APPLICATIONS OF TRIGONOMETRY

INTRODUCTION :

Trigonometry is one of the most ancient subjects studied by scholars all over the world. The astronomers used trigonometry to calculate distance from the Earth to the planets and stars. Trigonometry is also used in geography to construct maps, determine the position of an island in relation to the longitudes and latitudes, etc.

HEIGHTS AND DISTANCES :

Let A be the top of a tower and C be the eye of a person from where he is observing the top of a tower, then AC is called the line of sight. The angle $\angle BCA$, so formed by the line of sight with the horizontal level is called the angle of elevation of the top of tower from the eye of a person.

Hence, the line of sight is the line drawn from the eye of an observer to the point in the object viewed by the observer, i.e., the **angle of elevation** of the point viewed is the angle formed by the line of sight with the horizontal when the point being viewed is above the horizontal level.

Let C be an object and A be the eye of a person from where he is observing the object C, then AC is called the line of sight. The angle \angle_{CAD} , so formed by the line of sight with the horizontal level is called the angle of depression of the object fro the eye of a person.

Hence, the line of sight is the line drawn from the eye of angle observer to the point in the object viewed by the observer, i.e., the angle so formed by the line of sight with the horizontal level is called the **angle of depression**. The angle of depression of a point on the object being viewed is the angle formed by the line of sight with the horizontal level when the point is below the horizontal level, i.e., the case when we lower our head to look at the point being viewed.

Now, in right ΔABC , we have

BC || AD and AC is a transversal.

 $\therefore \angle ACB = \angle CAD$ [Alternate angles]

 $\Rightarrow \angle \theta = \angle \theta$

Hence, Angle of elevation = Angle of depression.

19

MATHS

	$h=8\sqrt{3}m$
þ. 	Raju Observes a person standing on the ground from a helicopter at an angle of depression 45° . If the helicopter flies at a height of 500 meters from the ground, what is the distance of the person from Raju?
Sol:	Let AO = 500 m distance between ground to helicopter OB = x m = Distance between Raju and person
	$\angle POB = 45^\circ$ = Angle of depression from
	Raju to person
 	$AB \parallel OP$, BO is a transversal 45
 	$\angle POB = \angle ABO = 45^{\circ}$ (Alternate interior angles are equal)
 	$Sin \angle ABO = \frac{Side \ opp. \ to \ \angle ABO}{Hypotenuse}$
 	$\sin 45^\circ = \frac{500}{x} \Longrightarrow \frac{1}{\sqrt{2}} = \frac{500}{x}$
	$x=500\sqrt{2}$ meters
ι β. Ι	A tower satands vertically on the ground. From a point which is 15 m away from
 	the foot of the tower, the angle of elevation of the top of the tower is 45° . What is the height
 Sol:	of the tower?
роі. 	BC = 15 m = Distance between
	foot of the tower to observation point
	$\angle ACB = 45^{\circ}$ = Angle of elevation In $\triangle ABC$
 	$Tan \angle ACB = \frac{Side \ opp. \ to \angle ACB}{}$
	Side adj. to $\angle ACB$
	$Tan45^{\circ} = \frac{AB}{BC} = \frac{AB}{15}$ c 15 m
 	$1 = \frac{AB}{15} \implies AB = 15m$
İ	

IX - CLASS

1

Let AB and CD be two pillars of equal height h m. Let E be a point on the road such that BE = x m. BD (width of the road) = 100 m. Then ED = $(100 - x)^{1/2}$ m. $\angle AEB = 60^{\circ}$ and $\angle CED = 30^{\circ}$ are given in figure. Now, In right $\triangle ABE$, we have

$$\tan 60^\circ = \frac{AB}{BE}$$
$$\Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow x = \frac{h}{\sqrt{3}} \dots$$
 (i)

Again, in right DCDE, we have

$$\Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow x = \frac{h}{\sqrt{3}} \dots (i)$$
Again, in right DCDE, we have
$$\tan 30^{\circ} = \frac{CD}{ED} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{100 - x}$$

$$\Rightarrow 100 - x = \sqrt{3} h \dots (ii)$$
Substituting the value of x from equation (i) in equation (ii), we get
$$100 - x = \sqrt{3} h$$

$$\Rightarrow 100 - \frac{h}{\sqrt{3}} = \sqrt{3} h \Rightarrow \frac{100\sqrt{3} - h}{\sqrt{3}} = \sqrt{3} h$$

$$\Rightarrow 100\sqrt{3} - h = 3h \Rightarrow 100\sqrt{3} = 4h$$

$$\Rightarrow$$
 h = 25 $\sqrt{3}$ m ... (iii)

$$\Rightarrow$$
 h = 25×1.732m

Again substituting the value of h in equation (i) from (iii), we get

$$x = \frac{h}{\sqrt{3}} \implies x = \frac{25\sqrt{3}}{\sqrt{3}}m = 25m$$

Hence, the position of the point E from the first pillar is 25 m and 75 m from the second pillar. The height of the pillars = hm = 43.3 m

6. A man on the top of a vertical tower observes a car having at a uniform speed coming directly towards it. If it takes 12 minutes for the angle of depression to charge from 30° to 45^o, how soon after this, will the car reach the tower? Give your answer to the nearest second.

Solution:

Let AB be the tower of height h m. Let C be the initial position of the car and after 12 minutes the car be at D. The angles of depression at C and D are 30^o and 45^o respectively. Let the speed of the car be v m/s in figure.

 \therefore Distance traveled by the car in 12 minutes = 12 y m

[\cdot distance = speed × time]

Let the car take t minutes to reach the tower AB from D. Then DB = vt m.Now, in right $\frac{1}{BD} \Rightarrow 1 = \frac{h}{vt} \Rightarrow h = vt \qquad ...(i)$ Again, in right \triangle ABC, we have $\tan 30^{\circ} = \frac{AB}{V} \Rightarrow 1$

$$\tan 45^\circ = \frac{AB}{BD} \Longrightarrow l = \frac{h}{vt} \Longrightarrow h = vt$$

$$\tan 30^\circ = \frac{AB}{BC} \Longrightarrow \frac{1}{\sqrt{3}} = \frac{h}{vt + 12v}$$

 $\Rightarrow \sqrt{3} h = vt + 12v$... (ii)

Substituting the value of h from equation (i) in equation (ii), we get

$$\sqrt{3} h = vt + 12v$$

$$\Rightarrow \sqrt{3} \times vt = vt + 12v \qquad \Rightarrow \sqrt{3} t = t + 12$$

$$\Rightarrow \sqrt{3} t - t = 12 \qquad \Rightarrow t(\sqrt{3} - 1) = 12$$

$$\Rightarrow t = \frac{12}{\sqrt{3} - 1} = \frac{12}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{12(\sqrt{3} + 1)}{3 - 1} = 6(\sqrt{3} + 1)$$

$$\Rightarrow t = 691.732 + 1 \qquad \Rightarrow t = 6(2.732)$$

$$\Rightarrow t = 16.39 \text{ minutes}$$

MAT	'HS		l	Applications of Trigonometry
	\therefore t = 16 minutes	s 23 seconds. [$0.39 \times 60 = 23$]	
	Hence, the car w	vill reach the tower fro	m D in 16 minutes an	d 23 seconds
		TEAC	HING TASK	
. MC ₄	Q's with single c	orrect answers		- 4 4
1.	A tree breaks du	le to storm and the bro	oken part bends so tha	at the top of the tree touches
	and the top of the is	e tree on the ground is	6m. Then the height of	of the tree before falling dowr
	A) $6\sqrt{3} m$	B) 6√3 <i>c.m.</i>	C) $3\sqrt{3}$ <i>m</i> .	D) $3\sqrt{6} m$.
2.	You want to ere make an angle	ct a pole of height 10 m $_{30^{\circ}}$ with the pole. Wha	n with the support of th It should be the length	nree ropes. Each rope has to n of the rope
	A) 34.64 m	B) 34.46 m	C) 31.34 m	D) None
3.	An electrician w reach 1.8 m belo ladder which he	ants to repair an elect ow the top of the pole t should use, when he	ric connection on a po to do repair work. Wha climbs it at an angle c	ble of height 9 m.He needs to at should be the length of the bof $_{60^0}$ with the ground?
	A) 5.06 ft	B)4.1568 ft	C) 4.0068 ft	D) 51.96 ft
4.	A boat has to cro bank of the river another side of t	oss a river , it crosses due to the stream of th he river . What is the v	the river by making a ne river and travels a d width of the river	n angle of $_{60^0}$ with the listance of 600 m to reach the
	A) $100\sqrt{3}$ m.	B) 200√3 <i>m</i> .	C) $600\sqrt{3}$ m.	D) $300\sqrt{3} m$.
5.	AT.V tower star directly opposite another point 10 tower, the angle the width of the r	nds vertically on the si to the tower, the angl o m away from this poi of elevation of the top road	de of a road . From a le of elevation of theto nt , on the line joining of the tower is 30° , the	point on the other side op of tower is 60° . From this point to the foot of the en the height of the tower and
	A) $5\sqrt{3} m. 5m$	B) $\sqrt{3} m. 5m$	C) $5\sqrt{3} m$. $5\sqrt{3} m$	n D) $\sqrt{3}$ m. $\sqrt{3}$ m
3.	A 1.5 m tall boy point at certain of the temple incre he walked towar A) 39.208 m	is looking at the top o listance. The angle of ases from 30° to 60° a ds the temple B) 31.908 m	f a temple which is 30 elevation from his eye as he walks towards th C)32.908 m) meter in height from a e to the top of the crown o ne temple. Then the distance D) None
7.	From the top a b	, building , the angle of e	elevation of the top of	a cell tower is and the
	angle of depress the height of the	sion to its foot is 45° . If tower is	distance of the buildin	g from the tower is 7 m. Ther
	A) 19 124 m	B) 10 111 m	() 10 101 m	D 19 114 m
	///	D) 19.114 III	C) 10.124111	D) 10.114 m

μ.	MCQ'S WITH MU	JLTIPL	E CO	RREC		SWEF	RS I
h. 	The angles of ele are respectively 3	vation c 80° and 4	of the top 45°. Wha	o of a ro at is the	ock fron e heigh	n the to t of the	p and foot of a 100m. High tower rock?
 	(A) $\frac{\sqrt{3}-1}{100\sqrt{3}}$ m	(B)	$\frac{100\sqrt{3}}{\sqrt{3}-1}m$		(C) 24	46.5 m	(D) 236.5 m
2. 	A hedgehog wish elevation of a lam and 30° from a po	nes to c p post c pint 10m	ross a ro on the oth o back fro	oad wi her side om the	thout b e of the road. h	eing ru road to now wio	nover. He observer the angle of be 45° from the edge of the road le is the road?
 	(A) 13.90 m	(B)	$\frac{10}{\sqrt{3}}$ m		(C) - 、	$\frac{10}{\sqrt{3}-1}$ m	(D) 13.66 m
ļu.	MATRIX MATCH	TYPE	E				
1. 	From a window, h elevation and dep the street are ? ar	n metres pression nd ?, res	s high al of the to pectivel	pove th op and y, then	ne grou bottom match t	nd, of a of anot them c	a house in a street, the angles of ther house on the opposite side of prrectly
 	Column I			C	olumn	Ш	4i0
	(A) DB	[]	(p)	h(1+	$\tan \alpha \cos \alpha$	ot β)
 	(B) CE	[]	(q)	h sin	3	,
ļ	(C) CE	[]	(r)	h tan	cotβ	
	(D) AD	[(s)	h co	tβ	
2. 	A ladder (length = away from the wa making an angle	<i>I</i>) rests all throu β with the second se	against a igh a dis he horizo	a wall a stance ontal, tl	t an ang d, so th nen mat	gle $lpha$ nat it sl tch the	to the horizontal. Its foot is pulled ides a distance h down the wall, column
	Colum	n I				С	olumn II
	(A) d			[]	(p)	$l(\sin \alpha - \sin \beta)$
 	(B) h			[]	(q)	$l(\cos\alpha - \cos\beta)$
	(C) d/h			[]	(r)	$\frac{\cos\alpha - \cos\beta}{\sin\beta - \sin\alpha}$
	(D) dh/	2ر		[]	(s) s	$in(\alpha + \beta) - cos(\alpha - \beta)$
İ٧.	INTEGER TYPE						
 1. 	This section conta integer, ranging fr A bridge across t bridge across the 15m	ains que rom 0 to he river river is	estions w 9. makes 60m. If v	here th an ang width o	ne answ gle of 30 f the riv	ver to ea D° with er is k	ach of the question is a single digit the river bank. The length of the /meter, then what is the value of k
	-						

I

	LEARNER'S TASK
 	★ ■ ★ ★ BEGINNERS (Level - I) ★ ■ ★ ★
) .	MCQ'S with single correct answer
 1. 	A contractor wants to set up a slide for the children to play in the park. He wants to set it up at the height of 2 m and by making an angle of 30° with the ground. What should be the length of the slide
ļ	A) 1 m B) 2 m C) 3 m D) 4 m
2. 	Length of the shadow of a 15 meter high pole is $5\sqrt{3}$ meters at 7 O' clock in the morning . Then what is the angle of elevation of the sun rays with the ground at the time A) $_{30^0}$ B) $_{45^0}$ C) $_{60^0}$ D) $_{90^0}$
ຽ. 	Suppose you are shooting an arrow from the top of a building at an height of 6 m to a target on the ground at an angle of depressions of 60° , Then the distance between you and the object
4.	A) $2\sqrt{3}m$ B) $3\sqrt{3}m$ C) $4\sqrt{3}m$ D) $5\sqrt{3}m$ An Observer of height 1.8 m is 13.2 m away from a palm tree. The angle of elevation of the tag of the tag from his even is $\sqrt{3}m$.
	the top of the tree from his eyes is 45° Then the height of the paim tree is
5.	Two men on either side of a temple of 30 meter height observe its top at the angles of elevation $_{30^0}$ and $_{60^0}$ respectively. Then the distance between the two men is
6.	A) $10\sqrt{3} m$ B) $40\sqrt{3} m$ C) $60\sqrt{3} m$ D) $80\sqrt{3} m$ A Straight highway leads to the foot of a tower. Ramaiah standding at the top of the tower
 	observes a car at an angle of decression 30° . The car is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60° , then the time taken by the car to reach the foot of the tower from this point A) 6 Seconds B) 3 seconds C) 4 seconds D)2 seconds A statue stands on the top of a 2 m tall pedestal. From a point on the ground, the angle of
ľ	elevation of the top of the statue is 60° and from the same point, the angle of elevation
 	of the top of the pedestal is 45° , then the height of the statue is A) 1 464 M B) 1 646 M C) 14 64 M D)16 46 M
8. 	A wire of length 18 m had been tied with electric pole at an angle of elevation $_{30^0}$ with the ground .Because it was covering a long distance, it was ut and tied at an angle of elevation $_{60^0}$ with the ground . then the length of the wire was cut A) 6. 708 m B) 8.706 m C) 7.608 m D) None
þ.	The angle of elevation of the top of a tower from the foot of the building is 30° and the
	angle of elevation of the top of the building from the foot of the tower is 60° , then the ratio
 	of heights of tower and building is Image: A) 1 : 2 B) 2 : 1 C) 1 : 3 D) 3 : 1 Image: A constraint of the constraint

29

 	◆ I II ◆ <u>ACHIEVERS</u>	(Leve	<u>el - II)</u>	* }-1 *	
	MCQ'S WITH MULTIPLE CORREC		NSWE	RS	Ì
1 1. 	A pole 15m long rests against a vertical up the wall will the pole reach?	wall a	t an ang	le of 60° with the ground. How hi	gh
 	(A) $\frac{15\sqrt{3}}{2}$ m (B) $8\sqrt{3}$ m	(C)	12.99 r	m (D) 14.38 m	
2. 	A man in a boat rowing away from light change the angle of elevation of the top speed of the boat?	house o of lig	e 100 m. ht hous	. He takes 2 minute to e from 60° to 45°. What is the	
 	(A) $\frac{5}{18} (3 - \sqrt{3}) m/s$ (B) $\frac{18}{5} (\sqrt{3} - 1) m/s$	(C) 2.364	m/hr. (D) 1.268 km/h	
β. Ι Ι	From a point on the ground the angle of elevation of the bottom and top of a tra building are 45° and 60° respectively. V	elevat ansmis Vhat is	tion of th ssion to the hei	ne bottom and top of a transmissi wer fixed at the top of a 20m. Hi ight of the tower?	onj ghl
 	(A) $20\sqrt{3}$ m (B) $20(\sqrt{3}-1)$ m	(C)	14.64 r	m (D) 14.94 m	
 	From the top of a cliff 50 m high, the an tower are observed to be 30° and 45° re Column I (A) Horizontal distance of point of observation from top of tower (B) Height of tower (C) Horizontal distance of bottom of cliff from bottom of tower	gles o espect [[f depres ively, m]]]	ssion of the top and the bottom of atch them correctly Column II (p) $\left(50 - \frac{50}{\sqrt{3}}\right)$ m (q) 50 m (r) $50\sqrt{2}$ m	fa <mark> </mark>
 	bottom of tower	[]	(s) $50/\sqrt{2}m$	
2.	Column I			Column II	
 	(A) $C = \frac{45^{\circ}}{50m} B$ Measure of AD	[]	(p) $6(5+2\sqrt{2})m$	
 	(B) C ASS	[]	q) 10 m	
μх -	ULASS			3	0

~	Applications of Trigonomet
9. An aerop and afte aeroplar	plane flying horizontally 1 km above the ground is observed at an elevation of 60 er 10s the elevation is observed to be 30°. Then find uniform speed of th ne(in km/h)
	KEY
$\Phi\Phi$ <u>Teaching</u>	G TASK :
MCQ'S with s	ingle correct answer
1. A	2. A3. B 4. D 5. A 6. C 7. A 8. A 9. B 10. C 11. B
12. B	13. D 14. B 15. C 16. B 17. A 18. A 19. B 20. D 21. B
22. B	23. A 24. D
Multi correct	answers: 1) B, D 2) B, D
Matching :	1) s, r, p, q 2) q, p, r, s
Integer type :	(1) 22) 2 (3) 1 (4) 3 (5) 1
 ከ ተ ARNE የ	STASK ·
MCQ'S with s	ingle correct answer
MCQ'S with s	ingle correct answer 2 A3 C 4 C 5 B 6 B 7 A 8 C 9 C
MCQ'S with s 1. D □ ACHIEVERS	ingle correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C
MCQ'S with s 1. D ACHIEVERS Multi correct	single correct answer 2.A3.C 4.C 5.B 6.B 7.A 8.C 9.C : answers : 1) A.C 2) A.D 3) B.C
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching :	answers: 1) A, C 2) A, D 3) B, C 2) A D 5 C
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching :	s. single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8, C 9. C answers: 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q cn i 4 (i) 246 4 (ii) is 1
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehensio	single correct answer 2.A3.C 4.C 5.B 6.B 7.A 8.C 9.C answers: 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on: 1) 346.4 (ii) 45°
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehensio	single correct answer 2.A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers: 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on:: 1 (i) 346.4 (ii) 45^0
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehensio	single correct answer 2.A3.C 4.C 5.B 6.B 7.A 8.C 9.C answers: 1) A,C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension	single correct answer 2.A3.C 4.C 5.B 6.B 7.A 8.C 9.C answers: 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on: 1 (i) 346.4 (ii) 45°
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehensie	single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers: 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45 ⁰ HINTS & SOLUTIONS
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension Teaching Task	single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers : 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension Teaching Task Single correct	single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers: 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension Feaching Task Single correct 12. Let C an	<pre>single correct answer 2.A3.C 4.C 5.B 6.B 7.A 8.C 9.C answers: 1) A,C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS k t answer id D be the two positions of the ship Let BD = x m be the distance traveled by the statement of the ship Let BD = x m be the distance traveled by the x m be the distance tra</pre>
MCQ'S with s 1. D □ ACHIEVERS Multi correct a Matching : Comprehension Feaching Task Single correct 12. Let C an ship dur	Single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers : 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS k t answer id D be the two positions of the ship Let BD = x m be the distance traveled by the ting the period of observation, i.e BD = x m. Let observer be at A, the top of the ship Let BD = x m. Let observer be at A, the top of the x m. Let observer be at A, the top of the x m. Let observer be at A, the top of the x m. Let observer be at A, the top of the x m. Let observer be at A, the top of the x m. Let observer be at A, the top of the x m. Let observer be at A at A at A at A at A at A at A at
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension Feaching Task Single correct 12. Let C an ship dur light hou resport	single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers : 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS k t answer nd D be the two positions of the ship Let BD = x m be the distance traveled by the ing the period of observation, i.e BD = x m. Let observer be at A, the top of the use AB = 100m. The angles of depression from A of C and D are 30° and 44 vertice
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension Feaching Task Single correct 12. Let C an ship dur light hou respecti	single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers: 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° K t answer and D be the two positions of the ship Let BD = x m be the distance traveled by the tring the period of observation, i.e BD = x m. Let observer be at A, the top of the use AB = 100m. The angles of depression from A of C and D are 30° and 4 vely i.e,
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension Feaching Task Single correct 12. Let C and ship durd light houdow respection $\angle C = 30$	single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers: 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS k t answer and D be the two positions of the ship Let BD = x m be the distance traveled by the ing the period of observation, i.e BD = x m. Let observer be at A, the top of the use AB = 100m. The angles of depression from A of C and D are 30° and 44 vely i.e, 1° and $\angle D = 45^{\circ}$ in figure
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension Single correct 12. Let C an ship dur light hou respecti $\angle C = 30$ Now, in the	single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers : 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS k k t answer nd D be the two positions of the ship Let BD = x m be the distance traveled by the ing the period of observation, i.e BD = x m. Let observer be at A, the top of the use AB = 100m. The angles of depression from A of C and D are 30° and 4 vely i.e, 9° and $\angle D = 45^{\circ}$ in figure right $\triangle ABD$, we have
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension Feaching Task Single correct 12. Let C and ship durd light houd respection $\angle C = 30$ Now, in the	single correct answer 2.A3.C 4.C 5.B 6.B 7.A 8.C 9.C answers : 1) A,C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS k t answer and D be the two positions of the ship Let BD = x m be the distance traveled by the ring the period of observation, i.e BD = x m. Let observer be at A, the top of the use AB = 100m. The angles of depression from A of C and D are 30° and 44 vely i.e, 1° and $\angle D = 45^{\circ}$ in figure right $\triangle ABD$, we have 4B = 100
MCQ'S with s 1. D ACHIEVERS Multi correct a Matching : Comprehension Feaching Task Single correct 12. Let C and ship durd light houd respection $\angle C = 30$ Now, in the tan $45^\circ =$	single correct answer 2. A3. C 4. C 5. B 6. B 7. A 8. C 9. C answers: 1) A, C 2) A, D 3) B, C 1) q, p, q, r 2) r, p, s, q on : 1 (i) 346.4 (ii) 45° HINTS & SOLUTIONS k t answer nd D be the two positions of the ship Let BD = x m be the distance traveled by the ring the period of observation, i.e BD = x m. Let observer be at A, the top of the use AB = 100m. The angles of depression from A of C and D are 30° and 4 vely i.e, $1^{\circ} and \angle D = 45^{\circ}$ in figure right $\triangle ABD$, we have $= \frac{AB}{BD} \Rightarrow 1 = \frac{100}{BD}$

 $\therefore BD(x) = 100m$ Again, in right $\triangle ABC$, we have $\tan 30^{\circ} = \frac{AB}{BC} \Longrightarrow \frac{1}{\sqrt{3}} = \frac{100}{BD + DC} \Longrightarrow \frac{1}{\sqrt{3}} = \frac{100}{x + y}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{100}{x+y} \Rightarrow 100 + y = 100\sqrt{3} \Rightarrow y = 100\sqrt{3} - 100$ \Rightarrow y = 100 $\left(\sqrt{3} - 1\right)$ \Rightarrow y = 100(1.732 - 1) \Rightarrow y = 100 × 732 \Rightarrow y = 7.32m Let AB be the building and its height is 60m, and CD is a tower Let CD = h m and CE be 13. horizontal from C. The angles of depression of the top C and the bottom D of the tower CD are 30° and 60° respectively Foundation (i) 22 \underline{AB} Let DB = CE = xmNow In right $\triangle AEC$, we have $\tan 30^\circ = \frac{AE}{CE}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{60-h}{x}$ $\Rightarrow x = (60 - h)\sqrt{3}m$ Again in right $\triangle ABD$, we have $\tan 60^\circ$ = BD $\Rightarrow \sqrt{3} = \frac{60}{r}$ $\therefore x = \frac{60}{\sqrt{3}}m$(ii) $(60-h)\sqrt{3} = \frac{60}{\sqrt{3}}m$ From (i) and (ii) we get $\Rightarrow (60-h) \times 3 = 60$ $\Rightarrow 60 - h = 20$ ⇒60-20 = h ∴ h = 40m Hence, the height of the tower (CD) = h = 40m14. Let the mass who is stranding on the deck of a ship at point A and CD be the hill. It is also given that the angle of depression of the base D of the hill DC observed from A is 30° and the angle of elevation of the top C of the hill CD observed from A is 60°.

From DOAP, OA = $h \cot_{60^{\circ}}$

Also from DOAP, OA = OP cot 30° $\dot{OA} = h \cot 60^\circ = OP \cot 30^\circ$

$$\Rightarrow$$
 OP = h/3

$$OA = (h/3) \cot 30^{\circ}$$

в

MATHS

MATHS

T

MATHS
AED,
$$\sin 30^{\circ} = \frac{dE}{DA}$$

 $\Rightarrow \frac{1}{2} \frac{4}{x} \Rightarrow x = 8m$
 $then \frac{x}{4m} = \frac{8}{4} = 2m$
 $QPQR = 45^{\circ}$
 $QPQR = 7PR - 20cm$
 $\therefore PS = 13 cm$
 $\therefore SR = PR - PS 20 - 13 - 7cm$
 $\therefore \frac{SR}{7cm} = \frac{7cm}{7cm} - 1$
Solve the following
1. Let PQ = x meters denote the tower so that $PAQP = 30^{\circ}$
 $\frac{h}{4Q} = \tan 60^{\circ} = \sqrt{3}$
 $\therefore PQ - \frac{h}{\sqrt{3}} = h \cot 60^{\circ}$
 $A = \frac{1}{\sqrt{3}} = \frac{h}{\sqrt{3}} = \frac{h}{x} = \sqrt{3} = \frac{h}{x}$
In rt. DACD $\tan 60^{\circ} = \frac{AC}{BC} = \frac{h}{x} \Rightarrow \sqrt{3} = \frac{h}{x}$
 $Height of hill - h + 8\sqrt{3}x + 8 = (\sqrt{3})(8\sqrt{3}) + 8 = \frac{3m}{2m}$
 $X - CLASS$
38

$$\Rightarrow y = 1.5\left(\sqrt{3} - \frac{1}{\sqrt{3}}\right)$$

$$\Rightarrow y = 1.5\left(\frac{3-1}{\sqrt{3}}\right) = \frac{1.5 \times 2}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \qquad \text{(ii)}$$

speed = $\frac{Dis \tan ce}{time} = \frac{y \, km}{15 \sec onds} = \frac{\sqrt{3} \, km}{15 \sec onds}$ [Using (iii)]

$$= \frac{\sqrt{3}}{15} \times 3600 \, \text{km / hour} = 415.68 \, \text{km / hour}$$

Thus, the speed of the aeroplane is 415.68 km/hour.
and in ΔBEC , $\tan 30^{\circ} = \frac{500}{d_2}$

$$\Rightarrow d_2 = 500\sqrt{3}m$$

Required diameter,
 $AB = d_1 + d_2 = \frac{500}{\sqrt{3}} + 500\sqrt{3} = \frac{500}{\sqrt{3}}(1+3) = \frac{2000}{\sqrt{3}}m$
 $200 = h\left(\frac{\sin \alpha}{\sin 2\alpha \sin \alpha}\right)$
From equ (iv) and (v)
 $\frac{100}{200} = \frac{\sin \alpha}{\sin 3\alpha} \Rightarrow \sin 3\alpha = 2 \sin \alpha \Rightarrow 3 \sin \alpha - 4 \sin^3 \alpha = 2 \sin \alpha$
 $\Rightarrow 4 \sin^3 \alpha - \sin \alpha = 0 \Rightarrow \sin \alpha = 0$
or
 $\sin^2 \alpha = \frac{1}{4} = \sin^2\left(\frac{\pi}{6}\right) \Rightarrow \alpha - \frac{\pi}{6}$
hence h = 200 $\sin \frac{\pi}{3} = 200\frac{\sqrt{3}}{2} = 100\sqrt{3}$
Le BD is the surface of the lake and A be the point of observation such that AB = 60m
Let C be the position of the cloud and E be its reflection in the lake.
Then CD = ED.
Let AF be perpendicular from A on CE then

4.

MATHS

$$\Rightarrow AB + \frac{150}{\sqrt{3}} = 150 \Rightarrow AB = \frac{150}{\sqrt{3}}(\sqrt{3}-1)$$
The speed of boad

$$= \frac{AB}{2} = \frac{1}{2} \times \frac{150}{\sqrt{3}}(\sqrt{3}-1) \times 60m/h = \frac{4500}{\sqrt{3}}(\sqrt{3}-1)m/h$$

$$B = \ln \Lambda ADF, \tan 60^{\circ} = \frac{1}{AF}$$

$$AF = \cot 60^{\circ} = \frac{1}{\sqrt{3}}$$

$$\ln \Delta ABC, \tan 30 = \frac{1}{AB} \Rightarrow AB = \cot 30^{\circ}$$

$$\Rightarrow AF + FB = \sqrt{3}$$

$$\Rightarrow d = \sqrt{3} - \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$

$$\therefore speed = \frac{dis \tan ce \ from DioC}{lime taken} = \frac{2}{\sqrt{3}} \times 60 \times 60 = 240\sqrt{3} \ \text{km/h}$$

$$10. \quad \ln \Delta ABD, \tan \beta = \frac{60}{A}, \ d = \cos \beta \quad ..(1)$$

$$\ln \Delta DEC, \tan \alpha = \frac{DC}{EC} \Rightarrow DC = d \tan \alpha$$

$$\Rightarrow 60 - h = d \tan \alpha \quad [:BC = EA = h]$$

$$\Rightarrow 60 - h = 60 \cot \beta \tan \alpha \quad [from(1)]$$

$$\Rightarrow h = 60 \left(1 - \frac{\cos \beta}{\sin \beta} \frac{\sin \alpha}{\cos \alpha}\right)$$

$$\Rightarrow h = \frac{60 \sin(\beta - \alpha)}{\cos \alpha \sin \beta}$$

$$\Rightarrow \frac{60 \sin(\beta - \alpha)}{x} = \frac{60 \sin(\beta - \alpha)}{\cos \alpha \sin \beta}$$

$$(given)$$

$$\Rightarrow x = \cos \alpha \sin \beta$$

$$(X - CLAS)$$

