VECTORS AND SCALARS

VECTORS AND SCALAR

Learning Objectives :

- Definition of scalar and vectors
- Representation of vector
- Types of vectors.
- Modulus of a vector
- Angle between vectors.
- Addition(or) substraction of two vectors.
- Laws of vector addition.
- Resultant of number of vectors.

Real life applications:

 Φ Vector is used for finding displacement of a body in the easiest way.

 Φ One of the most common uses of vectors is in the description of velocity.

 Φ By utilizing vector addition on these different forces, mathematicians create an accurate estimate of the path of motion and distance traveled by the object.

 Φ Vectors are mathematical constructs that include magnitude and direction. They can exist in any number of dimensions. Because of this, they are used to simply yet effectively convey information about objects or situations.

 Φ Vectors are also used to plot trajectories. The movements of any thrown object, such as a football, can be mapped with vectors.

 Φ Using multiple vectors allows for the creation of a model that encompasses external forces like wind.

Important Formulae:-

1. unit vector $\hat{a} = \frac{GivenVector}{\text{mod} of Vector} = \frac{\vec{a}}{|\vec{a}|}$

2. For a vector $\vec{a} = x\vec{i} + y\vec{j} + z\vec{k}$, magnitude or mod of vector $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

3.
$$R_x = R\cos\theta$$
, $R_y = R\sin\theta$, $\theta = \tan^{-1}\left(\frac{R_y}{R_x}\right)$

4. when three forces $(\vec{a}, \vec{b}, \vec{c})$ are in equilibrium then resultant force is zero.

$$\vec{a} + \vec{b} + \vec{c} = 0$$

5. Resultant vector is sum of given vectors.

Eg: \vec{a} , \vec{b} , \vec{c} resultant is $\vec{a} + \vec{b} + \vec{c}$

VII - CLASS

<u>§§</u> CLASSIFICATION OF PHYSICAL QUANTITIES

All measurable quantities are called physical quantities. Most of the physical Quantities are classified into 'Scalars' and 'Vectors'.

Scalar:- Physical quantities having only magnitude are called Scalars.

Ex: Length, time, volume, density, temperature, mass, work, energy, electric charge, electric current, potential ,resistance, capacity, etc....

Vector : - Physical quantities having both magnitude and direction and that obeys laws of vector addition are called vectors

(OR)

The vector, as a mathematical object, is defined as a directed line segment. It should also obey the laws of vector addition.

Eg: Displacement, velocity, acceleration, force, momentum, angular momentum, moment of force, Torque, magnetic moment, magnetic induction field, Intensity of electric field, etc

Note : 1) A physical quantity having magnitude and direction but not obeying laws of vector addition is treated as a scalar.

Ex : Electric current is a scalar quantity

Electric current is always associated with direction, but it is not a vector quantity. It does not obey law of vector addition for its addition.

The resultant of i_1 and i_2 is $(i_1 + i_2)$ by Kirchoff's current law. The resultant does not depend on angle between currents i_1 and i_2 .

Note: Equations in vector form indicate both mathematical and geometrical relationships among the quantities. Physical laws in vector form are very compac and independent of choice of coordinate system.

Distinction between Scalars and Vectors					
Scalars	Vectors				
1.Scalars have magnitudes only.	1. Vectors have both magnitude and direction				
2. Speed, mass, work etc. are examples of	2. Force, velocity, electric field etc. are examples of				
scalars.	vectors				
3. Scalars are represented by numerical	3. Vectors are represented by the segment of a				
values.	straight line drawn in a specific direction.				
4. Addition and substraction follow algebraic	4. Geometric methods are used for addition and				
methods.	substraction				
5. Two scalars are equal when they have	5. Two vectors are equal when they have the same				
the same magnitudes	magnitude and the same direction.				
6 Product of two scalars is a scalar	Scalar product of two vectors is a scalar where as				
	their vector product is a vector.				
7. Simple letter symbols are used. Thus m	6. An arrowhead is placed over the letter symbol to				
can denote mass, t can denote time etc.	denote vectors. Thus F can denote the force vector.				
II - CLASS 32	Powered by logicalclass.con				

VECTORS AND SCALARS

<u>§§</u> GEOMETRICAL REPRESENTATION OF VECTORS

Any vector \overrightarrow{A} can be represented geometrically as a directed line segment (an arrow), as shown in fig. The magnitude of \overrightarrow{A} is denoted by $|\overrightarrow{A}|$, and the direction of \overrightarrow{A} is specified by the sence of the arrow and the angle ' θ ' that it makes with a fixed reference line.

When using graphical methods, the length of the arrow is proportional to the magnitude of the vector, and the arrow head represents the direction.

Ex:- The velocity vector \vec{v} is represented by an arrow OP as shown in figure. The initial point of the vector is O, the final point of the vector is P. The length OP is the magnitude of the velocity and its direction is 60^0 north of east (or) 30^0 east of north .

<u>§§</u> <u>POSITION VECTOR</u>: It is a vector that represents the position of a particle with respect to the origin of a co-ordinate system. The Position Vector of a point (x, y, z) is $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

§§ Types of vectors:

1) Polar Vectors : The vector whose direction does not change even though the co-ordinate system in which it is defined changes is called polar vector.

Eg: Force, momentum, Acceleration.

2) Axial Vectors : The vectors whose direction changes with the co-ordinate system in which it is defined changes is called axial vector.

Eg:Angular velocity, torque, angular momentum

33

3) Like vectors (or) parallel vectors : Two or more vectors (representing same physical quantity) are called like vectors if they are parallel to each other, however their magnitudes may be different.

VII - CLASS

Powered by logicalclass.com

VECTORS AND SCALARS

4) Unlike vectors (or) anti parallel vectors : Two vectors (representing same physical quantity) are called unlike vectors if they act in opposite direction however their magitudes can be different.

5) Equal vectors : Two or more vectors (representing same physical quantity) are called equal if their magnitudes and directions are same.

Eg : Suppose two trains are running on parallel tracks with same speed and direction. Then their velocity vectors are equal vectors.

Note : If a vector is displaced parallel to itself its magnitude and direction does not change.

6) **Negative Vector** : A vector having the same magnitude and opposite in direction to that of a given vector is called negative vector of the given vector

7) Co-initial vectors : The vectors having same initial point are called co-initial vectors.

8) Collinear vectors : Two or more vectors are said to be collinear when they act along the same line however their magnitudes may be different.

Ex : Two vectors \vec{A} and \vec{B} as shown are collinear vectors.

VII - CLASS 35 Powered by logical class.com

b) If the angle between A and \vec{B} is θ then the angle between A and -KB is $(180 - \theta)$ Where K is a positive constant. \vec{B} θ $-K\vec{B}$ $180^{0}-\theta$ c) Angle between collinear vectors is always zero or 180°C $q = 0^{0}$ or $\theta = 180^{\circ}$ **EXAMPLE** √ Example 1 : A boy moves 3m along positive x-axis, 4m along +ve y-axis, 5m along -ve x-axis and 2m along -ve y-axis. Find the displacement. **Solution :** $\overline{S} = 3\overline{i} + 4\overline{j} - 5\overline{i} - 2\overline{j}$ $\overline{S} = -2\overline{i} + 2\overline{j}$ $|\overline{S}| = -\sqrt{(2)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}m$ Example 2.2 $\sqrt{}$ The horizontal and vertical components of a force are 8N and 15N respectively. Find the magnitude of force. **Solution :** $\overline{F} = 8\overline{i} + 15\overline{j}$ 15N $\left|\overline{F}\right| = \sqrt{64 + 225} = \sqrt{289} = 17N$ √ Example 3: Find the unit vector along i + j $\hat{\overline{a}} = \frac{\overline{a}}{|\overline{a}|} = \frac{\overline{i} + \overline{j}}{\sqrt{2}} = \left(\frac{1}{\sqrt{2}}\right)\overline{i} + \left(\frac{1}{\sqrt{2}}\right)\overline{j}$ Solution: Example 4: V Find the unit vector along the direction $i + \sqrt{3} j$ solution: $\hat{\overline{a}} = \frac{\overline{a}}{|\overline{a}|} = \frac{\overline{i} + \sqrt{3}\overline{j}}{\sqrt{1+3}} = \left(\frac{1}{2}\right)\overline{i} + \left(\frac{\sqrt{3}}{2}\right)\overline{j}$ VII - CLASS 36 Powered by logicalclass.com

Example 5: Find the value of x if the vector 0.8i + xj represents a unit vector solution: $\vec{a} = \frac{8}{10}\vec{i} + x\vec{j}$ $\therefore |\vec{a}| = 1$ $\sqrt{(0.8)^2 + x^2} = 1 \implies x^2 = 1 - 0.64 = 0.36 \implies x = \pm 0.6$ $\sqrt{}$ Example 6: Three vectors $\vec{A}, \vec{B}, \vec{C}$ are shown in the figure. Find angle between (i) \vec{A} and \vec{B} (ii) \vec{B} and \vec{c} (iii) \vec{A} and \vec{c} . $\overline{A}_{30^{0}} \longrightarrow x \xrightarrow{T}_{\overline{C}} x \xrightarrow{T}_{\overline{C}} x \xrightarrow{T}_{\overline{C}} x$ solution: To find the angle between two vectors we connect the tails of the two vectors. We can shift the vectors parallel to themselves such that tails of \vec{A}, \vec{B} and \vec{C} are connected as shown in figure. TNEE 22 30° Now we observe that angle between \vec{A} and \vec{B} is 60°, \vec{B} and \vec{C} is 15° and between \vec{A} and \vec{c} is 75° √ Example-7: If $\vec{A}, \vec{B}, \vec{C}$ represents the three sides of an equilateral triangle taken in the same order then find the angle ∑120⁰ between i) \vec{A} and \vec{B} ii) \vec{B} and \vec{C} iii) \vec{A} and \vec{C} . **solution:** From the diagram the angle between the vectors \vec{A} and \vec{B} is 120⁰, the angle between \vec{B} and \vec{C} is 120⁰, the angle between \vec{A} and \vec{C} is 120⁰ $\sqrt{}$ Example-8: A man walks towards east with certain velocity. A car is travelling along a road which is 30° West of north. While a bus is travelling in another road which is 60° South of west.Find the angle between velocity vector of c) bus and man. a) man and car b) car and bus VII - CLASS 37 Powered by logicalclass.com

Γ

1

4 .	If position vector is given by \bar{R} = (-6,-4,-12) then the unit vector parallel to \bar{R} is					
 	1) $+\frac{1}{7}(3i+2\bar{j}+6\bar{k})$	2) $-\frac{1}{7}[3i]$	$+2\bar{j}+6\bar{k}$]			
 	3) $\pm \frac{1}{7}[3i+2\bar{j}-6\bar{k}]$	4) $\overline{[6i+4]}$	$\frac{14}{\bar{j}+12\bar{k}]}$			
5. 	A force $\bar{F} = 6 \bar{i} - 8 \bar{j} + 10 \bar{k}$ NF body would be	Produces and	d acceleration	of 1m/s² in	a body. The mass of 	
	1) 200 kg 2) 20kg	3)	10√2 <i>kg</i>	4) 6,	√2kg	
 6. 	A man travels 1 mile due east miles due north. His displa	, than 5 miles acement is	due south, th	en 2 miles d	lue east and finally 9	
	1) 3 miles 2) 5 miles	3)	4 miles 4	1) between 8	5 and 9 miles	
'7. 	Find the unit vector whose 3D) rectangular	components	along X and	Y the ratio 1:1:1	
	1)[(i+j+k)/ √3]	2)[(2 $i + j$	+ <i>k</i>)/√3]			
 	3)[(i+2j+k)/ √3]	4)[(i+j+3k)/√3]			
 8.	If $\left \vec{xi} - 3\vec{j} + 5\vec{k} \right = \sqrt{98}$, the value	e of x is	U			
	1) ±2 2) ±4	3)	±6	4) <u>+</u> 8	8	
 <i>II</i>)	Multiple option type:					
♦ 	This section contains multiple of out of which ONE or MORE is a	choice questic correct. Choo	ons. Each ques se the correct	tion has 4 cł options	hoices (A), (B), (C),(D), 	
9.	Any vector should have					
İ	a) perticular magnitude	b) perticu	lar direction		l	
	c) perticular colour	d) perticu	lar shape	a d		
	A) only a, b B) o	niy d, c	C) only (ς, α	D) only a, d	
10 .	Let $A = 3i + 4j$ and $B = 12i + 5$	j				
	a) magnitude of \vec{A} is 5	b) magnit	ude of \vec{B} is 1	3		
	c) \vec{B} is a unit vector	d) unit ve	ctor of \vec{A} is (3)	(3i+4j)/5	l	
	A) only a, b, c correct	B) only a,	b, d correct			
	C) only a, c, d correct	D) all are	correct		l	
<i>III)</i> 11	Any vector should have both r	nagnitude an	Ч		l	
12.	Magnitude of null vector is equ	ual to			ļ	
 13.	Magnitude of unit vector is					
14.	Time is quanti	ty				
IV)	Match the following				l	
• 	This section contains Matrix- given in two columns which h	Match Type q ave to be mat	uestions. Each ched. Stateme	n question co nts (A, B, C, 1	ntains statements D) in Column–I have	
VII	- CLASS	39		Powere	ed by logicalclass.com	

Г

n.

	1) $\frac{5\vec{i}+\vec{j}-2\vec{k}}{\sqrt{15}}$ 2) $\frac{5\vec{i}+\vec{j}-2\vec{k}}{\sqrt{30}}$ 3) $\frac{\vec{i}-5\vec{j}+2\vec{k}}{\sqrt{30}}$ 4) $\frac{\vec{i}-5\vec{j}+2\vec{k}}{\sqrt{15}}$
 16.	Vector \overline{A} has an x and y components of -8.70 cm and 15.0 cm respectively. \overline{B} vector
	has an x and y components of 13.2cm and -6.60cm respectively. If $\overline{A} - \overline{B} + 3\overline{C} = 0$
	then x and y components of \overline{C}
	1) -7.20cm and 7.30cm 2) 7.30cm and -7.20cm
	3) -7.30cm and 7.20cm 4) -7.30cm and -7.20cm
17. 	If a body starts with a velocity $2\hat{i} - 3\hat{j} + 11k ms^{-1}$ and moves with an accelaration of
	$10\hat{i} + 10\hat{j} + 10\hat{k} ms^{-2}$. then its velocity after 0.25s
 	1) $\frac{1}{2}\sqrt{811}ms^{-1}$ 2) $\sqrt{\frac{811}{2}}ms^{-1}$ 3) $\sqrt{811}ms^{-1}$ 4) $2\sqrt{811}ms^{-1}$
18.	The value of 'm', if $\vec{i}+2\vec{j}-3\vec{k}$ is parallel to $3\vec{i}+m\vec{j}-9\vec{k}$ is
	1) 12 2) 9 3) 6 4) 3
	★ HII → ACHIEVERS (Level - II) < HII →
Solve	the following
1.	If \vec{A} and \vec{B} are two vectors acting at an angle θ then find the angle between
	a) \vec{A} and \vec{A} (b) \vec{B} and \vec{B} (c) \vec{A} and $-\vec{B}$ (d) $-\vec{A}$ and \vec{B}
	e) $3\vec{A}$ and \vec{A} f) \vec{A} and $2\vec{B}$ g) $2\vec{A}$ and $3\vec{B}$ h) $-\vec{A}$ and $2\vec{B}$
	i) - \vec{A} and - \vec{B} j) -2 \vec{A} abd - \vec{B} k) -3 \vec{A} and \vec{B} k) -3 \vec{A} and -2 \vec{B}
 2.	Find the magnitude of the vector $\overline{A} = \overline{i} + 2\overline{j} - \overline{k}$.
	A vector is represented as a^{A} a^{A} Fine the length of the vector
	A vector is represented as $3i+4j+5k$. The the length of the vector.
14. _	Find the unit vector along $3i - 4j$
5 . 	Find the unit vector whose 2D rectangular components along X and Y the ratio 3.4.
6.	A vector is represented by $3\bar{i}+\bar{j}+2\bar{k}$. Its length in xy plane is ?
7.	If \hat{a} is the unit unit vector along \overline{a} then find the angle between them
8. 	A person walks 3m towards east and then 4m towards north. Find the displacement of the person.
9.	A boy walks 12m towards west and then 5m towards south. Find the displacement of the boy.
10. 	A car travels 10km towards south and then 24km towards east. Find the displacement of the car.
VII - C	CLASS 42 Powered by logical class.com

	*	EXPLC	<u> DRERS (Level - III)</u>	< 1 1 8		
 <i> </i>)	Multiple option ty	be:				
• •	This section contain (C),(D), out of which	ns multiple choice In ONE or MORE	e questions. Each ques is correct. Choose the c	stion has 4 choices (A), (B), correct options		
 	The angle between a) minimum zero c) any between 0° to A) only a, b, c are c	two vectors can b) r o 180 ⁰ d) a orrect B) o	be maximum 180 ⁰ any above 180 ⁰ only a, c, d are correc	t		
2 .	 C) only b, c, d are correct Choose the correct in the following a) null vector have zero magnitude b) unit vector have unit magnitude c) equal vectors have equal magnitude and same direction d) opposite vectors have equal magnitude and equal direction A) only a, b, c are correct B) only a, c, d are correct D) all a, b, c, d are correct 					
3. 	Choose the scalarsa) velocityb)A) only a, b, cBChoose the vectors	denisty) only b, c, d	c) area C) only a, c, d	d) volume D) all a, b, c, d		
4. 	Choose the vectorsa) distanceb)A) only a, bB	displacement) only b, c	c) speed C) only a, c	d) velocity D) only b, d		
<i>II)</i> 5. 6.	<u>Fill in the blanks:</u> Vector multiplid by s Mass is	calar gives	value			
7.	Angle between $\vec{A} \&$	\vec{A} is				
 8.	If angle between \vec{A}	$\& \overrightarrow{B}$ is $ heta$, then a	ngle between $\vec{A} \& -\vec{B}$	is		
9.	A particle moves 3 direction. It can be	units aloing posi be represented in	tive x-axis direction, an vector form as	and 2 units in negative y-axis		
10.	0.8 i + x j is a unit ve	ector, the value o	f x is			
11. <i>1</i> 1.	Angle between two	vectors can not l	be more than			
<i>my</i> 	This section contai given in two colum have to be matched have to be appropri	ns Matrix-Match ⁽) ns which have to with statements (jately bubbled as es are A-n A-s B-	Type questions. Each q be matched. Statemer p, q, r, s) in Column–II . s illustrated in the follo r B-r C-n C-a and D-s	uestion contains statements its (A, B, C, D) in Column–I The answers to these questions owing example. then the correct hubbled 4*4		
	matrix should be a	s follows:	.,,c p,c q and b 0,			
13.	a) scalar	1) having e	equal magnitude and s	same direction		
	b) vector	2) having u	init magnitude	livestice		
 	c) unit vector d) equal vector	3) naving r 4) having c	nagnitude as well as o only magnitude and po			
	- CLASS	43		Powered by logicalclass.com		

	A) a-1, b-2, c-3, d-4		B) a-4 , b-	B) a-4 , b-3, c-1, d-2			
	C) a-4, b-3	,c-2, d-1	D) a-2, b-	1, c-4, d-3			
14. 	a) polar vector		1) torque				
	b) axial vector		2) $\sqrt{x^2 + y}$	$r^2 + z^2$			
	c) unit vector		3) magnitu	de unity			
	d) magnitude of xi+yj-	+zk	4) force				
 	C) a-4, b-3, c-2, d-1		D) a-4 , b-	, c-4, d-3			
15.	If \vec{A} and \vec{B} are two ve	ectors acting at	an angle 30°	then find the ag	le between		
	a) \vec{A} and \vec{A}	1) 150°					
 	b) \vec{A} and - \vec{B}	2) 30 ⁰					
 	c) \vec{A} and $2\vec{B}$	3) 180 ⁰					
	d) \vec{A} and -2 \vec{A}	4) 0 ⁰					
	A) a-1, b-2, c-3, d-4 E	8) a-4 , b-1, c-2	, d-3 C) a-1,	b-4, c-3, d-2 D)	a-4, b-2, c-1, d-3		
<i>IV</i>)	Comprehention type	<u>):</u>		24			
♦ 	This section contains have to be answered.	paragraph. Bas Each question	sed upon each has 4 choices (l paragraph mul (A) , (B) ,(C) and	tiple choice questions (D) out of which ONLY		
ļ	ONE i s correct. Choos	se the correct op	tion.				
16. 	16. In order to find the angle between two vectors, they must have common state or common and point. The leaser of the two engles between them is adopted				ommon starting point		
	between the two vectors $0^0 < \theta < 18$		180°				
 		° 79	100				
	i) 225°	a) 10 ⁰	b)135 ⁰	c) 70 ⁰	d) 120º		
' 	ii) 45°	a) 20º	b)800	c) 135^{0}	d) 30º		
		a) 20	6)00	0) 100	u) 50		
	270°						
	iii) 🖌 🦷 a) 40 ⁰	b)80 ⁰	c) 70 ⁰	d) 90 ⁰		
 	270°						
	iv)	a) 80º	b)90 ⁰	c) 70 ⁰	d) 20º		
 	*						
 	v) 135° a) 1	35 ⁰	b)80º	c) 70º	d) 30º		
17. 	A vector has compo Y direction.	onents 3 units a	along positive 2	X direction and	4 units along positive		
	i) Express the vecto	or as sum of re	ctangular com	ponent vectors			
Ļ	A) 3i + 4j	B) 3i-4j	C)	i + j	D) 4i - 3j		
	A) 3I + 4J - CLASS	B) 3I-4J 44	C)	I + J Powe	D) 4I - 3J		

VECTORS AND SCALARS

A simple pendulum having a bob of mass `m' is suspended from a rigid support and it is pulled by a horizontal force F'. The string makes an angle θ with the vertical as shown in figure.

The horizontal component of tension = $T \sin \theta$

The vertical component of tension = T cos θ

when the bob is in equilibrium

 $T \sin \theta = F$ (1)

 $T \cos \theta = mg$ (2)

$$T = \frac{mg}{\cos\theta} = \frac{mgl}{\sqrt{l^2 - x^2}}$$

From equation (1) and (2)

$$Tan\theta = \frac{F}{mg} \Rightarrow F = mgTan\theta = mg\frac{x}{\sqrt{l^2 - x^2}}$$

$$T = \sqrt{F^2 + \left(mg\right)^2}$$

 $\sqrt{l^2 - x^2}$ th an angle oth does not **Note:** If a vector is rotated through an angle other then integral multiple of 2π (or 360°) its direction changes, but magnitude does not change. so vector changes.

 $\vec{A} \neq \vec{B}$

Note: If the frame of reference is rotated the vector does not change (though its components may change).

Example-1:

The components of a vector along the x and y directions are (n+1) and 1 respectively. If the coordinate system is rotated by an angle 60° then the components changes to n and 3. Find the value of n.

Sol. Length of the vector does not change on rotation.

$$\sqrt{(n+1)^2 + 1^2} = \sqrt{n^2 + 3^2} \implies n = \frac{7}{2} = 3.5$$

Example-2: √

A weight mg is suspended from the middle of a rope whose ends are rigidly clamped at the same level. The rope is no longer horizontal. What is the minimum tension required to completely straighten the rope

Sol. From the diagram

$$2T\sin\theta = mg \implies T = \frac{mg}{2\sin\theta}$$

1/1

The rope will be straight when $\theta = 0^{\circ}$

$$T = \frac{mg}{2\sin 0^0} = \infty$$

ation The tension required to completely straighten the rope is infinity.

$\sqrt{}$ Example-3:

The sum of magnitudes of two forces acting at a point is 16 N.If their resultant is normal to the smaller force and has a magnitude of 8N. Then the forces are

let \vec{F} be the resultant of two forces $\vec{F_1}$ and $\vec{F_2}$ as shown in figure with $F_2 > F_1$ Sol. $F_2 \sin \theta = F_1$...(i) $F_2 \cos \theta = F = 8$...(ii) Squaring and adding Eqs (i) and (ii), we get $F_2^2 = F_1^2 + 64$ (iii) Given $F_1 + F_2 = 16$ (iv) Solving Eqs. (iii) and (iv), we get $F_1 = 6N$ and $F_2 = 10N$. **Resolution in 3D Space** A point in space can be specified by a position vector $\vec{R} = R_{y}\hat{i} + R_{y}\hat{j} + R_{z}\hat{k}$ where R_{x} , R_{y} and R_{z} being the coordinates of the point in Cartesian coordinate system. Magnitude of position vector \vec{R} is

$$R = \sqrt{R_x^2 + R_y^2 + R_z^2}$$

VII - CLASS

§§ Laws of vector addition:

Vector addition follows commutative, associative and distributive laws.

- a) Commutative law : $\overline{A} + \overline{B} = \overline{B} + \overline{A}$
- b) Associative law : \overline{A} +(\overline{B} + \overline{C}) = (\overline{A} + \overline{B})+ \overline{C}
- c) Distributive law : m(\overline{A} + \overline{B}) =m \overline{A} +m \overline{B} where m is a scalar
- d) Vector subtraction doesnot follows commutative law and association.
- e) Vector subtraction follows distributive law.

Resultant is a single vector that gives the total effect of number of vectors. Resultant can be found by using

- a) Triangle law of vectors
- b) Polygon law of vectors
- c) Parallelogram law of vectors

§§ Triangle law of vector addition:

When three forces acting at a point can keep a particle in equilibrium the three forces can be represented as the sides of a triangle taken in order both in magnitude and direction.

Suppose three forece $\vec{F}_1, \vec{F}_2, \vec{F}_3$ are simultaneously acting at point O and the point is in

equilibrium. Then the three forces can be represented as three sides of a triangle. The triangle PQR is constructed by drawing parallel lines to the directions in which he forces are applied. The magnitudes of the forces and the corresponding sides of the triangle have

equal ratio i.e.,
$$\frac{F_1}{PQ} \!=\! \frac{F_2}{PR} \!=\! \frac{F_3}{QR} \,. \label{eq:prod}$$

§§ Polygon law of vector addition:

If a number of vectors are represented by the sides of a polygon both in magnitude and direction taken in order, their resultant is represented by the closing side of the polygon taken in reverse order in magnitude and direction.

VECTORS AND SCALARS

If a number of coplanar forces are acting simultaneously at a point keep the particle in equilibrium, these forces can be represented as the sides of a polygon taken in order both in magnitude and direction.

VECTORS AND SCALARS

- 1. If n forcs each of same magnitude are acting at a point with the angle 360/n between them then the resultant is zero.
- 2. If n-1 forces of equal magnitude are acting at a point such that each vector makes an angle 360/n with the preceding one then the magnitude of resultant force is equal to the magnitude of force acting.

$\sqrt{}$ Example 5 :

Find the resultant of the following $\overline{F_1} = 5\overline{i} - 10\overline{i}$, $\overline{F_2} = 15\overline{j} - 10\overline{j}$

Solution :
$$\overline{R} = \overline{F_1} + \overline{F_2}$$

$$\overline{R} = 5\overline{i} - 10\overline{i} + 15\overline{j} - 10\overline{j} \quad \overline{R} = -5\overline{i} + 15\overline{j}$$

$$\left| \overline{R} \right| = \sqrt{(5)^2 + (5)^2}$$

$$\left|\overline{R}\right| = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}N$$

$\sqrt{}$ Example 6:

Find the unit vector along the resultant of $A = \overline{i} + 2\overline{j}$ and $B = 2\overline{i} + \overline{j}$ Resultant $(\overline{R}) = A + B = \overline{i} + 2\overline{j} + 2\overline{i} + \overline{j} = 3\overline{i} + 3\overline{j}$

Resultant
$$(\overline{R}) = A + B = \overline{i} + 2\overline{j} + 2\overline{i} + \overline{j} = 3\overline{i} + 3\overline{j}$$

Solution:
$$= \frac{\overline{R}}{R} = \frac{3\overline{i} + 3\overline{j}}{\sqrt{3^2 + 3^2}} = \frac{3\overline{i} + 3\overline{j}}{3\sqrt{2}} = \left(\frac{1}{\sqrt{2}}\right)\overline{i} + \left(\frac{1}{\sqrt{2}}\right)\overline{j}$$

$\sqrt{}$ Example 7:

CEI MIL Find the unit vector along the resultant of the vectors $\overline{a} = \overline{i} - \overline{j}$, $\overline{b} = \overline{i} + 2\overline{j}$, $\overline{c} = 4\overline{i} - \overline{j}$

solution:
$$\overline{R} = a + b + c = \overline{i} - \overline{j} + \overline{i} + 2\overline{j} + 4\overline{i} - \overline{j} = 6\overline{i}$$
 $\hat{\overline{R}} = \frac{\overline{R}}{R} = \frac{6\overline{i}}{\sqrt{6^2}} = \overline{i}$

$\sqrt{}$ Example 8:

Find the vector \overline{a} if the resultant of $\overline{a}, \overline{b} = 4\overline{i} + 2\overline{j}$ and $\overline{c} = 2\overline{i} - \overline{j}$ is $\overline{0}$ solution: a+b+c=0

$$\overline{a} + 4\overline{i} + 2\overline{j} + 2\overline{i} - \overline{j} = \overline{0} \Longrightarrow \overline{a} = -6\overline{i} - \overline{j}$$

 $\sqrt{}$ Example 9 :

$$\overline{a} = \overline{i} - 2\overline{j}, \overline{b} = 2\overline{i} + \overline{j}, \overline{c} = x\overline{i} + y\overline{j} \text{ find } \hat{\overline{c}} \text{ if the resultant of } \overline{a}, \overline{b} \text{ and } \overline{c} \text{ is } \overline{0}$$

Ition: $\overline{c} = -(\overline{a} + \overline{b}) \Rightarrow \overline{c} = -(2\overline{i} + \overline{j} + \overline{i} - 2\overline{j})$

solution:

$$\Rightarrow \quad \bar{c} = -3\bar{i} + \bar{j} \quad \Rightarrow \quad \bar{c} = \frac{\bar{c}}{|\bar{c}|}$$

$$\hat{\overline{c}} = \frac{-3\overline{i} + \overline{j}}{\sqrt{3^2 + 1^2}} \implies \hat{\overline{c}} = \frac{-3\overline{i} + \overline{j}}{\sqrt{10}}$$

VII - CLASS

ì.

 	TEACHING TASK						
 1)	Choose the correct or	otion:					
́ ∣1.	Two vectors are given b	$v \vec{a} = 2\vec{i} + \vec{j} - 3\vec{k}$ a	nd $\vec{b} = 5\vec{i} + 3\vec{j} - 2\vec{k}$.	Find \vec{c} such that			
	$3\vec{a} + 2\vec{b} - \vec{c} = 0$	- ,	5	,			
 	1) $-4\vec{i}+9\vec{j}-13\vec{k}$	2) $4\vec{i} - 9\vec{j} - 13\vec{k}$	3) $16\vec{i} + 9\vec{j} - 12$	$3\vec{k}$ 4) non of the above			
 2. 	If three forces $\vec{F_1} = -3\vec{i} - \vec{F_1}$ Their resultant is	$\vec{j} + 2\vec{k}$; $\vec{F}_2 = -\vec{i} + 3$	$\vec{s}\vec{j} + 4\vec{k} \text{ and } \vec{F}_3 = 4\vec{i} - 3\vec{k}$	$2\vec{j}-6\vec{k}$ act on a particle.			
	1) zero	2) $\vec{i} + \vec{j} + \vec{k}$	3) $2\vec{i} - 3\vec{j} + \vec{k}$	4) None			
3. 	Three forces $F_1 = a(i-j+k)$ particle. If the particle is 1) 10 2) -10	()1 F ₂ = 2i-3j+4k ar in equilibrium, the 3	nd F ₃ = 8i-7j+6k act value of a is) 8	simultaneously on a 4) 2			
4.	If $\bar{A} = 3 \bar{i} + 4 \bar{j}$ and $\bar{B} =$	$7\overline{i} + 24\overline{j}$, then the	e vector having the	same magnitude as that of			
	$ar{B}$ and parallel to $ar{A}$ is		1910				
	1) $15\bar{i}+20\bar{j}$ 2)	$15\bar{i}-20\bar{j}$	3) $20\bar{i}+15\bar{j}$	4) $20\bar{i}-15\bar{j}$			
 5. 	Two vectors \overline{A} and \overline{B}	are related as \overline{A}	$-2\overline{B} = -3(\overline{A} + \overline{B})$. If \overline{A}	$\bar{l} = 6 \bar{i} - 2 \bar{k}$ then $\bar{B} =$			
 	1) $-24 \overline{i} + 8 \overline{k}$ A vector A has a negative units in length. What vec X and a negative Y com	2) $8\bar{i} - 24\bar{k}$ we X- component 3 ctor B when added ponent 4 units in lease	3) $2\bar{k}-6\bar{i}$ 3 units in length and to A gives a resultan ength	4) $2 \bar{k} + 6 \bar{i}$ a positive Y component 2 it vector with no component			
	1) $3\vec{i} - 6\vec{j}$ 2) $6\vec{i} - 6\vec{j}$	$-3\overline{j}$ 3) $\vec{6i} + \vec{6j}$	4) $5\vec{i} + 6\vec{j}$			
7 .	6 forces each of magnit vectors is 60° Find the	ude 10N are actin resultant force	g at a point. The an	gle between successive			
 	1) zero	2) 6 N	3) 10 N	4) 60 N			
 9		and $\overline{2} + 2 + \overline{1}$ as	ro parallal to each of	ther Which of the following			
0. 	relation is a valid one	and $2l+3j+k$ at	re paraller to each of				
	a) a=2,b=1,c=3	b) a=4,b=6,c=2	c) a=8,b=12,c=4	d) a=8,b=10,c=4			
	1) only a, b	2) only b, c	3) only a, c	4) all a, b, c			
 	[Hint : If two vectors $\vec{A} =$	$a\overline{i} + b\overline{j} + c\overline{k}, \overline{B} = p$	$\overline{i} + q\overline{j} + r\overline{k}$ are para	llel vectors, then $\frac{a}{p} = \frac{b}{q} = \frac{c}{r}$]			
9.	Three vectors are $\overline{a} = 6$	$\overline{i} - 7\overline{j}, \overline{b} = 3\overline{i} - 2\overline{j}$	$\overline{i}, \overline{c} = 5\overline{i} - 8\overline{j}$. Then	choose the correct			
 	a) $\vec{a} + \vec{b} = 9\vec{i} - 9\vec{j}$	b) $\vec{a} - \vec{b} = 3\vec{i} + \vec{j}$	c) $\vec{a} + \vec{b} + \vec{c} = 1$	$4\overline{i} - 17\overline{j}$			
	1) only a, b	2) only b, c	3) only a, c	4) all a, b, c			
	- CLASS	52		Powered by logicalclass.com			

III) Fill in the blanks: 10. Addition of two vectors gives quantity 11. Vector addition obeys law 12. Vector subtraction doesn't obey law 13. Multiplication of a scalar with a vector gives IV) Match the following: This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in **Column-I** have to be matched with statements (p, q, r, s) in **Column-II**. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows: **14.** For any three vectors $\vec{A}, \vec{B} \otimes \vec{C}$ acting at a point keeps it in equilibrium a) Commutative law 1) $\vec{A} + \vec{B} + \vec{C} = 0$ 2) $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$ b) Associative law $- \mathbf{B} + \mathbf{A}$ 4) $2(\vec{A} + \vec{B}) = 2\vec{B} + 2\vec{A}$ 2) a-3, b-2. $\mathbf{C} = \mathbf{A} = \mathbf{A}$ c) Distributive law d) Triangle law 1) a-1, b-2, c-3, d-4 3) a-1, b-3, c-2, d-4 4) a-3, b-3, c-2, d-1 V) Comprehention type: This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY **ONE** is correct. Choose the correct option. **15.** $\overline{A} = \overline{i} + 2\overline{j}; B = 2\overline{i} + \overline{j}; \overline{C} = \overline{i} - \overline{j}$ i) $\overline{A} + \overline{B} + \overline{C}$ 1) $4\bar{i} + 2\bar{j}$ 2) $4\bar{i} - 2\bar{j}$ 3) $2\bar{i} - 2\bar{j}$ 4) $\bar{i} - \bar{i}$ ii) $\left|\overline{A} + \overline{B} + \overline{C}\right| = \dots$ 3) $\sqrt{6}$ 1)4 2) 2 4) $2\sqrt{5}$ iii) $(\overline{A} + \overline{B}) - \overline{C} =$ **2**) 4i - 2j1) $4\bar{i} + 2\bar{j}$ 3) $2\bar{i} + 4\bar{j}$ 4) $\bar{i} - \bar{i}$ iv) $\overline{A} - (\overline{B} + \overline{C}) =$ 1) $4\bar{i} + 2\bar{i}$ 2) -2i + 2j3) $2\bar{i} + 4\bar{j}$ 4) $\bar{i} - \bar{j}$ VI) Higher order thinking skills (HOTS) **16.** If $\vec{A} = 3\hat{i} - 4\hat{j}$ and $\vec{B} = -\hat{i} - 4\hat{j}$, calculate the direction of $\vec{A} + \vec{B}$ 1. $\tan^{-1}(4)$ with positive χ -axis in clock wise VII - CLASS 53 Powered by logicalclass.com

٦

	1) $7\vec{i} - 5\vec{k}$	2) $5\vec{i} - 7\vec{k}$	3) $6\vec{i} - 16\vec{j} + 10\vec{k}$	4) none of the above
 5.	If $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}$;	$\vec{b} = 4\vec{i} + 5\vec{j} - 6\vec{k}$ and \vec{c}	$=-7\vec{i}-8\vec{j}+9\vec{k}$ then $ \vec{a} $	$+\vec{b}+\vec{c}$ is
 	1) $\sqrt{140}$	2) $\sqrt{150}$	3) $\sqrt{160}$	4) $\sqrt{65}$
6.	Three forces are	e given $\vec{F}_1 = 6\vec{i}$ newton,	$\vec{F}_2 = 9\vec{j}$ newton and \vec{F}_2	$\vec{j}_3 = (-\vec{3i} + \vec{4j})$ newton. Find
	the force \overrightarrow{F} t	hat must be added the	ese forces to make res	ultant force zero.
 	1) 3i+13j	2) - $3\vec{i} - 13\vec{j}$	3) $\vec{i} - \vec{j}$	4) none
 	Find the resulan on a particle	t $\left \overrightarrow{F} \right $ of the forces $\overrightarrow{F_1} =$	$2\vec{i}+3\vec{j}-5\vec{k}, \ \vec{F_2}=\vec{i}-\vec{j}+$	\vec{k} and $\vec{F_3} = 3\vec{i} + 4\vec{j} - 2\vec{k}$ act
	1) 6	2) 6 $\sqrt{3}$	3) 7 √3	4) ₈ √3
 8.	If three forces $\vec{F_1}$	$= 7\vec{i} + 2\vec{j} - 3\vec{k}$ and $\vec{F_2} =$	$-2\vec{i}+2\vec{j}-6\vec{k}$ and \vec{F}_3 ke	eep a particle in equilibrium.
İ	Then $\left \overrightarrow{F_{i}} \right =$	• 2		
	1) /120	$2)$ $\sqrt{100}$	3) /125	
 9.	Five equal force	es each of 20N are ac	ting at a point in the s	ame plane. If the angles
Ì	between then	n are same, the result	ant of these forces is	
 10.	1) 0 4 forces each of	2) 40N f magnitude 10N are a	3) 20N acting at a point. The a	4) $20\sqrt{2}$
	vectors is 90°	. Find the resultant for	ce	
İ	1) 0	2) 10 N	3) _{10√2}	4) none
11.	Vector \overline{A} has a	n x and y components	of -8.70 cm and 15.0	cm respectively. \overline{B} vector
	has an x and	y components of 13.2	2cm and -6.60cm resp	ectively. If $\overline{A} - \overline{B} + 3\overline{C} = 0$
	then x and y	components of \overline{C}		
 	1) -7.20cm and 3) -7 30cm and	7.30cm 7.20cm	2) 7.30cm and -7.20 4) -7 30cm and -7.20	cm)cm
 12.	Find the vector an	d its magnitude with initia	al point P $(2, 4, 6)$ and ten	minal point Q (1, 2, 3)
	1) $-\vec{i} - 2\vec{j} - 3\vec{k}; \sqrt{2}$	$\vec{14}$ 2) $\vec{i} + 2\vec{j} + 3\vec{k};$	$\sqrt{14}$ 3) $3\vec{i} + 2\vec{j} - \vec{k};$	$\sqrt{14}$ 4) none
 	A vector has co- length of the	-ordinates (1,1,2) for in vector is	nitial point and (2,1,3)	as the terminal point. The
ļ	1) √ <u>2</u>	2) $\sqrt{34}$	3) 2	4) $\sqrt{6}$
 14.	If $\vec{A} = 3\hat{i} - 4\hat{j}$ ar	nd $\vec{B} = -\hat{i} - 4\hat{j}$, calcula	Ite the direction of \vec{A} –	$-\overrightarrow{B}$.
	1) along positiv	e x- axis e x-axis		
İ	3) along positive	e y- axis		
	4) along negativ	e y -axis	\rightarrow \rightarrow \rightarrow	
15. 	The resultant of	the forces $F_1 = 4\hat{i} - 3\hat{j}$	$j and F_2 = 6\hat{i} + 8\hat{j}$ is	
	1) $5\sqrt{5}$	2) $10\hat{i} - 5\hat{j}$	3) 125	$4) -2\hat{i} - 3\hat{j}$
	- ULAJJ	30		Powered by logicalclass.com

PH	YSICS			VECTORS AND SCALARS
16. 	The vector sum of tw 1) 20 units 2) 22 un	o vectors of mag its 3) 18 units	nitudes 10 units and 4) 3 units	15 units can never be
 17.	A car moves 40m d	ue east and turns	towards north and	moves 30m then turns 45° east
	of north and move axis, North as pos	es $20\sqrt{2}m$. The ritive y - axis)	et displacement of	car is (east is taken positive x -
	1) $50\hat{i} + 60\hat{j}$ 2)	$60\hat{i} + 50\hat{j}$	3) $30\hat{i} + 40\hat{j}$	4) $40\hat{i} + 30\hat{j}$
18. 	A bird moves in su towards north and	ch a way that it d 9 m_vertically	has a displaceme upwards. Find the	nt of 12 m towards east, 5 m magnitude of its displacement
	1) $5\sqrt{2}m$ 2)	$5\sqrt{10}m$	3) $5\sqrt{5}m$	4) 5m
 19. 	An aeroplane is head of its velocity is	ding north east a	t a speed of 141.4 $_{\eta}$	$_{RS}^{-1}$. The northward component
	1) 141.4 ms ⁻¹	2) 100 _{ms⁻¹}	3) zero	4) 50 _{ms} ⁻¹
20.	The unit vector parall is	el to the resultant	of the vectors $\vec{A} = 4$	$\hat{4i} + 3\hat{j} + 6\hat{k}$ and $\vec{B} = -\hat{i} + 3\hat{j} - 8\hat{k}$
 	1) $\frac{1}{7} \left(3\hat{i} + 6\hat{j} - 2\hat{k} \right)$ 2)	$\frac{1}{7}\left(3\hat{i}+6\hat{j}+2\hat{k}\right)$	3) $\frac{1}{49} \left(3\hat{i} + 6\hat{j} - 2 \right)$	$\hat{\mathbf{k}} \mathbf{4} \mathbf{4} \mathbf{4} \mathbf{4} \mathbf{5} \left(3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}} \right)$
21.	The vector parallel to	$4\hat{i} - 3\hat{j} + 5\hat{k}$ an	d whose length is th	he arithmetic mean of lengths of
 	two vectors $2\hat{i} - \hat{i}$	$4\hat{j}+4\hat{k}$ and $\hat{i}+$	$\sqrt{6}\hat{j}+3\hat{k}$ is	
	1) $4\hat{i} - 3\hat{j} + 5\hat{k}$ 2)	$(4\hat{i}-3\hat{j}+5\hat{k})/\sqrt{2}$	$/3$ 3) $(4i - 3j + 5k)/\sqrt{2}$	$\sqrt{2}$ 4) $(4\hat{i} - 3\hat{j} + 5\hat{k})/\sqrt{5}$
 22. 	Given two vectors A with the X - axis is	$\hat{\mathbf{x}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ as	nd $\vec{B} = 4\hat{i} - 2\hat{j} + 6\hat{k}$	\hat{A} . The angle made by $\left(\vec{A} + \vec{B} ight)$
	1) 30 ⁰	2) 45 ⁰	3) 60 ⁰	4) 90 ⁰
23. 	To go from town A to north. How far W	town B a plane est of A is B ?	must fly about 1780) km at an angle of 30 ⁰ West of
	1) 1542km	2) 1452 km	3) 1254	km 4) 890 km
24 . 	A vector $i + \sqrt{3}j$ rotanew vector is	ates about its tail t	through an angle 6	0 ⁰ in clockwise direction then the
	1) $\hat{i} + \sqrt{3}\hat{j}$	2) $3\hat{i} - 4\hat{j}$	3) 2 <i>ĵ</i>	4) $2\hat{i}$
	G + H +	ACHIEVER	<u>RS (Level - II)</u>	•H•
 n	Solve the following	y,		
"	<u>Find the unit vector of</u>	<u>e an artha</u> r an ai ultai		
1.			4i	2 – <i>2 J</i>
2.	Find the value of x if	the $0.4\overline{i}+x\overline{j}$ rep	oresents a unit vect	or
3.	Find the unit vector a	along the directic	on $3\overline{i} - 3\sqrt{3}\overline{j}$	
4 .	Find the vector \overline{a} if the	e resultant vector o	of \overline{a} , $\overline{b} = 6\overline{i} - 9\overline{j}$ and	$\vec{c} = 3\vec{i} + 7\vec{j} \text{ is } \vec{0}$
	- CLASS	57		Powered by logicalclass.com

٦

5.	$\overline{a} = 4\overline{i} + 3\overline{j}$, $\overline{b} = -5\overline{i} + 2\overline{j}$, $\overline{c} = x\overline{i} + y\overline{j}$ find \hat{c} if the resultant of \overline{a} , \overline{b} , and \overline{c} is $\overline{0}$					
6.	Find the unit vector along the resultant of the vectors $\vec{a} = 6\vec{i} - 7\vec{j}$, $\vec{b} = 3\vec{i} - 2\vec{j}$, $\vec{c} = 5\vec{i} - 8\vec{j}$					
 7. 	The lengths of the vectors $8\overline{i} + 6\overline{j}$ and $5\sqrt{2}\overline{i} + a\overline{j}$ are equal Find the value of 'a'					
 8.	If $a\overline{i} + 2\overline{j} + c\overline{k} \& d\overline{i} + 4\overline{j} - e\overline{k}$ are parallel and $\frac{d}{c} = k\frac{a}{e}$ what is the value of k?					
9.	Three forces $\overline{A} = \{\hat{i} + \hat{j} + \hat{k}\}$, $\overline{B} = \{2\hat{i} - \hat{j} + 3\hat{k}\}$ and \overline{C} acting on a body. To keep it in					
	equilibrium value of \overline{C} is					
 10.	The vectors $\vec{a} = 2\vec{i} + \vec{j} + \vec{k} \otimes \vec{b} = -4\vec{i} - 2\vec{j} + 3\vec{k}$ and \vec{c} are represented as the adjacent					
 	sides of a triangle taken in order. Then find \overline{c} .					
į	9					
ו ה						
″ ↓∳	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D),					
	out of which ONE or MORE is correct. Choose the correct options					
 1.	If the vectors $\vec{A} = a\vec{i} + b\vec{j} + 1.5\vec{k}$, and $\vec{B} = 2\vec{i} + \vec{j} + 3\vec{k}$ are parallel to each other, then					
	a) the values of a 1 b) the value of b is 0.5 c) both are unit vectors					
	A) only a, b B) only b, c C) only a, c D) all a, b, c					
2 . 	 a) If three vectors can be represented by the adjacent sides of a triangle taken in order, then their resultant is zero 					
 	b) If 4 vectors acting at a point can be represented by the adjacent sides of a quadrilateral then their resultant is zero					
	c) If n vectors acting at point can be represented as the sides of a polygon taken in order then their resultant is zero.					
 	A) only a, b B) only b, c C) only a, c D) all a, b, c					
<i>Ⅱ</i>) ⊦ ?	Fill in the blanks:					
3 . 	takn in order					
4 . 	When three forces are acting at a same point and it is under balenced condition . so that resultant force is					
5.	Time is a quantity.					
6 .	If several vectors acting at a point can be represented both in direction and magnitude as the side of a polygon , thire resultant is represented by the					
7.	If a particle possesses three velocities simultaneously, represented by the three sides of a triangle taken in order, then what is velocity of the particle is					
 <i> </i>)	Match the following:					
↓ 	This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have					
VII	- CLASS 58 Powered by logicalclass.com					

	to be matched with statements (p, q, r, s) in Column–II . The answers to these questions have to be appropriately bubbled as illustrated in the following example.							
	<i>If the correct matches are A-p,A matrix should be as follows:</i>	-s,B-r,B-r,C-p,C	-q and D	-s,then the correct bub	bled 4*4 			
8.	a) Addition of vectors		1) gives	s another parallel vect	or l			
	b) subtraction of vectors		2) anti o	commutative	İ			
	c) multiplication of vector by a s	calar	3) obey	s commutative				
	d) division of vector with anothe	r vector	4) not p	ossible				
	A) a-3, b-2, c-1, d-4	B) a-2, b-3, c-	1, d-4					
	C) a-1, b-2, c-3, d-4	D) a-4, b-3, c-	2, d-1					
9.	Vectors		Result	ant	l			
	a) $F_1 = 3\vec{i}, F_2 = 5\vec{j}, F_3 = -4\vec{k}$		1) zero					
	b) $\vec{A} = 3\vec{i} + 7\vec{j}$, $\vec{B} = -7\vec{i} - 3\vec{j}$, $\vec{C} = \vec{k}$	i	2) _i					
	c) three forces are in equilibriun	n	3) 5 <i>i</i> + 2	2j				
	d) $\vec{A} = 7\vec{i} + 2\vec{j}, \vec{B} = 5\vec{i} - 7\vec{k}$		4) 3 <i>ī</i> +	5j – 4k				
	A) a - 1, b - , c - 3, d - 4	B) a - 4, b - 3,	c -1, d ·	- 2	İ			
	C) a - 1, b - 4, c - 3, d - 2	D) a - 4, b - 2,	c - 1, d	- 3				
<i>IV</i>)	<u>Comprehention type:</u>	, GOW			l			
•	This section contains paragraph have to be answered. Each que ONE i s correct. Choose the corr	h. Based upon stion has 4 chou rect option.	each par ces (A) , (agraph multiple choice 'B) ,(C) and (D) out of u	e questions vhich ONLY			
10.	There is a sense of time dust that passed, that is going on in which events can be order i) time is the property of unive	igushin past, pr and the time go ed from the pa erse which has	esent ar bing to co st throug	nd future telling us abo ome. Time is the fourth h present into future.	out the time dimention 			
	A) both magnitude and direct C) only direction and no mag	ion nitude	B) only magnitude and no direction D) none					
	ii) time is a							
	A) vector quantity	B) scalar qua	ntity	C)some time vector	D) none			
11.	If $\vec{A} = 4\vec{i} - 3\vec{j}$ and $\vec{B} = 8\vec{i} - 6\vec{k}$	are two vector	s , so tha	at				
	i) Find the magnitude of \vec{A}							
	A) 4 B) 12	C)5		D) -3				
	ii) Find the magnitude of \vec{B}				ĺ			
	A) 8 B) 10	C)-6		D) 2				
	iii) Find the magnitude of the	ir resultant						
	A) 15 B) 12	C)-9		D) 8	l			
12.	Two vectors are given by \vec{A} =	$\vec{3i-2j}$ and \vec{B}	$=-\vec{i}-4\vec{j}$					
	i) Find $\left \vec{A} + \vec{B} \right $							
VII -	- CLASS 59)		Powered by logica	alclass.com			

PH	IYSICS			VECTORS AND SCALARS		
 	A) √20	B) $\sqrt{40}$	C) $\sqrt{10}$	D) none		
 	ii) Find $\left \vec{A} - \vec{B} \right $					
 	A) $\sqrt{40}$	B) √20	C) $\sqrt{10}$	D) none		
 	€.	RESE	EAR CHERS (Leve	 <u> - V)</u>		
)	Choose the co	rrect option:				
 1.	If $0.5\bar{i}+0.8\bar{i}+0$	$C\bar{k}$ is a unit vector	or, then C is (1994E)			
 	1) √ <u>89</u>	2) 0.2	3) 0.3	4) \(\0.11)		
 	If the magnitude vector is alwa	es of \bar{A} and \bar{B} and and and an angle $(1993E)$	re a and b respectivel	y, the magnitude of the resultant		
 	1) equal to $(a + b)$) :	2) less than $ig(oldsymbol{a}+oldsymbol{b}ig)$	101		
 	3) greater than $(a + b)$ 4) not greater than $(a + b)$					
 3.	If $\bar{A} = 3\bar{i} + 4\bar{j}$ and $\bar{B} = 7\bar{i} + 24\bar{j}$, then the vector having the same magnitude as that of					
 	$\bar{B}^{\text{ and parall}}$	el to $_{ar{A}}$ is (1989E	FOUS			
 	1) $15\bar{i}+20\bar{j}$	2) $15\bar{i}-20\bar{j}$	3) 20 <i>ī</i> +15 <i>j</i>	4) $20\bar{i}-15\bar{j}$		
 4 . 	Three forces $\vec{A} =$ rium is	$\{\hat{i} + \hat{j} + \hat{k}\}, \vec{B} = \{2, (2008M)\}$	$2\hat{i} - \hat{j} - 3\hat{k}$ and \vec{C} act	ing on a body to keep it in equilib-		
 	1) $-\left\{3\hat{i}+4\hat{k}\right\}$	2) $-\left\{4\hat{i}+3\hat{k}\right\}$	3) $3\hat{i} + 4\hat{j}$	4) $2\hat{i} - 3\hat{k}$		
5.	Of the vectors g	iven below, the p	arallel vectors are,	(2006M)		
	$\vec{A} = 6\hat{i} + 8\hat{j}$	$\vec{B} = 210\hat{i} + 280$	$\hat{k} \qquad \vec{C} = 5.1\hat{i} + 6.8$	$\hat{j} \qquad \qquad \vec{D} = 3.6\hat{i} + 8\hat{J} + 48\hat{k}$		
 	1) \vec{A} and \vec{B}	2) \vec{A} and \vec{C}	3) \vec{A} and \vec{D}	4) \vec{C} and \vec{D}		
 6. 	The unit vector par	rallel to the resultant	of vectors $\overline{A} = 4i + 3j + 6$	\bar{j}_{k} and $\bar{B} = -\bar{i}+3\bar{j}-8\bar{k}$ is (2000M)		
 	1) $\frac{1}{7}(3\bar{i}+6\bar{j}-2)$	$(2\bar{k})_{2} - \frac{1}{7}(3\bar{i} + 6)$	$\bar{j}-2\bar{k}$) 3) $\frac{1}{49}(3\bar{i}+6)$	$\bar{j}-2\bar{k}$) 4) $\frac{1}{47}(3\bar{i}+6\bar{j}-2\bar{k})$		
) 1. 	Additional worksheet for practice : A car travels 60km towards north and then 80km towards west. Find the displacement of the car.					
2.	Find the magnit	ude of the vector	$3\overline{i} + 4\overline{j}$			
 3.	A vector has rec axis	tangular compor	nents 5 units along +v	e X-axis and 3 units along -ve Y-		
	a) express the v	vector as the sum	n of rectangular comp	onents vectors		
 	b) the modulus	of the vector is				
VII	- CLASS	60		Powered by logicalclass.com		

n.

4.	The magnitude of the vector $2\overline{i} + k\overline{j}$ is 3 units. Find the value of k.								
 5.	Two vectors $\overline{a} = 2i + j - k$ & $\overline{b} = 3i + 2j + k$ are represented as the adjacent sides of a								
 6	triangle taken in order. Write the closing side taken in reverse order								
0. 	makes an ang	le 30º v	with the previou	is one, f	ind the	resultar	nt of all	the forc	es.
7. 	6 forces each of vectors is 60°	magnit Find the	ude 10N are a e resultant forc	icting at e	a poin	t. The a	ingle be	etween s	successive
8. 	3 forces each of makes an ang	magni nile 90º v	tude 5N are ad vith the previou	cting on is one. f	a parti ind the	cle sim resultar	ultaneo nt of all i	usly. If the forc	each force es Ans:
9.	4 forces each of vectors is 90º.	magnit Find th	ude 10N are a ne resultant for	cting at	a poin	t. The a	ingle be	etween s	successive
10 .	The unit vector al	long the	e resultant of \overline{A}	$\bar{l} = \bar{i} + \bar{j}$	$+\overline{k}$ and	$\overline{B} = 2\overline{i}$	$+3\overline{j}+\overline{k}$	is	
 11. 	The unit vector pa is	arallel t	o the resultant	of vecto	ors $\overline{A} = $	4 i +3 j	+6 \overline{k} ar	nd $\overline{B} = -\overline{i}$	- +3 <u>j</u> -8 <u>j</u>
12.	The minimum nu	mber of	equal forces in	n a plan	e that c	an keep	a partio	cle in eq	uilibrium is
 			KEY	Y	7	U			
 <u>Φ⊄</u> □	<u>LEARNER'S TA</u> BEGINNERS :	<u>SK :</u>	F	04	2				
 	1) 2, 11) 2, 21) 3	2) 1, 12) 1, 22) 2	3) 1, 4) 2, 13) 1 14) 1 23)4 24)4	5) 3, 15) 1	6) 2, 16) 4	7) 2, 17) 2	8) 2, 18) 2	9) 1, 19) 2	10) 2, 20) 1
	ACHIEVERS :1)(12	2i-5j)/13	3 2) $\sqrt{0.3}$	84	3)(3i-3	√ <u>3</u> j)/6		4)-9i+2	2j
	5)(i-5j)/	$\sqrt{26}$	6)(14i -17j)/√	485	7)50	9)-{3 <i>î</i>	$+4\hat{k}\Big\}$	10)-2i-	⊦-j+4k
	EXPLORERS :1) A side,	, 11) i) (2) D, 3) Tria 7) zero, ` ii) B iii) A	ngle, 8) A,	4) zero 9) D, 12) i) P	D, B ii) B	5) sca 10) i) I	lar, 3, ii) B,	6) closing
	RESEARCHERS : I)) 1) 4,	2) 4, 3) 2,	4) 1,	5) 2,	6) 1	II) 1)10	00 km	2)5
İ		3)a:3i+	-4j , b: 5	4)√5		5)5i+3	j	6)5N	
		/)zero	7) (3 <u>;</u> +6 <u>;</u> _2	8)5N 7)		9)zerc	12\2	10)29	
		11)(17	7) (37 107 -2	K)			12)2		
į									
Ì									
	- CLASS		61				Powered	by logic	alclass.com