) These are double dumbbell in shape.

4) They posses directional character.

Statement Type

Statement $I: p_x, p_y, p_z$ are degenerate orbitals.

Statement $II: \hat{p}_x, \hat{p}_y, \hat{p}_z$ have same energy in the absence of electric field.

1) Both statement I and II are correct.

2) Both statement I and II are incorrect.

3) Statement I is correct and statement II is incorrect.

4) Statement I is incorrect and statement II is correct.

Comprehension Type

In an atom, a large number of orbitals are possible. These orbitals differ in their size, shape and orientation in space around the nucleus. The state of an electron in any atom is described by its location with respect to the nucleus and by its

Number of electrons in p, d subshells respectively are:

1) 2, 6

2) 6, 10

3) 10, 14

A neutral atom of an element has two 'K', eight 'L', nine 'M' and two 'N' electrons. The total number of electrons present in the subshell having l value 1 is: 3) 10 2) 8

1) 6 Matrix Match Type

30. Column-I

Orbital

a) 1s

b) 2s c) 3s

d) 4s

Column-II

Number of nodes

1) 1 node

2) 2 nodes

3) 3 nodes

4) no nodes

5) 4 nodaes

LEVEL-2 & 3 Multi Correct Choice Type

- 31. Which of the following statements is/are incorrect?
 - 1) An orbital describes the path of an electron in an atom.
 - 2) An orbital is a region where the electron is not located.
 - 3) An orbital is a function which gives the probability of finding the electron in a given region
 - 4) All orbitals have directional characteristics.
- The probability of finding the electron in p_x-orbital is
 - (1) maximum on two opposite sides of the nucleus along x-axis
 - (2) zero at the nucleus
 - (3) same on all the sides around the nucleus
 - (4) zero on the z-axis
- 33. 'g' orbital is possible if
 - (1) n = 5, l = 4

- (2) It will have 18 electrons
- (3) It will have 9 types of orbitals
- (4) It will have 22 electrons

LEVEL-4 & 5

- 34. Column I
- Column II
- a) 2p orbital
- (p) Number of spherical nodes =0
- b) 3d orbital
- (q) Number of nodal plane =0
- c) 2s orbital
- (r) Orbital angularmomentum number =0
- d) 4f orbital
- (s) Azimuthal quantum number=0

Synopsis - 2

(Quantum Numbers)

Quantum Numbers

Any of a set of real numbers assigned to a physical system that individually characterize the properties and collectively specify the state of a particle of the

- The term quantum number is used to identify the various energy levels i) available with the atom.
- Quantum numbers are used to describe identify of an electron in atom, sub orbits and sub-sub orbits (orbitals) in which electrons are residing. For this four quantum numbers are proposed:

PRINCIPAL, AZIMUTHAL, MAGNETIC and SPIN QUANTUM NUMBERS.

- A. Principal Quantum Number:
- It was proposed by Bohr.
- ii) Principal quantum number (n) can have values of 1,2,3,4,.....,∞.
- iii) Principal quantum number determines the size of the orbit as well as energy of the electron.
- iv) As n value increases, the radius (size) of the orbit, the distance of the electron from the nucleus and its energy increases.
- Principal quantum number tells us about the main energy level to which ar electron belongs.
- vi) The number of 'sub energy levels' sub stationary states in a given shell is equal to
- vii) The maximum No.of electrons that can be accommodated in a shell is given by 2n2(Bohr).
- viii) The maximum No.of electrons that can be accomodated in M shell are 18 (2