LAWS OF MOTION

Ô LAWS OF MOTION LEARNING OBJECTIVES: Newton's first law of motion. Force and Concept of inertia. Linear momentum. Newton's second law of motion. Impulse. Newton's third law of motion. Law of Conservation of linear momentum. What is Free Body Diagram(FBD) Drawing free body diagram in different situations Motion of bodies kept in contact Motion of bodies connected by string, over pulley. **Real time Applications:** Importance of seatbelts headrests and airbags in vehicles is the application of I law only Φ Φ Inertia explains what happens when a car takes sudden turn or stops suddenly. Φ second law is useful in industries to know how much force the machine has to apply in order to move a body. In space field newton's third law and law of conservation of energy playing a wide role in Φ sending a rocket to it's target ΙΦ Usefull in understanding motion of bodies bodies in contact with several other bodies. Φ Usefull in finding motion of bodies connected by string $F = \frac{mv - mu}{t}$ $F = v \frac{dm}{dt}$ $F = u \frac{dm}{dt}$ $F = u \frac{dm}{dt}$ Important Formulae: 1. 3. 5. $\left(\frac{dm}{dt}\right)u = Mg,$ 8. $\left(\frac{dm}{dt}\right)u = Mg + Ma$ 7. 10 If $\vec{F} = 0$ then $\vec{p} = \text{constant}$ $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ 9. $\vec{V} = \frac{-mv}{m}$ 12. $\frac{V_1}{V_2} = \frac{-m_2}{m_1}$. 11. When two masses $m_1 \& m_2$ kept in contact, and a force F acts on m_1 , then 13. acceleration of the system a= $\frac{F}{m_1 + m_2}$, contact force $\frac{m_2 F}{m_1 + m_2}$ 14. When two masses m₁ & m₂ are connected by light string , and a force F pulls m₁ acceleration of the system a= $\frac{F}{m_1 + m_2}$, tension in the connected string $\frac{m_2 F}{m_1 + m_2}$

VIII - CLASS

§§ Newton's Laws of Motion:

Newton has given three laws to describe the motion of bodies. These laws are known as Newton's laws of motion.

Mewton's First law:

If no external force acts, a body continues to be in its state of rest or of uniform motion along a straight line. (OR)

If no external force acts, we can also say that "bodies" go on doing what they are doing.

<u>¶</u> Linear momentum :-

Consider two balls A and B. Let ball A be heavier than the ball B. i.e. mass (m_1) of ball A is greater than the mass (m_2) of the ball B. Suppose both balls are moving with same velocity \vec{v} . The force require to stop ball A is more than the force required to stop ball B. This shows that the heavier ball has more quantity of motion than the lighter ball. **Thus, quantity of motion of a body is directly proportional to the mass of the body.**

Now consider two balls of same mass moving with different velocities. The force required to stop the fast moving ball is more than the force required to stop the slow moving ball. So the quantity of motion of the body is directly proportional to the velocity of the ball.

Conclusion : The quantity of motion of the moving body is proportional to

(i) mass of the body

(ii) velocity of the body.

This quantity of motion possessed by a moving body is known as momentum of the body. (or) The total quantity of motion contained in a body is called momentum.

Mathematical expression : Momentum of a body is equal to the product of the mass (m) of

the body and the velocity (\vec{v}) of the body. It is denoted by \vec{p} .

Thus, momentum = mass × velocity

 $\vec{p} = m\vec{v}$

* momentum is a vector quantity

Note :- The direction of momentum of a body is same as that of the direction of the velocity of the body.

Units of momentum : S.I. unit of momentum = S.I unit of mass × S.I unit of velocity =kg×m/s = kg m/s. Similarly C. G. S. unit of momentum is **g cms**^{-1.}

Change of momentum : If 'u' and 'v' are the initial and final velocity of a body then its, initial momentum = mu final momentum = mv

Now change of momentum = final momentum – initial momentum = mv – mu

<u>SS</u> CHANGE IN MOMENTUM OF A BODY IN DIFFERENT CASES

Consider a body of mass m moving with velocity \vec{V}_i and momentum \vec{P}_i . Due to a collision (or)

due to the action of a force on it suppose its velocity changes to \vec{V}_f and momentum changes to

 \vec{P}_{f} in a small time interval Δt .

Change in momentum of body =
$$\Delta \vec{P} = \vec{P}_f - \vec{P}_f$$

$$= m\vec{V}_{f} - m\vec{V}_{i} |\Delta\vec{P}| = |\vec{P}_{f} - \vec{P}_{i}| = \sqrt{P_{f}^{2} + P_{i}^{2} - 2P_{f}P_{i}\cos\theta}$$

where θ = angle between \vec{P}_{f} and \vec{P}_{i}

<u>Case (i)</u> Consider a body of mass m moving with velocity V_i . If it hits a rigid surface (or) a wall and comes to rest. Change in momentum of the body =

$$\overline{\Delta P} = \vec{P}_f - \vec{P}_i = 0 - (mv)\hat{i}$$
$$= -(mv)\hat{i} \quad |\overline{\Delta P}| = mv$$

Note : From law of conservation of linear momentum, theoretically, Change in momentum of surface / wall = + $(mv)\hat{i}$

<u>Case(ii)</u> : In the above case if the body rebounds with same speed V then $\theta = 180^{\circ}$

$$\overline{\Delta P} = \vec{P}_f - \vec{P}_i = \left[-(mv)\hat{i}\right] - \left[(mv)\hat{i}\right] = -(2mv)\hat{i}$$

$$\therefore |\overline{\Delta P}| = 2mv$$

<u>Case (iii)</u>: If a body of mass m moving with velocity V_{i} hits a rigid wall and rebounds with speed V₂

then
$$\theta = 180^{\circ}, \overline{\Delta P} = \vec{P}_f - \vec{P}_i$$

= $\left[-(mv_2)\hat{i} \right] - \left[(mv_1)\hat{i} \right] \quad \left| \overline{\Delta P} \right|_2$

 $= m(V_2 + V_1)$ **<u>Case (iv)</u>**: A body of mass m moving with speed V hits a rigid wall at an angle of incidence θ and reflects with same speed V $\overline{\Delta P}$ of body is along the normal, away from the wall

$$\left|\overrightarrow{\Delta P}\right| = 2mv\,\cos\theta$$

<u>Case(v)</u>: In the above case if θ is the angle made by \vec{V}_i with wall then $|\Delta P| = 2mv \sin \theta$

Newton's Second law: \mathbb{PP}

- 1. The rate of change of momentum of a body is directly proportional to the external force and the change in momentum takes place in the direction of the force.
- Newton's second law of motion leads to a formula useful for measuring force. $\overline{F} = m \overline{a}$. 2.
- 3. Force is a vector. It is always in the direction of change in momentum. Force is also always in the direction of acceleration.
- 4. SI unit of force is *newton* (N). If a force acting on a mass of 1 kg produces in it an acceleration of 1 m s⁻² in its direction, it is called a *newton*.
- CGS unit of force is dyne. If a force acting on a mass of 1 gm produces in it an acceleration of 5. 1 cm s⁻² in its direction, it is called a *dyne*.
- One *newton* = 10^5 dyne. 6.

 Gravitational units of force: kilogram weight (kg.wt) and gram weight (gm.wt) are called the gravitational units of force. 1 kg.wt or kg. f = 9.8 N, 1 gm.wt or gm.f = 980 dyne.
8. To calculate a force ' <i>F</i> ', there are several useful variants of the formula $\overline{F} = m \overline{a}$.
9. $F = \frac{mv - mu}{t}$, 10. $F = m\frac{dv}{dt}s$, 11. $F = v\frac{dm}{dt}$
 Derivation of F = ma : Consider a body of mass 'm' moving with initial velocity u. Let a force F acts on the body for time 't' so that the velocity of the body after time 't' is v.
$F \qquad m \qquad u \qquad F \qquad m \qquad v \qquad f \qquad t = t$
Initial momentum of the body (P,) = m u
Final momentum of the body (P_f) = m v
Now, change in momentum of the body = $P_f - P_i = mv - mu = m(v - u)$
Time taken for this change in momentum = $(t - 0) = t$
∴ Rate of change of momentum = $\frac{\text{change of momentum}}{\text{time taken}} = \frac{m(v-u)}{t} = m a$
$\left(\because \mathbf{a} = \frac{(\mathbf{v} - \mathbf{u})}{\mathbf{t}} \right)$
Example-1
 Two forces having magnitude 3F and 2F, when act in the same direction simulataneously on a body gives a net force equal to 25 N. Find the value of F. Solution : Net force = sum of the two forces = 3F + 2F = 5F
$\therefore 5F = 25$ $\Rightarrow F = \frac{25}{5} = 5N$
Example-2: A car changes its speed from 20 km h ⁻¹ to 50km h ⁻¹ of mass 3600 kg in 5s. Determine the net external force applied on the car.
Solution: $F = m \left(\frac{v - u}{t} \right) = 3600 \left(\frac{50 - 60}{5} \right) \times \frac{15}{18}$
$= 600 \times 30 = 1800 \text{ N}.$
Example-3: If a force of 50 N is applied on a body and it is still at rest then find the magnitude of static fricational force acting on it.
Solution: The magnitude of the force acting on the body (f) = 50 N. Due to application of this force, the body tends to move but is not set in motion.
VIII - CLASS 50

and hence, the applied force is equal in magnitude and opposite in direction to static firctional force. \therefore The magnitude of static frictional force = 50 N. Example-4: The speed of a car weighing 1000 kg increases from 36 km/h to 108 km/h. Calculate the change in momentum. Mass of the car (m) = 1000 kgSolution: initial velocity (v) = 36 km / h (1 km/h = 5 / 18 m/s)= 36 x 5/ 18 m/s = 10 m/sFinal Velocity (v) = 108 km/h = 108 x 5 / 18 m/s $= 6 \times 5$ = 30 m/sChange in momentum = mv -mu = m(v - u)= 1000 (30 - 10) $= 1000 \times 20$ =20000 Example-5: An object requries the force of 100 N to gain an acceleration 'a'. If the mass of the object is Foundat 500 kg what will be the value of 'a'? Solution: According to the question, mass (m) = 500 kg, Force (F) = 100 N, Acceleration (a) = ?Force = Mass x Acceleration We know that. Or F = m x a Therefore, 100 N = 500 kg x aa = 100 N / 500 kg $a = 100 \text{ kg ms}^{-2} / 500 \text{ kg}$ a = 0.2 ms⁻² Thus, acceleration of the vehicle = 0.2 ms⁻² Example-6: A Hockey player hits a ball (m = 100 g) lying on ground with his stick. It is found that the ball starts moving with a velocity of 40 ms⁻¹. Find a) The impluse of the force exerted by the stick on the ball. b) If the stick was in contact with the ball for 1 ms then find the magnitude of the force acting on the ball Solution: a) Impulse = F x t = ma x t $m = \frac{(v-u)}{t} \times t = m (v-u)$ =0.1 kg (40 ms-¹ - 0) $= 4 \text{ kg ms}^{-1}$ b)I = F x t

 $4 \text{ kg ms}^{-1} = F \times 1 \times 10^{-3} \text{ s}$ $F = \frac{4 \, kgms^{-1}}{1 \times 10^{-3} \, s}$ $= 4 \times 10^{3} \text{ kgms}^{-2}$ $F = 4 \times 10^3 N$ Example-7: When a car weighing 800 kg was moving on a horizontal road with 30 ms⁻¹ velocity its breaks stopped working. The car came to rest after travelling a distance of 150 m. Find i) the retardation of the car ii) frictional force exerted by the ground on the car . **solution:** i) Given u = 30 ms-1v = 0s = 150 m a = ? We know that $v^2 = u^2 + 2as$ $0 = (30)^2 + 2 x a x 150$ \Rightarrow -300 a = 900 ÷. a = -3 ms-² ÷. lation ii) We know that F = ma = 800 x - 3F = -2400 N Negative sign implies that it is a retardation force. This force which opposes the motion of a car on the ground is a frictional force. Frictional force exerted by ground on car = 2400 N. *.*. Example-8: If a bullet of mass 5 g moving with a velocity of 100m/s penetrates a wooden block upto 6cm. Find the average force imposed. Solution: u = 100 m/s. v = 0 $S = 6 \times 10^{-2} m$, a = ? $v^2 - u^2 = 2as$ $0^2 - (100)^2 = 2 \times a \times 6 \times 10^{-2}$ $a = \frac{-100 \times 100}{2 \times 6 \times 10^{-2}}$ $a = \frac{-1}{12} \times 10^6 \text{ m/s}$ $F = ma = 5 \times 10^{-3} \times \left[\frac{-1}{12} \times 10^{6}\right]$ $F = \frac{-5000}{12} = -417 N$ Retarding force F = 417 N

Example-9:

batsman hits 150 gm ball moving horizontally at 20m/s back to bowler at 12m/s. If contact of

cricket ball lasts for $\frac{1}{25}$ sec with the bat, find the average force that the bats man exerts

Solution. The change in momentum of ball

 $\Delta p = m(v - u) = 150 \times 10^{-3} [20 - (-12)]$

 $= 32 \times 15 \times 10^{-2} = 4.8N \times S$

given, $\Delta t = \frac{1}{25} \sec$ \therefore $F = \frac{\Delta p}{\Delta t} = 120N$

Example-10:

A force produces acceleration 16 m/s² in a mass 0.5 kg and an acceleration 4.0 m/s² in an unknown mass when applied seperately. If both masses are tied together, what will be the acceleration under same force?

Solution. Force is, $F = ma = 0.5 \times 16 = 8$ N when both masses are joined and same force act,

acceleration is
$$a' = \frac{F}{m+m'} = \frac{8}{0.5+8/4} = \frac{8}{2.5} = 3.2m/s^2$$

Example-11:

A force of 100 dyne acts on a mass of 5 grams for 10 sec. Find the velocity produced.?

Solution :
$$a = \frac{F}{m} = \frac{100}{5} = 20 \text{ cm}/\text{s}^2$$

v = u + at

 $v = 0 + 20 \times 10 = 200$ cm/sec.

Example -12:

elt at the rat 2 m⁴ Gravel is dropped on a conveyer belt at the rate of 0.5 kg/sec. Find the extra force required in Newton to keep the belt moving at 2 m/sec.

Solution :

 $F = \left(\frac{dm}{dt}\right) \times v$ $F = 0.5 \times 2 = 1 N$

Example -13

A body of mass 5 kg starts from the origin with an initial velocity of $\overline{U} = (30i + 40j) \text{ m/s}$. A constant

force of $F = (-\hat{i} - 5\hat{j})N$ acts on the body. Find the time in which the y-component of the velocity becomes zero.

Solution :

 $\overline{u} = 30i + 40j....(1)$ $u = u_x \hat{i} + u_y \hat{j}$ (2)

 $F = -\hat{i} - 5\hat{j}$(3)

 $\mathbf{F} = \mathbf{F}_{\mathbf{x}}\hat{\mathbf{i}} + \mathbf{F}_{\mathbf{y}}\hat{\mathbf{j}}....(4)$

comparing (1) and (2), (3) and (4)

we have $u_{v} = 40 \text{ m/s}$ $F_{..} = -5N$ $F_v = ma_v$ $a_y = -1 m/s^2$ $v_v = u_v + a_v \times t$ $0 = 40 - 1 \times t$ t = 40 sec

Example -14

A satellite in force free space sweeps stationary interplanetary dust at a rate $\frac{dM}{dt} = \alpha v$ where m is mass, v is the velocity of the satellite and α is a constant. What is the deceleration of the satellite.

Solution :

$$F = \frac{dp}{dt} \implies F = v \cdot \frac{dM}{dt}$$
$$F = v(\alpha v) \implies F = \alpha v^{2}$$

 $Ma = \alpha v^2$

$$a = \frac{\alpha v^2}{M}$$

Example -15

ubjected to -t from = A particle of mass 0.3 kg is subjected to a force F = kx with k = 15 N/m. What will be its initial acceleration, if it is released from a point 20 cm away from the origin?

Solution :

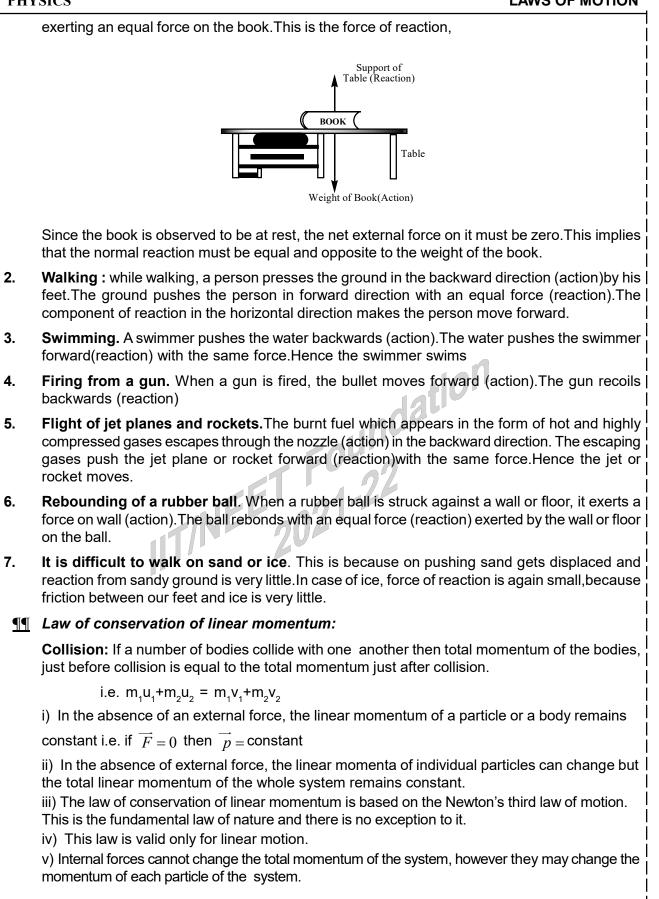
$$a = \frac{F}{M} = \frac{kx}{M} = \frac{15 \times 0.2}{0.3} = 10 \text{ m/s}^2$$

TEACHING TASK

Single correct option questions:

- A force of 100 N acts on a body of mass 2kg fgor 10s. the change in momentum of the body 1. is.....
- A) 100 Ns B) 250Ns C) 500Ns D) 1000Ns
- 2. A mass of 2 kg at rest travels for 4 sec with an acceleratio of 1.5 m/s². The gain of momentum of the body is
- D) 14 kgm/s A) 5 kgm/s B) 10 kgm/s C) 12 kgm/s
- 3. If a constant force acts on a body initially kept at rest, the distance moved by the body in time 't' is proportional to B) t² C) t³ A)t D) t⁴
- A force produces an acceleration of 0.5 m/s² in a body of mass 3.0 kg. If the same force 4.

VIII - CLASS


PHY	YSICS		LAWS OF MOTION	
	acts on a body of mass 1.5 kg the acceleration produced in it is			
	A) 3.0 m/s ² B) 1.0 m/s ²		D) 7 m/s	
5.	The force produces an acceleration of 2	.0 m/s² in a body A	A and 5.0 m/s² in another body B.	
 	The ratio mass of A to the mass of B is			
 	A) 5:2 B) 3:5	C) 2:5	D) 4:5	
6.	A block of mass 2 kg is moving with an a			
Ì	horizontal foce. A similar block of mass 2 two blocks are now moving as a single u			
l	same force continuous to act			
	A) 0.2 m/s^2 B) 0.1 m/s^2	C) 0.5 m/s ²	D) 1 m/s ²	
7.	A block of mass 2 kg is moving on a smo	,	,	
1	zontal force F acts on the body for 2 s d			
	A) 2 N B) 4 N	C) 3 N	D) 1 N	
8.	A force of 1.0 N acts on a body of mass	• •	covers 100 cm in 4 seconds	
1 	moving along a straight line. The initial ve	-		
	A) 2 cm/s B) 4 cm/s	C) 6 cm/s	D) 5 cm/s	
9.	If a force of 15 N acts upon a mass of 20 velocity does it generate in 8 s	kg kept on a smo	Soln nonzontal surface, what	
	A) 5 m/s B) 3 m/s	C) 1 m/s	D) 6 m/s	
10.	A block of mass 2 kg is lying on a smoth	,	,	
	starts acting on the block and speed of t			
	Find F	17		
	A) 10 N B) 7 N	C) 9 N	D) 5 N	
 11.	An open carriage in a goods train is mov	ving with a uniform	n velocity of 5 ms ⁻¹ . If the rain adds	
	water with zero velocity at the rate of 5 kg s ⁻¹ , then the additional force applied by the engir			
	maintain the same velocity of the train is	<u><u> </u></u>		
ļ	A) 0.5 N B) 2.0 N	C) 50 N	D) 25 N	
12.	A balloon has 8 gram of air. A small hole			
	7cm/s. If the balloon shrinks in 5.6 sec t		-	
 13.	A) 10 ⁻⁴ N B) 10 ⁻² dyne C Bullets of 0.03 kg mass each hit a plate a) 56 dyne	D) 10^{-6} N	
15.	30 m/s. They average force acting on the			
	A) 120 B) 180	C) 300	D) 480	
14.	A machine gun fires a bullet of mass 40	••••	•	
l	exert a maximum force of 144 N on the	gun. How many b	oullets can he fire per second at the	
	most? A) One B) Three	C) Two	D) Four	
i Mor	A) One B) Three <i>re than one correct option questions</i>	C) Two	D) Four	
<u></u> ♦	This section contains multiple choice quest	tions. Each questio	on has 4 choices (A), (B), (C),(D),	
(out of which ONE or MORE is correct. Choo	—		
15.	Choose the correct option	-		
l	a) The acceleration produced in a body is	directly proportion	nal to the force acting on it	
	b)The acceleration produced in a body is inv	ersely proportional t	to the mass of the body	
	c) 1 newton = 10⁵ dyne d) 1 new	ton = 1 kg ms ⁻²		
	A) a,b,c B) a,b C	C) a,b,d	D) all	
16.	1 gm weight =			
	• •)9800gm/s²	d) 98 dynes	
		a,b,d correct	D) all correct	
. VIII	- CLASS		55	

	isies			
17.	Which of the following are c	orrect?		
	a) F=ma b) F = $u \frac{dm}{dt}$	c) F=u dm X dt	d) P=mv	
	A) a,b,c B) b,c,d	C) a,b,d	D) all	
Ass	ertion - A and Reason - R:			İ
*	This section contains certain n (Assertion) and Statement – 2 which ONLY ONE is correct (2 (Reason). Each quest	ion has 4 choices (A), (B),	
	A) Both A and R are true andB) Both A and R are true andC) A is true but R is false.	R is not correct expla D) A is false	nation of A. but R is true	
18 	A: If the velocity of a body is R: Momentum is the product			İ
19.	A: Newton's second law give	es the measurement of	•	
	R: Newton's first law gives the			
20.	A: Newton's second law give	•		ļ
i	R: Newton's second law give	es the concept of inerti	a.	l
Mat	ch the following			. I
 	This section contains Matrix- in two columns which have to matched with statements (p, appropriately bubbled as illu	o be matched. Statemer q, r, s) in Column–II . T estrated in the following	nts (A, B, C, D) in Column - he answers to these quest example.	- I have to be tions have to be
	If the correct matches are A-p should be as follows:	,A-s,B-r,B-r,C-p,C-q and	d D-s,then the correct bubl	oled 4*4 matrix
21.	Set-A	EE 01-	Set-B	
	a) Initial momentum of body		iv-mu	l
	b) Rate of change of momer	ntum 2) m	(v-u)/t	
	c) change in momentum of t	pody 3) m	V	
	d) final momentum of body	4) m	IU	
	A) a-1,b-4,c-2,d-3	B) a-3,b-1,c-2,d-4		
	C) a-2,b-1,c-4,d-3	D) a-4,b-2,c-1,d-3		
<u>Cor</u>	nprehension type questions			l
•	This section contains paragro be answered. Each question correct. Choose the correct op	has 4 choices (A) , (B) ,		
22.	A body of mass 10kg is at res horizontally. Due to the action i) Final momentum of the bo	of force body moves with		a force of 20N
	A) 0 B) 300 kgm ii) Initial momentum of body	/s C) 30kg m/s	s D) 2000 kgm/s	;
	A) 0 B) 200kgm/ iii) Acceleration of the body is	's C) 300 kgm	/s D) 7.5kgm/s.	
	A) $1m/s^2$ B) $5m/s^2$	C) 2m/s ²	D) 10m/s ²	
VIII	- CLASS			56

	LEARNER'S TASK
	◆ II ◆ <u>BEGINNERS</u> ◆ II ◆
<u>Sing</u>	le correct option questions:
1.	A body of mass 10kg moves with a velocity of 2m/s. Its momentum is kgm/s
	A) 20 B) 10 C) 5 D) None
2.	A body of mass 10kg moves with a velocity of 50cm/s its momentum is
_	A) 5kgm/s B) 7kg/s C) 10kgm/s D) none
3.	A force of 100N applied on a body of mass 20kg at rest. What is the acceleration acquired by
	the body? A) $2m/a^2$ D) $4m/a^2$
4.	A) 2m/s²B) 4m/s²C) 5m/s²D) 10m/s².What will be the force required to accelerate rocket of mass of 50kg by 15m/s² ?
4.	A) 750 N B) 0.3 N C) 65 N D) 35 N
5.	A body of mass 2 kg is sliding with a constant velocity of 4 m/s on a friction less horzontal
0.	table. Find the force required to keep the body moving with he same velocity
~	A) 0 B) 2 N C) 4 N D) 1 N
6.	Find the amount of force required to impart an acceleration of 2 m/s ² in a body of mass 1.5
	kg lying on a smooth horizpntal surface A) 1 N B) 2 N C) 3 N D) 4 N
7.	A constant horizontal force F imparts an accelertion of 1 m/s ² in a block of mass 500 g lynig
	on a horzontal surface. The force is
	A) 0.1 N B) 0.4 N C) 0.2 N D) 0.5 N
8.	A force produces an acceleration of 5.0 cm/s ² when it acts on a body of mass 20 g. The
	force in netwon is
	A) 2 x 10 ⁻³ N B) 4 x 10 ⁻³ N C) 1.0 x 10 ⁻³ N D) 5 x 10 ⁻³ N
Э.	Find the amount of force required to produce an acceleration of 3 cm/s ² in a body of mass
	250 g
	A) 75 x 10 ⁻⁴ N B) 25 x 10 ⁻⁴ N C) 50 x 10 ⁻⁴ N D) 15 x 10 ⁻⁴ N
10.	If same force is applied on the bodies of masses 2kg and 3kg, what is the ratio of their
	accelerations ?
	A) $a_1 : a_2 = 1 : 2$ B) $a_1 : a_2 = 3 : 2$ C) $a_1 : a_2 = 2 : 3$ D) $a_1 : a_2 = 2 : 1$
11.	A force acts on a particle of mass 200 g. The velocity of the particle changes from 15 m/s to
	25 m/s in 2.5 sec. Assuming the force to be constant, it magnitude is A) 0.4 N B) 0.6 N C) 0.8 N D) 0.5 N
12.	A force acting on a particle of mass 200 g displaces it through 400 cm in 2 sec. The magni-
14.	tude of the force if the initial velocity of the particle is zero is
	A) 0.1 N B) 0.3 N C) 0.4 N D) 0.5 N .
13.	A block of metal weighing 2 kg is resting on a frictionless plane. It is struck by a jet releasing water
	at a rate of 1 kg s ⁻¹ and at a speed of 5 ms ⁻¹ . The initial acceleration of the block will be
	A) 2.5 ms ⁻² B) 5.0 ms ⁻² C) 10 ms ⁻² D) 10 ³ km h ⁻²
14.	An open carriage in a goods train is moving with a uniform velocity of 10 ms ⁻¹ . If the rain adds water with zero velocity at the rate of 5 kg s ⁻¹ , then the additional force applied by the engine to maintain the same velocity of the train is
	A) 0.5 N B) 2.0 N C) 50 N D) 25 N
VIII	CLASS 57

				_
 		IEVERS • II •		
	re than one correct option questions			
● 	This section contains multiple choice que out of which ONE or MORE is correct	=		
15.	1 Newton =			
	a) 1 kgm/s ² b)1000g×100cm/s ²	c) 100000gcm/s²	d) 10⁵gcm	
	A) a,b,c correct B) a,b correct	C) a,b,d correct	D) b, c correct	
16.	The unit of momentum			
1	a) gcms ⁻¹ b) gcms ⁻²	c) kgms⁻¹	d) kgms ⁻²	
İ.	A) a,b,c correct B) a,c correct	C) a,b,d correct	D) b, c correct	
17.	Choose the correct option			
	a) P=mv b) $a = \frac{v-u}{t}$	c) v=Pm	d) V = $\frac{a-u}{t}$	
 	c		e	
	A) a,b,c B) a,b	C) a,b,d	D) b, c	
18. 	linear momentum of a body is the pr a) velocity b) volume		d)area	
	A) a,b,c correct B) a,b correct		D) a, c correct	
Ass	ertion - A and Reason - R:	•) •,•,•,•	_, _,	
•	This section contains certain number of	f questions. Each quest	tion contains Statement – 1	
	(Assertion) and Statement – 2 (Reasor			
	of which ONLY ONE is correct Choose	e the correct option.		
l	A) Both A and R are true and R is the	correct explanation fo	r A.	
	B) Both A and R are true and R is not			
	C) A is true but R is false.	D) A is false but R is	strue.	
19.	A: Momentum is a vector quantity.	01-6		
 20.	R: p=mv. A: Mass is the measure of force.	2016		
20.	R: Mass is the measure of inertia.			
21.	A: Force is the rate of change in mor	nentum.		
	R: Foce is a vector quantity.			
<u>Mat</u>	<u>ch the following</u>			
♦	This section contains Matrix-Match Typ		-	
1	in two columns which have to be mate matched with statements (p, q, r, s) in (• • •		
	appropriately bubbled as illustrated i		-	
	If the correct matches are A-p,A-s,B-r,E	3-r,C-p,C-q and D-s,then	the correct bubbled 4*4 matrix	
	should be as follows:			
22.	Physical quantity	S.I unit		
 	a) Displacement	1) m/s		
I 	b) Speed	2) N		
İ	c) Force d) momentum	3) m 4) Ns		
	A) a-1,b-4,c-2,d-3 B) a-3,b-1,c-2,d-4	,	D) a-4.b-1.c-3.d-2	
<u>C</u> on	nprehension type questions:		_, ~ .,~ ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č ., č	
•	This section contains paragraph. Base	ed upon each paragrap	oh multiple choice questions	
 	have to be answered. Each question l	has 4 choices (A) , (B) ,		
	ONE i s correct. Choose the correct opt	ion.		_
VIII	- CLASS		58	,

	YSICS		LAWS OF MOTION
23.	A ball of mass 2kg moving with an initial ve velocity becomes 6ms ⁻¹ .	locity 5m/s is hit b	y a bat for 0.1s, then the ball
	i) Find the initial momentum of the ball in kgr	ms⁻¹	
	A) 5 B) 10	C) 1.25	D) 2.5
	ii) Find the final momentum of the ball in kgn A) 5 B) 10	ns⁻¹ C) 12	כ (ח
	iii) Find the change in momentum of the ball	,	D) 2.
	A) 0.5 B) 1	C) 2	D) 4
	iv) Find the force acted on the ball in newton		-
	A) 5 B) 10	C) 15	D) 20
	KEY		
ፙ	TEACHING TASK :		
$\Phi\Phi$	1) D, 2) C, 3) B, 4) B, 5) A, 6) C, 13) B, 14) B, 15) D, 16) B, 17) C, 18) C LEARNER'STASK : BEGINNERS :		
	1) A, 2) A, 3) C, 4) A, 5) A, 6) C, 13) A, 14) C,	7) D, 8) C, 9)	A, 10) B, 11) C, 12) C,
	ACHIEVERS :	Int	V
_	15) D, 16) B, 17) B, 18) D, 19) B, 20) D), 21) B, 22) B, 23	3) i) B, ii) C, iii) C, iv) D
\mathbb{PP}	Newton's Third Law:	27	
	To every action there is always an equal and	opposite reaction	
I.	Action and reaction do not occur on the saminstant of time.		different bodies at same
II.	Action and reaction, known as pair of forces acting on diffrerent bodies in interaction. So		
	Limitation of Newton's Third law		
	a) Newtons third law is not strictly applicable for	or the interaction be	tween two bodies seperated by
	larger distances, of the order of astronomical u		
	b) It does not apply strictly when the objectsc) It does not apply where the gravitational figure	•	• •
	Characterstics of action and reaction :	elus ale very strong	j.
	1) Action and reaction are equal in magnitud	e and opposite in di	irection
	2) Action and reaction do not act on the sam	•	•
	3) Action and reaction are mutual and simulta		s they always exist in
	pairs and one exists only as long as the other 4) The force of action and reaction may appe		vsical contact of the two bodies
	or even from a distance. But they are always		
			-
	5) When taken together action and reactio	n be come internal	forces.
	5) When taken together action and reaction Some of the examples of Newton's third		
1.	,	law of motion are e exerts a force on t	given below: the table, which is equal to the

vi) Motion of a rocket, firing of a bullet from a gun and explosion of a shell fired from a cannon are some examples where we can apply the law of conservation of linear momentum

<u>§§</u>

APPLICATIONS OF THE PRINCIPLE OF CONSERVATION OF LINEAR MOMENTUM 1) Recoiling of a gun. When a bullet is fired from a gun, the gun recoils i.e. moves in a direction opposite to the direction of motion of the bullet. The recoil velocity of the gun can be calculated from the principle of conservation of linear momentum.

Suppose m_1 = mass of bullet,

 m_{2} = mass of gun,

 \vec{v}_1 = velocity of the bullet,

 \vec{v}_2 = velocity of recoil of the gun.

Before firing, the gun and the bullet both, are at rest. Therefore, total linear momentum before firing = 0. Therefore, total linear momentum before firing = 0. The vector sum of linear momenta on firing $m_1 \vec{v}_1 + m_2 \vec{v}_2 = 0$. According to the principle of conservation of linear momentum, total linear momentum after firing should also be zero.

$$\therefore \mathbf{m}_1 \mathbf{\vec{v}}_1 + \mathbf{m}_2 \mathbf{\vec{v}}_2 = \mathbf{0}$$

or $m_2 \vec{v}_2 = -m_1 \vec{v}_1$ (25)

or
$$\vec{v}_2 = -\frac{m_1 \vec{v}_1}{m_2}$$
(26)

Foundation The negative sign shows that direction of \vec{v}_2 is opposite to the direction of \vec{v}_1 i.e. the gun recoils. Further, as $m_2 > m_1$ therefore , $\vec{v}_2 \ll \vec{v}_1$ i.e. velocity of recoil of the gun is much smaller than the velocity of the bullet .

From eq. (26), $V_2 \propto \frac{1}{m_2}$

It means that a heavier gun will recoil with a smaller velocity and vice-versa. Initial K.E of the system is zero, as both the gun and the bullet are at rest. Final K.E. of the

system = $\left(\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2\right) > 0$. Thus K.E of the system increases (and is not constant).

If P.E. is assumed to be constant, mechanical energy(=K.E = P.E) will also increase.

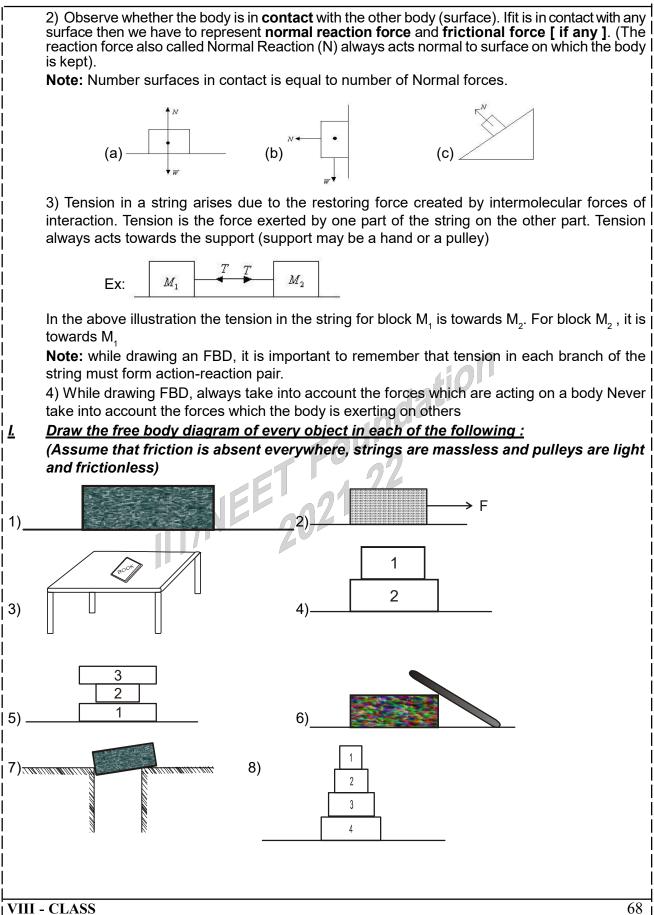
As M.E. is conserved, therefore, chemical energy of gun powder must have been converted into K.E.

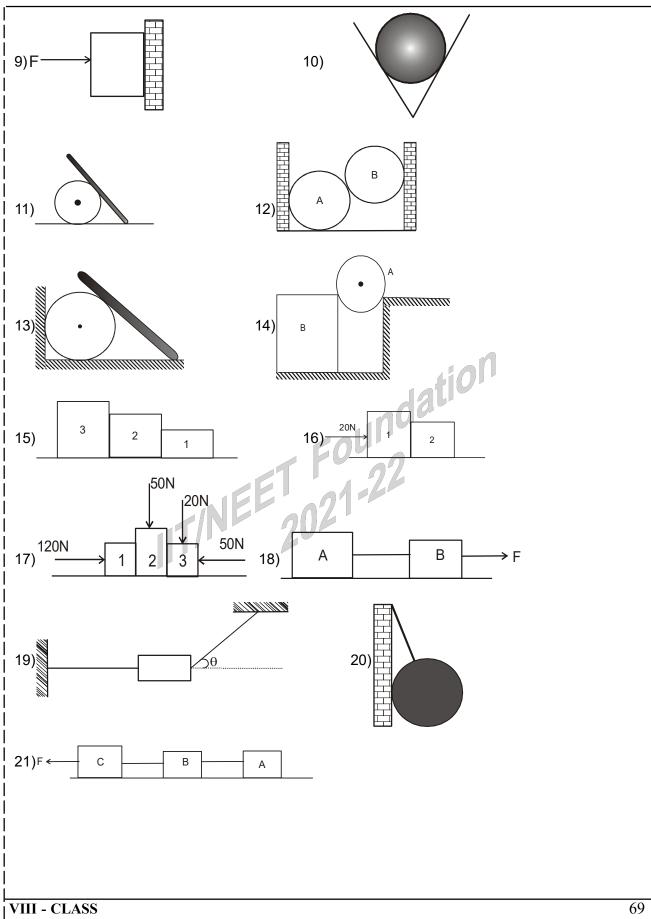
While firing the gun must be held tightly to the shoulder. This would save hurting the shoulder. When the gun is held tightly, the body of the shooter and the gun behave as one body. Total mass becomes large and therefore, recoil velocity of the body and the gun becomes too small.

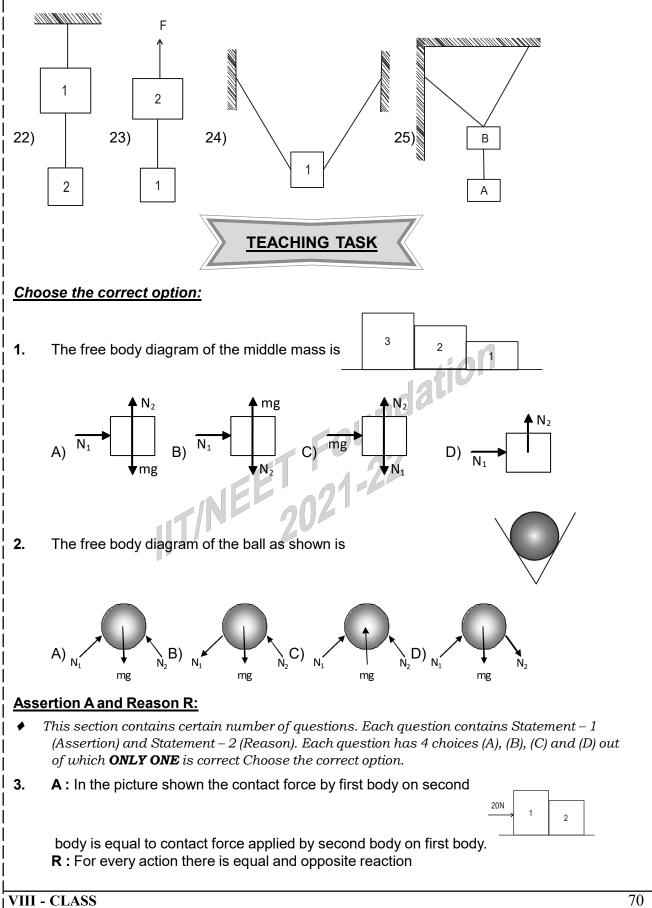
2) Flight of rockets and jet planes. In rockets and jet planes, the fuel is burnt in the presence of some oxidising agent in combustion chamber. The hot and highly compressed gases escape through the narrow opening (i.e., exhaust nozzle) with large velocity. As a result of it, the escaping

PHYSIC	CS LAWS OF MOTION
•	ases acquire a large backward momentum. This in turn, imparts an equal forward momentum the rocket in accordance with the law of conservation of linear momentum.
sh	Then a man jumps out of a boat to the shore, the boat is pushed slightly away from the nore. The momentum of the boat is equal and opposite to that of the man in accordance with e law of conservation of linear momentum.
an ho	xplosion of bomb. When a bomb falls vertically downwards its horizontal velocity is zero and hence its horizontal momentum is zero. When bomb explodes, its pieces are scattered prizontally in different directions so that the vector sum of momenta of these pieces becomes zero in accordance with the law of conservation of linear momentum.
	EXAMPLE
of	man weighing 60 kg runs along the rails with the velocity of 18 km hr-1 and jump in to a car the mass 1 quintal standing on the rails. calculate the velocity with which the car will start avelling along the rails.
	ere, mass of man, m ₁ = 60 kg.
	itial velocity of man, u ₋₁ 18 km/ 1 h = 18 x 1000 m / 60 x 60 s = 5 ms ⁻¹
	ass of a car, $m_2 = 1$ quintal = 100 kg.
Ini	itial velocity of a car, $u_{-2} = 0$
	After a man jumps into a car, let their common velocity be v
То	Applying the principle of conservation of momentum otal momentum after jump = Total momentum before jump
	$(m_1 + m_2) v = m_1 u_1 + m_2 u_2$
	$(m_1 \cdot m_2) \cdot (m_1 \cdot m_2 \cdot m$
	$(60 \times 100) v = 60 \times 5 + 100 \times 0$
	$(60 \times 100) v = 60 \times 5 + 100 \times 0$
	OR $v = \frac{500}{160} = 1.8$
so	toy rocket weighing 500 g is standing vertically on ground .How much force should act on it that it starts ascending with a uniform acceleration of 5 ms ⁻² (Take g = 10 ms ⁻²)
	go up, the upwards force should acting on the rocket must be greater than its weight 'mg'.
Ne	et force acting on rocket
Β.	$F_{net} = F_{up} - mg \tag{i}$
Ву	y Newton's II law,
Fr	F _{net} = ma (ii) rom equation (i) and (ii),
	F_{ub} - mg = ma
	$F_{\rm up} = mg + ma$
	$= m(g + a) = 0.5 \text{ kg} (10 + 5) \text{ ms}^{-1} = 0.5 \text{ x} 15 \text{ kgms}^{-2}$
	= 7.5 N
2n	wo body s of mass 4 kg , 8kg are traveling in the same direction with a speed of 4 m/s and n/s they collide as a result of their collision 8 kg object start moveing with 8 m/s in the ame direction so the speed of 6 kg mass of the body after collision
Sol: m₁	
	$u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$
6 :	$x 4 + 8 x 2 = 6 x v_1 + 8 x 8$
VIII - C	

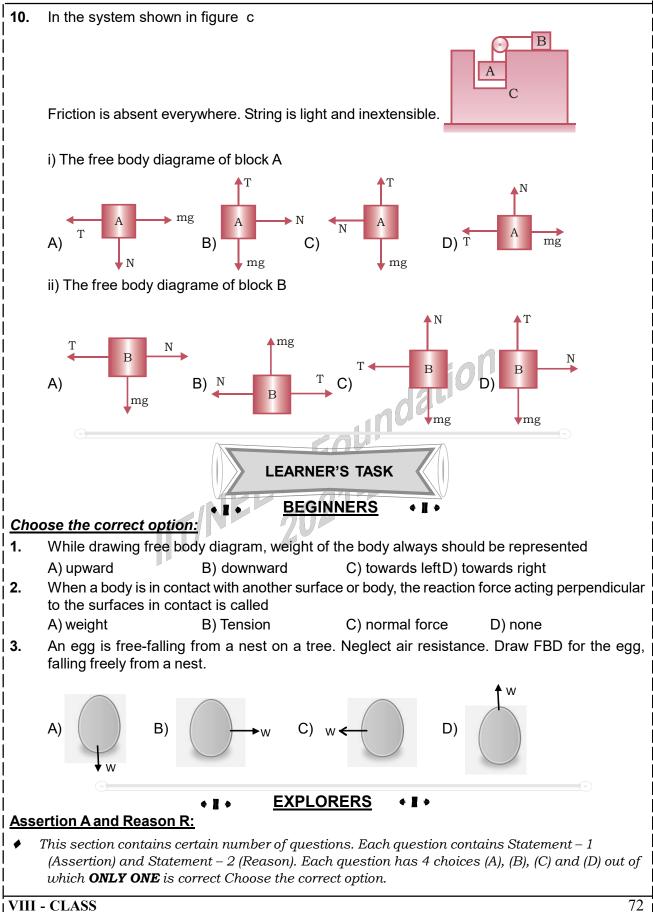
 $24 + 16 = 6v_1 + 64$ $= 40 - 64 = 6v_1$ v₁ = -24/6 = -4m/s Ex-4: A gun fires a bullet of mass 100 g with a velocity of 60 m/s becauseof this gunpush back with a velocity of 2 m/s then the mass of the gun is ? **Sol:** M = ? $m = 100g = 100 \times 10^{-3} kg$ V = 2 m/sv = 60 m/sMV = -mvM = - mv /V = $60 \times 100 \times 10^{-3} kg$ /2 = 3 kg Ex 5: Bullet of mass of 40 g is fired from a Riffle of mass 16 kg with a velocity 200 m/s the recoli velcity of gun? $m=40q = 40 \times 10^{-3}kq$, V=? **Sol** : M = 16kg, $v = 200 \text{ms}^{-1}$ MV=-mv $\mathsf{V}=\frac{-mv}{M}=-\frac{40\times10^{-3}\times200}{16}\Rightarrow\frac{1}{4}\Rightarrow0.25ms^{-1}$ TEACHING TASK Single correct option questions: A base ball of mass 150 gm travelling at 20 m/s is caught by a fielder and brought to rest in 1. 0.04s. the force applied to the ball and the distance over which this force acts are respectively C) 75 N. 0.4 m A) 75 N, 0.8 m B) 37.5 N, 0.4 m D) 37.5 N. 0.8 m A ball of mass 0.05 kg travelling at 4 ms⁻¹ hits a wall and rebounds without any change in its 2. speed. If the ball remains in contact with the wall for 0.01 s, then the force exerted by the ball on the wall is A) 0.05N B) 0.01N C) 50 N D) 40 N 3. A 6 kg mass 'A' moving with a velocity of 2 m/s collids with a 4 kg mass 'B' moving with a velocity of 1.5 m/s in the opposite direction in a straight line. If the two mass get stuck, then the velocity of the combination is A) 0.4 m/s B) 0.2 m/s C) 0.1 m/s D) 0.6 m/s A 6kg mass collides with a body at rest. After collision they travel together with a velocity one 4. third the velocity of 6 kg mass. The mass of the second body is A) 6 kg D) 18 kg B) 3 kg C) 12 kg A shot moving with a velocity 140 ms⁻¹ collides a wooden block and comes to rest in it. If 5. mass of the block is 13 times the mass of the shot, velocity of the block is A) 14ms⁻¹ B) 10 ms⁻¹ C) 4 ms⁻¹ D) 2.5ms⁻¹ 6. Two bodies of masses 2kg and 4kg travelling in same direction with speed 6m/s and 2m/s collide. As a result of this collision 4kg object starts moving with 4m/s in same direction. Speed of 2kg body after collision is A) 1m/s B) 2m/s C) 3m/s D) 4m/s

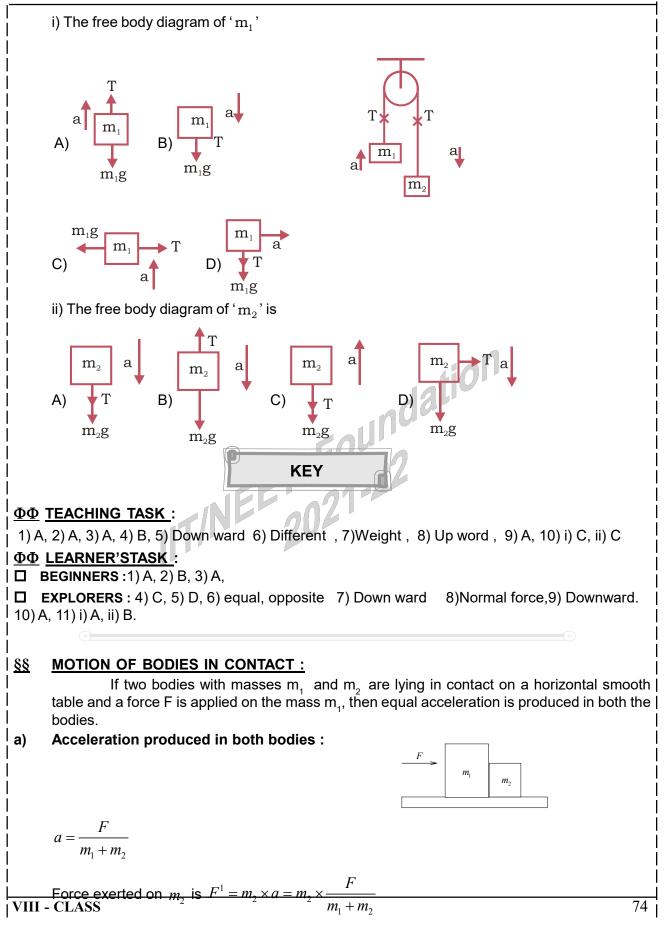

<u>Mor</u> ♦			
•	<u>e than one correct optic</u>	<u>on questions</u>	
	This section contains mul	ltiple choice questions. Each qu	estion has 4 choices (A), (B), (C),(D),
	out of which ONE or M	ORE is correct. Choose the corr	ect options
7.	The change in moment	um per unit time of a body rep	resents
1.	•	ssxacceleration c) Impulse	
	, , ,	, .	d) velocity.
0		d correct C) a,b,d correc	ct D) all correct
8.	Regarding linear mome	antity of motion contained by th	ha hady
		m is the measure of impulse	le body
		ation act in opposite direction t	to the change in momentum
		n circular motion the linear mo	
	A) a,b,c correct B) a,b (
9.	Which of rthe following		,
	a) Action reaction pairs	acts on a same body.	
		e principle of newton's third	law and law of conservation of linear
	momentum.		
		acts on different bodies.	
	,	rinciple of newton's second law ar	
	A) a,b,c B) a,b	C) a,b,d	D) all
	ertion - A and Reason - I		4
•			question contains Statement – 1
		–	has 4 choices (A), (B), (C) and (D) out of
	which ONLY ONE is corr	rect Choose the correct option.	dau
	A) Both A and R are true	e and R is the correct explanat	ion for A.
		e and R is not correct explanat	
	,	e. D) A is false but R is t	
10.			en the net force is measured by the
	total change inmomentu		,
	•	m and force are numerically e	gual.
11.		e is an equal and opposite read	
	-	rnal force the linear momentum o	
1/~+	ch the following.		5
ivia L			
<u>iviat</u> ♦	This section contains Ma	ıtrix-Match Tupe questions. Eac	h question contains statements aiven
<u>iviat</u> ♦			h question contains statements given . B. C. D) in Column–I have to be matched
	in two columns which ha	ve to be matched. Statements (A	, B, C, D) in Column–I have to be matched
<u>₩аι</u> ♦	in two columns which ha	we to be matched. Statements (A s) in Column–II . The answers to	, B, C, D) in Column–I have to be matched
<u>₩a</u>	in two columns which ha with statements (p, q, r, s bubbled as illustrated ir	we to be matched. Statements (A s) in Column–II . The answers to n the following example.	, B, C, D) in Column–I have to be matched these questions have to be appropriately
<u>iviat</u> ♦	in two columns which ha with statements (p, q, r, s bubbled as illustrated ir	we to be matched. Statements (A s) in Column–II . The answers to n the following example.	, B, C, D) in Column–I have to be matched
*	in two columns which ha with statements (p, q, r, s bubbled as illustrated ir If the correct matches are should be as follows:	we to be matched. Statements (A s) in Column–II . The answers to n the following example. re A-p,A-s,B-r,B-r,C-p,C-q and D	, B, C, D) in Column–I have to be matched these questions have to be appropriately
•	in two columns which have with statements (p, q, r, s bubbled as illustrated ir If the correct matches are should be as follows: Set-A	we to be matched. Statements (A s) in Column-II . The answers to n the following example. re A-p,A-s,B-r,B-r,C-p,C-q and D Set-B	, B, C, D) in Column–I have to be matched these questions have to be appropriately
•	in two columns which have with statements (p, q, r, s bubbled as illustrated in If the correct matches are should be as follows: Set-A a) momentum	we to be matched. Statements (A s) in Column–II . The answers to n the following example. re A-p,A-s,B-r,B-r,C-p,C-q and D Set-B 1)Ns	, B, C, D) in Column–I have to be matched these questions have to be appropriately
*	in two columns which has with statements (p, q, r, s bubbled as illustrated ir If the correct matches are should be as follows: Set-A a) momentum b) Force	we to be matched. Statements (A s) in Column–II . The answers to n the following example. re A-p,A-s,B-r,B-r,C-p,C-q and D Set-B 1)Ns 2) N	, B, C, D) in Column-I have to be matched o these questions have to be appropriately -s,then the correct bubbled 4*4 matrix
*	in two columns which has with statements (p, q, r, s bubbled as illustrated in If the correct matches are should be as follows: Set-A a) momentum b) Force c) Rocket	we to be matched. Statements (A s) in Column–II . The answers to n the following example. The A-p,A-s,B-r,B-r,C-p,C-q and D Set-B 1)Ns 2) N 3) Variable mass syste	, B, C, D) in Column–I have to be matched o these questions have to be appropriately -s,then the correct bubbled 4*4 matrix em .
*	 in two columns which has with statements (p, q, r, s) bubbled as illustrated in If the correct matches are should be as follows: Set-A a) momentum b) Force c) Rocket d) Table fan 	we to be matched. Statements (A s) in Column–II . The answers to n the following example. The A-p,A-s,B-r,B-r,C-p,C-q and D Set-B 1)Ns 2) N 3) Variable mass syste 4) Isolated mass syste	, B, C, D) in Column–I have to be matched o these questions have to be appropriately -s,then the correct bubbled 4*4 matrix em .
*	in two columns which has with statements (p, q, r, s bubbled as illustrated ir If the correct matches are should be as follows: Set-A a) momentum b) Force c) Rocket d) Table fan A) a-1,b-4,c-2,d-3	we to be matched. Statements (A s) in Column–II . The answers to n the following example. The A-p,A-s,B-r,B-r,C-p,C-q and D Set-B 1)Ns 2) N 3) Variable mass syste 4) Isolated mass syste B) a-3,b-1,c-2,d-4	, B, C, D) in Column-I have to be matched o these questions have to be appropriately -s,then the correct bubbled 4*4 matrix em .
▲	in two columns which has with statements (p, q, r, s bubbled as illustrated in If the correct matches are should be as follows: Set-A a) momentum b) Force c) Rocket d) Table fan A) a-1,b-4,c-2,d-3 C) a-2,b-1,c-4,d-3	we to be matched. Statements (A s) in Column–II . The answers to in the following example. The A-p,A-s,B-r,B-r,C-p,C-q and D Set-B 1)Ns 2) N 3) Variable mass syste 4) Isolated mass syste B) a-3,b-1,c-2,d-4 D) a-1,b-2,c-3,d-4	, B, C, D) in Column–I have to be matched o these questions have to be appropriately -s,then the correct bubbled 4*4 matrix em .
▲	in two columns which have with statements (p, q, r, s bubbled as illustrated ir If the correct matches are should be as follows: Set-A a) momentum b) Force c) Rocket d) Table fan A) a-1,b-4,c-2,d-3 C) a-2,b-1,c-4,d-3 nprehension type quest	we to be matched. Statements (A s) in Column–II . The answers to the following example. The A-p,A-s,B-r,B-r,C-p,C-q and D Set-B 1)Ns 2) N 3) Variable mass syste 4) Isolated mass syste B) a-3,b-1,c-2,d-4 D) a-1,b-2,c-3,d-4	, B, C, D) in Column-I have to be matched o these questions have to be appropriately -s,then the correct bubbled 4*4 matrix em. em.
★	in two columns which has with statements (p, q, r, s bubbled as illustrated ir If the correct matches are should be as follows: Set-A a) momentum b) Force c) Rocket d) Table fan A) a-1,b-4,c-2,d-3 C) a-2,b-1,c-4,d-3 mprehension type quest <i>This section contains pa</i>	we to be matched. Statements (A s) in Column–II . The answers to n the following example. e A-p,A-s,B-r,B-r,C-p,C-q and D Set-B 1)Ns 2) N 3) Variable mass syste 4) Isolated mass syste B) a-3,b-1,c-2,d-4 D) a-1,b-2,c-3,d-4 tions: tragraph. Based upon each par	, B, C, D) in Column–I have to be matched o these questions have to be appropriately -s,then the correct bubbled 4*4 matrix em. em. em.
▲	in two columns which has with statements (p, q, r, s bubbled as illustrated ir If the correct matches are should be as follows: Set-A a) momentum b) Force c) Rocket d) Table fan A) a-1,b-4,c-2,d-3 C) a-2,b-1,c-4,d-3 mprehension type quest <i>This section contains pa</i>	we to be matched. Statements (A s) in Column–II . The answers to in the following example. e A-p,A-s,B-r,B-r,C-p,C-q and D Set-B 1)Ns 2) N 3) Variable mass syste 4) Isolated mass syste B) a-3,b-1,c-2,d-4 D) a-1,b-2,c-3,d-4 tions: tragraph. Based upon each par stion has 4 choices (A), (B),(C) a	, B, C, D) in Column–I have to be matched o these questions have to be appropriately -s,then the correct bubbled 4*4 matrix em .

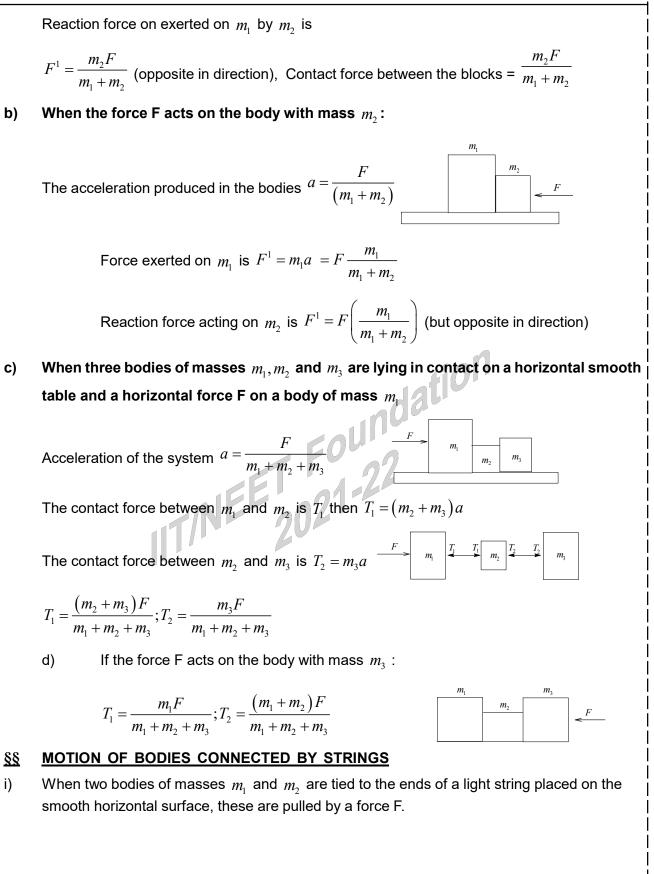

PHY	HYSICS		LAWS OF MOTION
16. 	 If a number of bodies collide with one another the before collision is equal to the total momentum just If Two bodies of masses 1 kg and 3kg travelling in sar collide. As a result of this collision 3kg object start i) Total momentum of the two bodies, just before A) 18 Ns B) 3 Ns C) 27Ns 	t after collision ne direction w s moving wit collision is	on. /ith speed 9m/s and 3m/s h 2m/s in same direction.
	ii) Speed of 1kg body after collision is A) 10m/s B) 12m/s C)	13m/s	D) 4m/s
 			- /
 	LEARNER'S TA		HI •
<u>Sing</u>	ngle correct option questions:		
1. 	A body of mass 300 g is kept at rest breaks into tw mass 200 g is found to move at a speed of 12 m/s part is A) 24 m/s towards the east B) 14 m/s towards	s towards we	
	C) 34 m/s towards the noth D) 54 m/s towards		
2. 	A 2kg shot is fired from a cannon of mass 198 kg the velocity of recoil of the gun is A) –0.5ms ^{–1} B) 0.1ms ^{–1} C) 0.25ms ^{–1}	- 26	y 50 ms ^{–1} w.r.t. the gun. Then) 1 ms ^{–1}
 3. 	A shell of mass M moving with a velocity v explode mass m is left stationary after explosion. The velo	· · ·	•
 4.	A) $\frac{mv}{M}$ B) $\frac{Mv}{m}$ C) $\frac{Mv}{M-m}$ A truck of mass 1200 kg is moving with a speed of truck of mass 1600kg which is stationary. If the two on impact, the speed with which combination move	f 7 ms ⁻¹ whe o trucks are a	n it collides with a second
	A) 2 m/s B) 3 m/s C) 1.5 m/s) 6 m/s
	→ ILI → ACHIEVERS(L	evel - II)	
Solv		<u> </u>	
1	Ive the following: A 1.5kg hammer moving with velocity 10ms ⁻¹ s force exerted on the nail is		, i i i i i i i i i i i i i i i i i i i
6.	A space craft of mass 2000 kg moving with a velo pieces. One piece of mass 500 kg is left stationar	y. The veloci	ty of the other part must be
7.	A bullet of mass 20gm is fired from a riffle of mass of recoil of the refle is	8 kg with a v	relocity of 100m/s. The velocity
8. 	A ball of mass 10 gm hits vertically a hard surface the same speed. The ball remains in contact wit force exerted by the surface on the ball is	h the surfac	e for 1/100 sec. The average
9.	A person weighing 60 kg in a small boat of mass ?	-	-
	the horizontal direction with a velocity of $14 m s^{-1}$. T throw is	he velocity o	f the boat immediately after the
VIII	II - CLASS		65

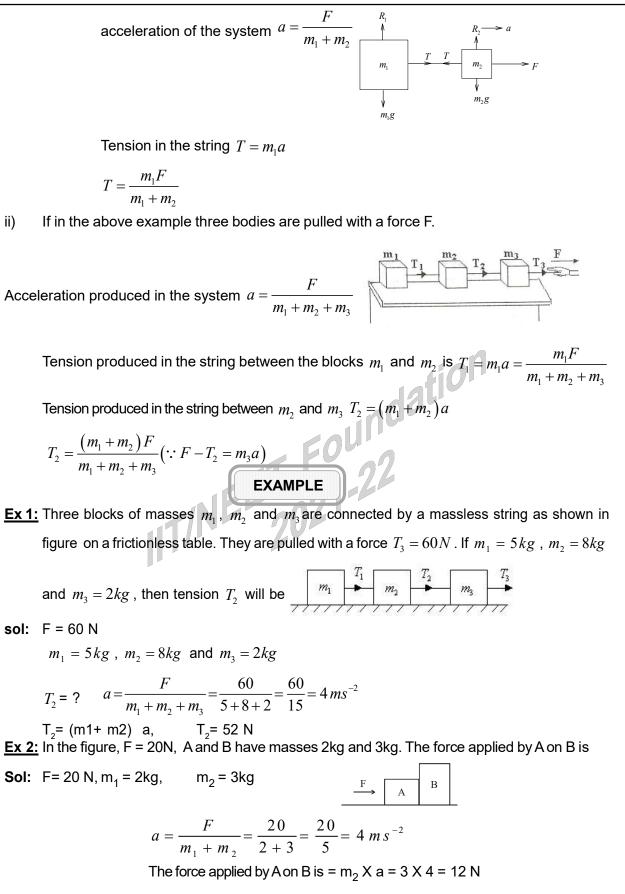

		d that of the cart is 1.8	km/hr. When the	nd the cart 32kg. The velocity man approaches the cart, he
Mor	e than one correct option		<u>RS (Level - III)</u>	< 1 - 1 B
<u>₩Ю</u>	This section contains multip		ach auestion has	4 choices(A)(B)(C)(D)
•	out of which ONE or MOR	=	-	r choices (1), (D), (C),(D),
11.	Which of rthe following an			
•••	a) Both action and reaction		and reaction act	simultaneously
	c) Action and reaction act			,
	d) Action and reaction for		1	
	A) a,b,c B) a,b	C) a,b,d		D) all
12.	Which of the following wo	, , , ,		D) all
12.	-			
	a) Jet aeroplane b) rockets	s c) gun d) Rowing of a boa	t
	A) a,b,c B) a,b	C) a,b,d		D) all
Ass	ertion - A and Reason - R:			
12	 which ONLY ONE is correct A) Both A and R are true a B) Both A and R are true a C) A is true but R is false. A: pewton sec is the unit 	and R is the correct ex and R is not correct ex D) A is fa	planation for A.	
13.	A: newton-sec is the unit R: momentum is the prod		oith	
	A: Both impulse and char		•	
14.		go in mornoritorition flor		
14.	R: The dimensional formu	ila for momentum is N	∕ILT -1.	
14. 15.				
	R: The dimensional formu	es the concept of linear	r momentum.	gments will have same
15.	 R: The dimensional formula A: Newton's third law give R: When a stationary she magnitude of linear moments 	es the concept of linear Il breaks into two fragr entum.	r momentum. ments the two frag	-
15.	 R: The dimensional formular A: Newton's third law give R: When a stationary she magnitude of linear momentary A: Action and reaction formular 	es the concept of linear Il breaks into two fragr entum. ces are equal in magni	r momentum. ments the two frag	-
15. 16.	 R: The dimensional formula. A: Newton's third law give R: When a stationary she magnitude of linear momenta. A: Action and reaction formula. R: Newton's third law defined the statementa. 	es the concept of linear Il breaks into two fragr entum. ces are equal in magni nes the force.	r momentum. ments the two frag itude but opposite	in direction
15. 16.	 R: The dimensional formula. A: Newton's third law give R: When a stationary she magnitude of linear momenta. A: Action and reaction formula. R: Newton's third law defined. A: According to Newton's 	es the concept of linear Il breaks into two fragr entum. ces are equal in magn nes the force. third law, the sum of a	r momentum. ments the two frag itude but opposite action and reactior	in direction
15. 16. 17.	 R: The dimensional formula. A: Newton's third law give R: When a stationary she magnitude of linear momenta. A: Action and reaction formula. R: Newton's third law defined the statementa. 	es the concept of linear Il breaks into two fragr entum. ces are equal in magn nes the force. third law, the sum of a	r momentum. ments the two frag itude but opposite action and reactior	in direction
15. 16. 17.	 R: The dimensional formula. A: Newton's third law gives R: When a stationary she magnitude of linear momenta and reaction formula. A: Action and reaction formula. R: Newton's third law defines A: According to Newton's R: For every action there is the following. This section contains Matrix in two columns which have 	es the concept of linear Il breaks into two fragrentum. ces are equal in magni- nes the force. third law, the sum of a is an equal and oppos <i>ix-Match Type question</i> to be matched. Stateme in Column–II . The ansi	r momentum. ments the two frag itude but opposite action and reaction ite reaction. as. Each question c ents (A, B, C, D) in (in direction n will becomes zero ontains statements given Column–I have to be matched
15. 16. 17.	 R: The dimensional formula. A: Newton's third law give R: When a stationary she magnitude of linear momenta. A: Action and reaction formula. A: Action and reaction formula. A: According to Newton's R: For every action there is the following. This section contains Matrix in two columns which have with statements (p, q, r, s) is the following. 	es the concept of linear Il breaks into two fragrentum. ces are equal in magni- nes the force. third law, the sum of a is an equal and oppos ix-Match Type question to be matched. Stateme in Column–II . The answ he following example.	r momentum. ments the two frag itude but opposite action and reaction ite reaction. as. Each question c ents (A, B, C, D) in (wers to these quest	in direction n will becomes zero ontains statements given Column–I have to be matched tions have to be appropriately
15. 16. 17. ∳	 R: The dimensional formula. A: Newton's third law gives R: When a stationary shemagnitude of linear momenants. A: Action and reaction formula. A: Action and reaction formula. A: Newton's third law defines. A: According to Newton's R: For every action there is the following. This section contains Matrix in two columns which have with statements (p, q, r, s) is bubbled as illustrated in the following of the correct matches are Actional formula. 	es the concept of linear Il breaks into two fragrentum. ces are equal in magni- nes the force. third law, the sum of a is an equal and oppos ix-Match Type question to be matched. Stateme in Column–II . The answ he following example.	r momentum. ments the two frag itude but opposite action and reaction ite reaction. as. Each question c ents (A, B, C, D) in (wers to these quest	in direction n will becomes zero ontains statements given Column–I have to be matched tions have to be appropriately
15. 16. 17. <i>Mat</i>	 R: The dimensional formule A: Newton's third law give R: When a stationary shemagnitude of linear moments A: Action and reaction formule A: Actin and reaction formule A: Action and reaction fo	es the concept of linear Il breaks into two fragrentum. ces are equal in magni- nes the force. third law, the sum of a is an equal and oppos <i>ix-Match Type question</i> <i>to be matched. Stateme</i> <i>in Column–II. The ansi- the following example.</i> <i>A-p,A-s,B-r,B-r,C-p,C-q</i>	r momentum. ments the two frag itude but opposite action and reaction ite reaction. as. Each question c ents (A, B, C, D) in (wers to these quest	in direction n will becomes zero ontains statements given Column–I have to be matched tions have to be appropriately
15. 16. 17.	R: The dimensional formul A: Newton's third law give R: When a stationary she magnitude of linear mome A: Action and reaction ford R: Newton's third law defin A: According to Newton's R: For every action there is ch the following. This section contains Matri in two columns which have with statements (p, q, r, s) is bubbled as illustrated in the If the correct matches are A should be as follows: Physical quantity	es the concept of linear Il breaks into two fragrentum. ces are equal in magnines the force. third law, the sum of a is an equal and oppos ix-Match Type question to be matched. Stateme in Column-II . The answ he following example. A-p,A-s,B-r,B-r,C-p,C-q S.I unit	r momentum. ments the two frag itude but opposite action and reaction ite reaction. as. Each question c ents (A, B, C, D) in (wers to these quest	in direction n will becomes zero ontains statements given Column–I have to be matched tions have to be appropriately
15. 16. 17. ∳	R: The dimensional formu A: Newton's third law give R: When a stationary she magnitude of linear mome A: Action and reaction ford R: Newton's third law defin A: According to Newton's R: For every action there is ch the following. This section contains Matri in two columns which have with statements (p, q, r, s) is bubbled as illustrated in the If the correct matches are A should be as follows: Physical quantity a) velocity	es the concept of lineau Il breaks into two fragi entum. ces are equal in magni nes the force. third law, the sum of a is an equal and oppos <i>ix-Match Type question</i> <i>to be matched. Stateme</i> <i>in Column–II. The ansu- he following example.</i> A-p,A-s,B-r,B-r,C-p,C-q <i>S.I unit</i> 1) kgs ⁻¹	r momentum. ments the two frag itude but opposite action and reaction ite reaction. as. Each question c ents (A, B, C, D) in (wers to these quest	in direction n will becomes zero ontains statements given Column–I have to be matched tions have to be appropriately

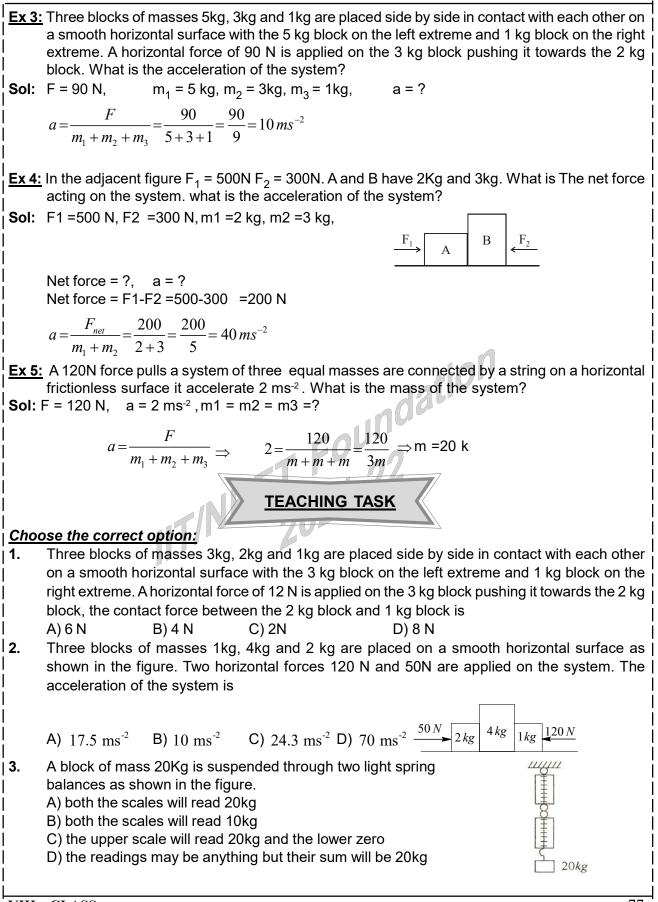
	A) a-1,b-4,c-2,d-3	B) a-3,b-1,c-2,d-4		
1	C) a-2,b-1,c-4,d-3	D) a-1,b-2,c-3,d-4		
¦ 19.	Set-A	Set-B		
i	a) action= - reaction	1) Newtons first law		
ļ	b) F=0	2) Newton's second law		
	c) Definition of force	3) Conservation of linear momentum.		
1	d) Measurement of force	4) Newton's third law.		
1	A) a-1,b-4,c-2,d-3	B) a-3,b-1,c-2,d-4		
	C) a-2,b-1,c-4,d-3	D) a-4,b-3,c-1,d-2		
20 .	Set-A a) W	Set-B 1) law of conservation of momentum		
	b) F	,		
1	,	2) ma		
	c) mv-mu d) Newton's third low	3) change in momentum		
İ	d) Newton's third law	4) mg		
	A) a-1,b-4,c-2,d-3 C) a-2,b-1,c-4,d-3	B) a-3,b-1,c-2,d-4 D) a-4,b-2,c-3,d-1		
	prehension type questions:	D) a-4,D-2,C-3,U-1		
<u>Con</u> •		h. Based upon each paragraph multiple choice questions have to		
İ		as 4 choices (A), (B), (C) and (D) out of which ONLY ONE i s		
	correct. Choose the correct opti			
21.	In the absence of any externation of conservation of the second sec	I force the total linear momentum of a body remains constant of linear momentum.		
	i) A gun fires a bullet of mass 50 gm with a velocity of 30 ms ⁻¹ . Because of this the gun is pushed back with a velocity of 1 ms ^{-1.} Mass of the gun is A) 1.5 Kg B) 30 Kg C) 15 Kg D) 20 Kg			
		g, fires 10 gm bullets with a velocity of 400m/s at the rate of one ecoil of the gun after four bullets are fired is		
1	A) 0.4 m/s B) 0.8			
İ				
		KEY		
<u>ΦΦ</u>	TEACHING TASK :			
) B, 7) A, 8) A, 9) B, 10) C, 11) B,12) D, 16. i) A,ii) B.		
	LEARNER'STASK :			
	BEGINNERS : 1) A , 2) A, 3) C, 4			
	ACHIEVERS : 16)3000N,17)800	m/s, 18)0.25 m/s,19) 10 N,20) $0.35 m s^{-1}$,21) 3 km/hr		
וםן	EXPLORERS : 5) D, 6) D, 7) A, 8	3) B, 9) B,10)C,11) A,12) B,13) D,14) D,15) i) A, ii) C.		
<u>Free</u> 	Free Body diagram: When several bodies are connected by strings, springs, surfaces of contact, then all the forces acting an a body are considered and sketched on the body under considerationn by just isolating it. Then the diagram so formed is called Free Body Diagram (FBD). While drawing FBD he following points should be kept in mind:			
	1) We have to represent weig will not represent weight)	ht for every body . (If we assume pulleys are massless then we		
		67		


LAWS OF MOTION

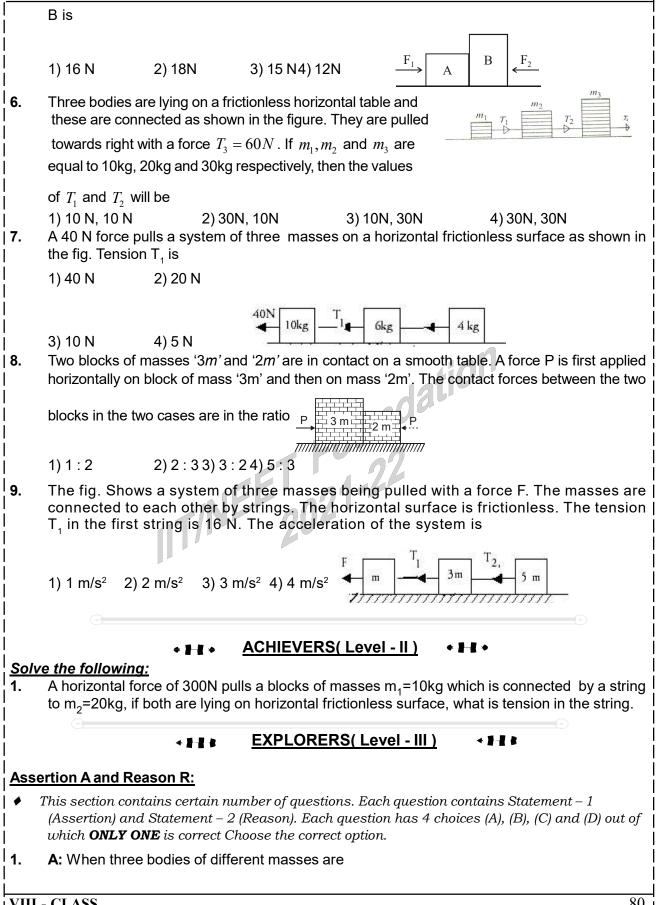


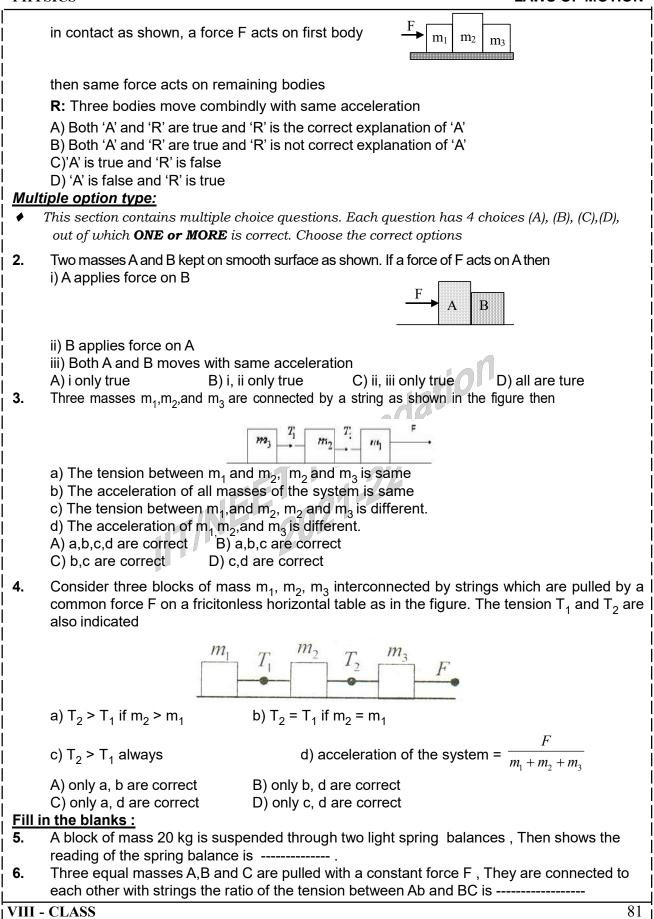


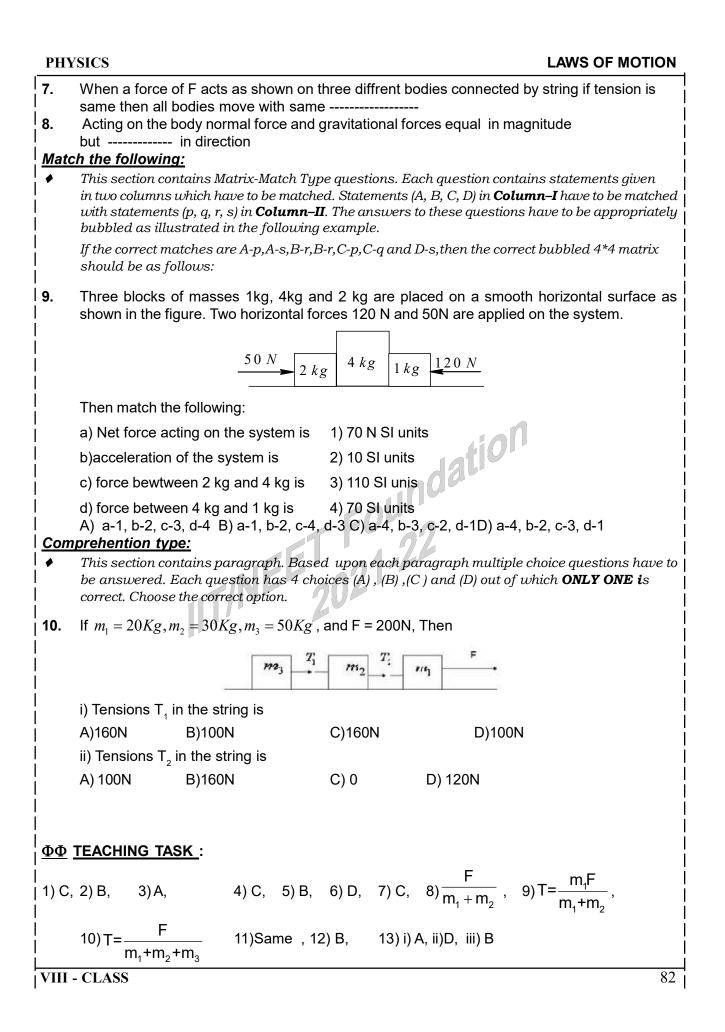

PHY	AND AND AND AND AND AND AND AND AND AND
Mult	 A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A' B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A' C)'A' is true and 'R' is false D) 'A' is false and 'R' is true
•	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which ONE or MORE is correct. Choose the correct options
4.	Pick out the correct statement from the following
	 a) Normal force is the component of the contact force parallel to the surface of contact. b) Frictional force is the component of the contact force parallel to the surface of contact. c) If a string is mass less, the tension in it is same everywhere, However, if a string has a mass, tension at different points will be different. d) If a string is mass less, the tension in it is same everywhere, However, if a string has a mass, tension at different points will be same. A) a, b B) b, c C) c, d D) a, d
Fill i	n the blanks :
5.	Weight is a kind of field force , it 's direction is always
6.	Action and reaction pairs acts on
7.	W = mg in units 'w' stands for
8.	Normal force acts in direction
<u>Mate</u>	
•	This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II . The answers to these questions have to be appropriately bubbled as illustrated in the following example.
_	If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows:
9.	In the figure shown, match the forces acting on ball A
Com	 a) P 1) weight of the body b) Q 2) normal force applied by the vertical wall c) R 3) Normal force applied by the horizontal surface d) S 4) Normal force applied by the ball B A) a-1, b-2, c-3, d-4 B) a-4, b-2, c-3, d-1 C) a-1, b-2, c-4, d-3 D) a-4, b-3, c-2, d-1
•	This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B),(C) and (D) out of which ONLY ONE is correct. Choose the correct option.



PHYSICS LAWS OF MOTION						
4.	A : Weight is a kind of field force. It's direction is always downward direction.					
	R : Weight is a kind of field force. It's direction is always upward direction.					
ļ	A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'					
 	B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A' C) 'A' is true and 'R' is false					
	D) 'A' is false and 'R' is true					
<u>Mul</u>	tiple option type:					
• 	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which ONE or MORE is correct. Choose the correct options					
5. 	Choose the the correct in the case of drawing free body diagram a) for evrey mass wieght should be represented b) if body in contact with other bodies, contact force should be represented c) if body is connected by string, tension should be represented A) only a, b are correct B) only b, c are correct C) only a, c are correct D) all a, b, c are correct					
Fill	in the blanks :					
6.	For avery action there is and reaction					
7.	While drawing free body diagram weight of the body always should be represented					
8. 	When a body is in contact with another surface or body, the reaction force acting perpendicular to the surfaces in contact is called					
9.	9. Weight is a kind of field force . It 's direction is always					
Mat	ch the following:					
¦ ◆ 	 This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows: 					
10. <u>Con</u> 11.	Observe the picture given aside Body Number of normal forces acting a) P 1) one b) Q 2) two c) R 3) three d) S 4) four A) a-1,b-2, c-3, d-4 B) a-1, b-2, c-3, d-4 C) a-1, b-3, c-2, d-4 D) a-4, b-3, c-2, d-1 prehention type: This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option. Observe the picture given aside					
VIII CLASS 73						




LAWS OF MOTION


4.	Three blocks of masses m_1 , m_2 and m_3 are connected by a massless string as shown in				
	figure on a frictionless table. They are pulled with a force $T_3 = 40N$. If $m_1 = 10kg$, $m_2 = 6kg$				
	and $m_3 = 4kg$, then tension T_2 will be				
	A) 10 N B) 20 N C) 30 N D) 40N m ₁ m ₂ m ₃ I				
5. 	Three equal masses A, B and C are pulled with a constant force F. They are connected to each other with strings. The ratio of the tension between AB and BC is.A) 1:2B) 2:1C) 3:1D) 1:1				
Assertion A and Reason R:					
 	This section contains certain number of questions. Each question contains Statement – 1 (Assertion) and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option.				
6.	A: When a force of F acts as shown on three T_1 T_2 F				
ļ	different bodies connected by string then $T_1=T_2$ $m_1 - m_2 - m_3 \rightarrow m_3$				
 	R: All bodies move with same acceleration.				
	A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A' B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A'				
ļ	C)'A' is true and 'R' is false				
 	D) 'A' is false and 'R' is true				
<u> Mul</u>	Itiple option type:				
	This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which ONE or MORE is correct. Choose the correct options				
 7.	Three connected bodies are lying ona smooth surface as shown. If force of T_3 =60 N, then				
İ	choose the correct				
	i) $a = 1 \text{ m/s}^2$ ii) $T_1 = 10 \text{ N}$ iii) $T_2 = 30 \text{ N}$ iv) $T_3 = T_1 + T_2$				
	iii) $T_2=30 \text{ N}$ iv) $T_3=T_1+T_2$ A) i only true B) i, ii only true C) i, ii, iii only true D) all are ture				
	<u>in the blanks :</u>				
8. 	8. When two bodies of masses m_1 and m_2 are tied to the ends of a light string placed on the smooth horizontal surface, these are pulled by a force F. then Acceleration of the system a				
 9 .	When two bodies of masses m_1 and m_2 are tied to the ends of a light string placed on the				
	smooth horizontal surface, these are pulled by a force F then Tension in the string T =				
10 . 	When three boidies of masses m_1 , m_2 and m_3 are lying in contact on a horizontal smoothtable and a horozontal force F on a body of mass m_1				
11 .					
<u>Mat</u>	tch the following:				
♦	This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched				
 	with statements (p, q, r, s) in Column–II . The answers to these questions have to be appropriately bubbled as illustrated in the following example.				
	If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows:				
12.	Consider three blocks of different masses 1kg, 2kg, and				
	3kg connected by string and the system is rest for different				
ļ					
	78				

LAWS OF MOTION

5.	In the adjacent figure F ₁ = 20 - CLASS	N $F_2 = 10N$. A and B have 2Kg and	I 3kg. The force applied by A on 79				
 	3) 15 N 4) 12N						
 	1) 16 N 2) 18N	F	AB				
4.	In the figure, $F = 20N$, A and B I	nave masses 2kg and 3kg. The force	applied by A on B is				
 		force of 10 N is applied to push the hes the second block is					
2. 3.	Three blocks of masses 3kg, 2kg and 1kg are placed side by side in contact with each other on a smooth horizontal surface with the 3 kg block on the left extreme and 1 kg block on the right extreme. A horizontal force of 12 N is applied on the 3 kg block pushing it towards the 2 kg block. the contact force between the 2 kg block and 1 kg block is 1) 6 N 2) 4 N 3) 2N 4) 8 N A block of mass 3 kg is in contact with a block of mass 2 kg. Both the blocks rest on a						
	shown. The blocks have an a	on a 4 kg block (A) which pushe cceleration of $3m/s^2$ to the right. which they slide. What is the net for 2) 12 N to the right 4) 12 N to the left	ہ There is no friction between the				
★ ■ ★ BEGINNERS(Level - 1) ★ ■ ★							
 	LEARNER'S TASK						
 	A) 130N B) 190N C) 10 iii) Tension T_3 is equal to A) 130N B) 190N C) 10	,					
 	i) Then tension T_1 is equal to A) 130N B) 190N C) 10 ii) Tension T_2 is equal to	00N D) 160N	T_2				
 	by weightless strings as shown. If applied force is 100N as, shown (g= $10m/s^2$)						
<u>Com</u> 	<u>omprehention type:</u> This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B),(C) and (D) out of which ONLY ONE i s correct. Choose the correct option.						
 	d) T ₃ A) a - 1, b - 2, c - 3, d - 4 C) a - 3 , b - 4, c - 1, d - 2	4) 0 m/s ² B) a - 4, b - 3, c - 2, d - D) a - 4, b - 1, c - 3, d -					
 	masses.Then a) acceleration of system b) T ₁ c) T ₂	1) 30N 2) 50N 3) 60N	↑ T1 1kg ↓ T2				

$\Phi\Phi$ LEARNER'STASK :

BEGINNERS: 1-3, 2-3, 3-2, 4-4, 5-1, 6-3, 7-2, 8-2, 9-2

ACHIEVERS: 200 N

□ EXPLORERS :

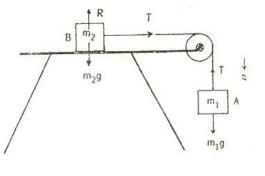
1) D, 2) D, 3) C, 4) D, 5) Same , 6)2:1 ,7)acceleration, 8)Opposite , 9) B, 10) i) b, ii) B

MOTION OF BODIES CONNECTED BY STRING PASSING OVER A SMOOTH PULLEY <u>§§</u>

Case-I: AT WOODS MACHINE:

Let two bodies of masses m_1 and m_2 respectively are connected by a light inextensible string passing over a massless smooth pulley. If $m_1 > m_2$, then mass m_1 moves downwards and mass m_2 moves upwards.

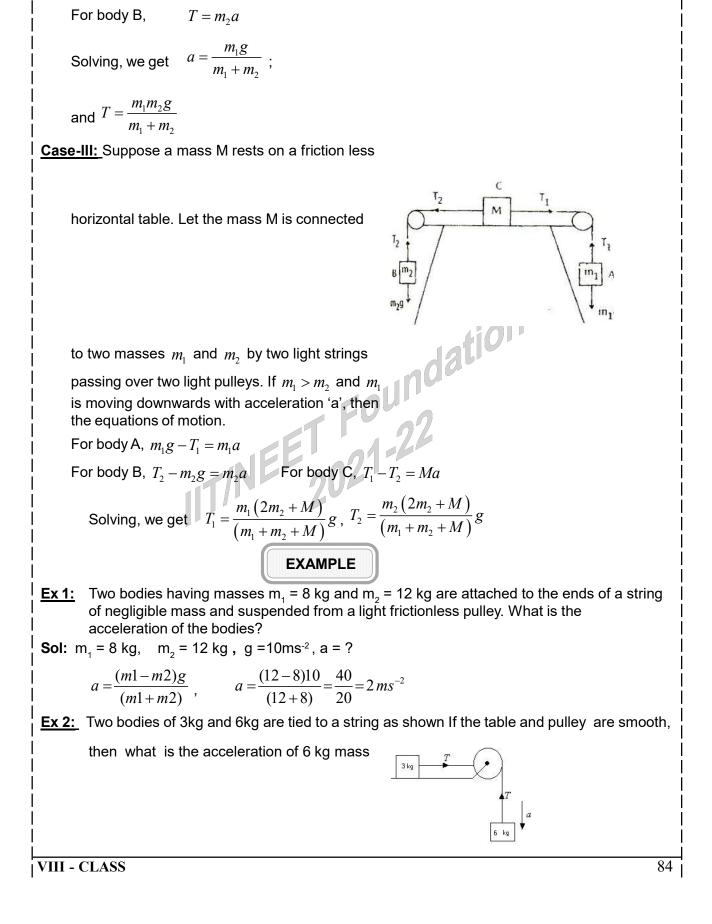
Equation of motion

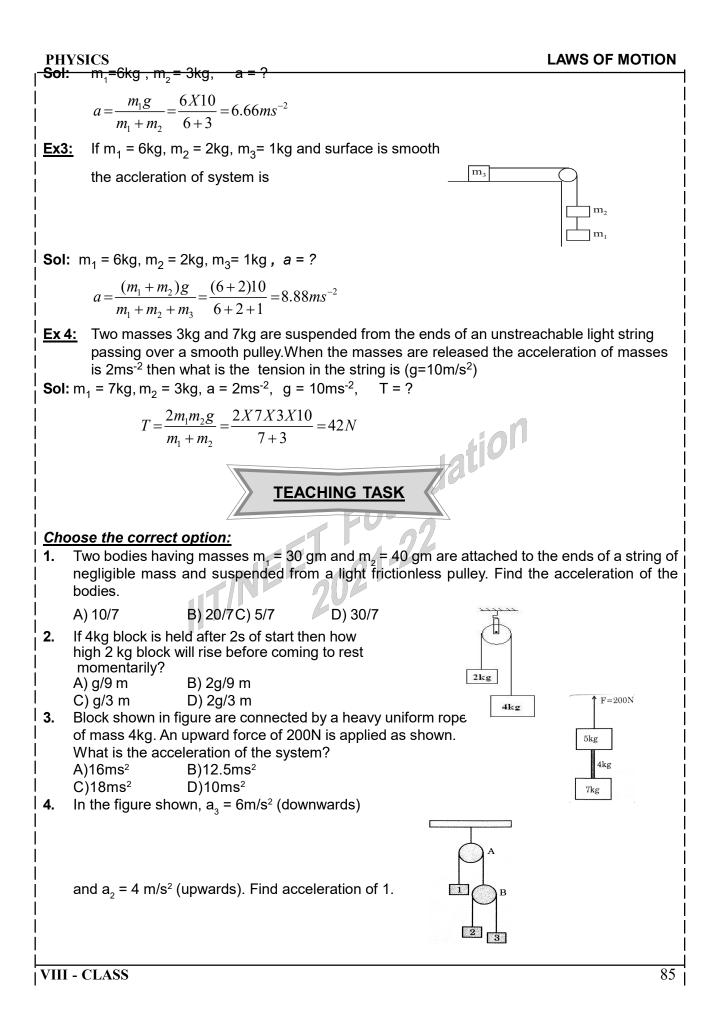

For body A, $m_1g - T = m_1a$, For body B, $T - m_2g = m_2a$ For body A, $m_1g - T = m_1a$, For body B, $T - m_2g = m_2a$ $a = \frac{m_1 - m_2}{m_1 + m_2}g$; and $T = \frac{2m_1m_2}{m_1 + m_2}g$

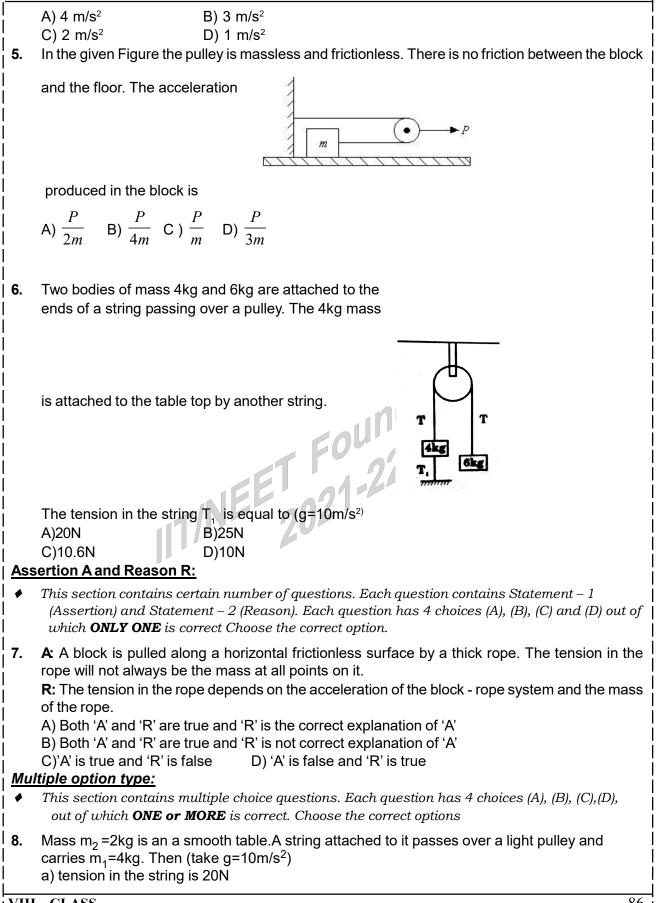
The reaction at the pulley $R = 2T = \frac{4m_1m_2}{m_1 + m_2}g$

Case-II :Suppose a body B with mass m_2 rests on a smooth table.

Mass m_1 is connected to m_2 by a light string and it hangs freely.

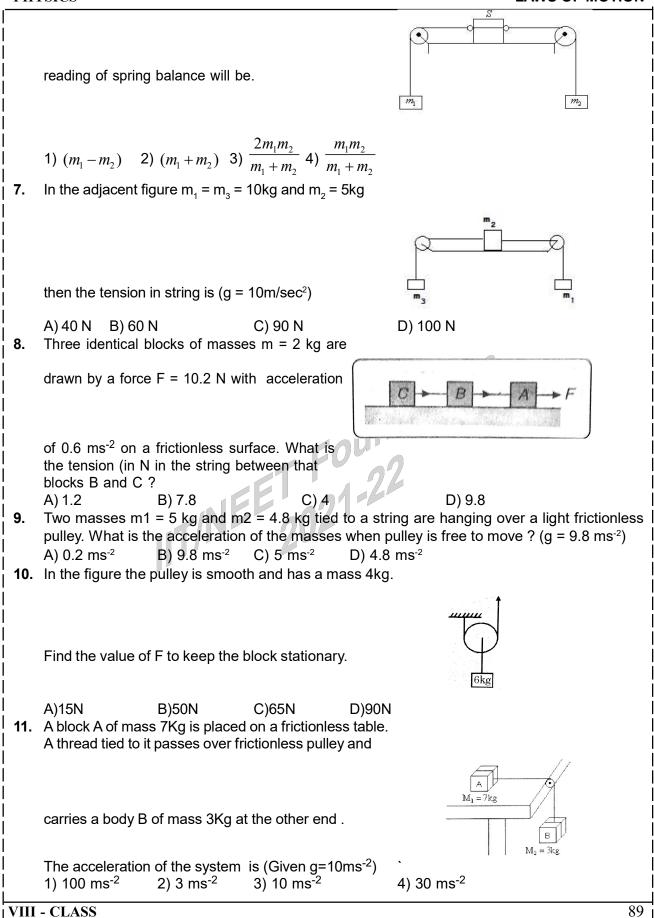

If $m_1 > m_2$, then equation of motion

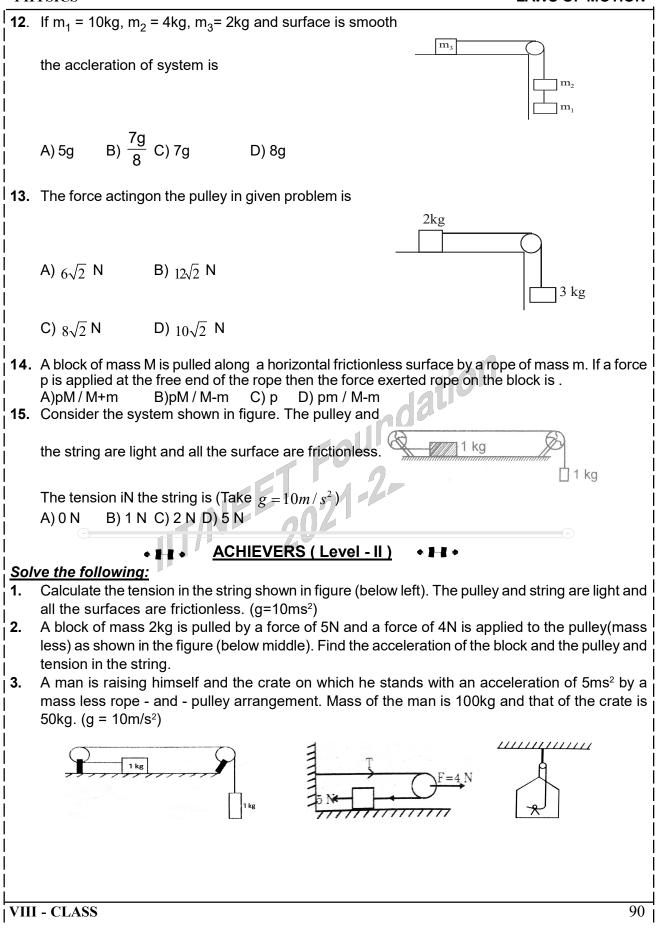



 m_2

VIII - CLASS

For body A, $m_1g - T = m_1a$





14. 	Let two masses 2 kg and 4 kg are connected over smooth massless pulley, with a llight strin as shown. Then	ng
1	i) The force acting on the pulley in given problem is	
	A) 33.3 N B) 43.3 N C) 53.3 N D) 63.3 N	
!	ii) The vertical distance between the masses is $\frac{20}{2}$ m,	
1	3 III,	
 	\bigcirc	
	at t = 0. The distance becomes zero at t = 4	
	A) 2 B) $\sqrt{2}$ C) 4 D) $\sqrt{6}$	
į		
 	LEARNER'S TASK	
Che	ose the correct option:	
¦1.	Two masses 5kg and 3kg are suspended from the ends of an unstreachable light string passi	ng
i	over a smooth pulley.When the masses are released the thrust on the pulley is (g=10m/s²)A)80 NB) 37.5 NC) 150 ND) 75 N	
2.	Two masses 30kg and 70kg are suspended from the ends of an unstreachable light stri	ng
1	passing over a smooth pulley. When the masses are released the acceleration of masses a	nd
İ	tension in the string is (g=10m/s ²) A)2 m/s ² ,120 N B) 4 m/s ² ,420 N C) 6 m/s ² ,180 N D) 4 m/s ² ,240N	
3.	A block of mass 4 kg lying on plane inclined at angle of 30° , is connected to another free	ely
	suspended block of mass 6 kg with the help of a string passing over a smooth pulley. The suspended block of mass 6 kg with the help of a string passing over a smooth pulley. The suspended block of mass 6 kg with the help of a string passing over a smooth pulley.	he
i	acceleration of each block is $(g=10m/s^2)$ A) 8 m/s ² B) 5 m/s ² C) 4 m/s ² D) 1 m/s ²	
4.	A block of mass 7 kg is placed on smooth table. A therd tied to it passes over a frictionless pull	ev
1	carries a body of mass 3kg at the other end. The acceleration of system is $(g=10m/s^2)$,
ا	A) 100m/s^2 B) 3m/s^2 C) 10m/s^2 D) 30 m/s^2	
5.	Two bodies of 5kg and 4kg are tied to a string as shown If the table and pulley are smooth, then acceleration of 5 kg	
	4 kg	
!	mass will be	
	A) 19.5m/s ² B) 0.55m/s ² C) 2.72m/s ² D) 5.45m/s ²	
6.	Two masses m_1 and m_2 are attached to a spring	
	balance S as shown in Figure. If $m_1 > m_2$ then the	
	- CLASS	20
• 11	- ULABO	88

LAWS OF MOTION

LAWS OF MOTION

▲ I I EXPLORERS(Level - III) < I I I
sertion A and Reason R:
This section contains certain number of questions. Each question contains Statement – 1 (Assertion) and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option.
 A: In case of at woods machine (two masses suspended over pulley with light string), tenison will be same in the string for both sides of pulley. R: Both masses are connected by the same string A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A' B) Both 'A' and 'R' are true and 'R' is not correct explanation of 'A' C) 'A' is true and 'R' is false D) 'A' is false and 'R' is true
matched with statements (p, q, r, s) in Column–II . The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix
should be as follows:
Two bodies of masses m_1 and m_2 respectively are connected by a light inextensible string
passing over a massless smooth pulley. If $m_1 > m_2$, a) acceleration of masses is 1) $\frac{m_1 - m_2}{m_1 + m_2}g$ b) Tension in the string is 2) $m_1\left(\frac{m_1 - m_2}{m_1 + m_2}g\right)$
c) reaction of the pulley is 3) $\frac{2m_1m_2}{m_1 + m_2}g$
d) net force on mass m ₁ is 4) $\frac{4m_1m_2}{m_1 + m_2}g$
A) a-1, b-2, c-3, d-4B) a-1, b-3, c-4, d-2C) a-4, b-3, c-2, d-1D) a-4, b-2, c-3, d-1 <i>Iltiple option type:</i>
This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which ONE or MORE is correct. Choose the correct options
The pulley arrangements shown in figure are identical, the mass of the rope being negligible. In case I, the mass m is lifted by attaching a mass 2m to the other end of rope. In case II, the mass m is lifted by pulling the other end of the rope with a constant downward force F=2mg, where g is acceleration due to gravity. a) in both cases acceleration of masses is equal $F = 2mg$
2

VIII - CLASS

PH	PHYSICS LAWS OF MOTION		
 4.	 b) in both cases tension in the string is equal c) in both cases acceleartions are not equal d) in both cases tensions in the string are not equal A) only a, b are correct B) only c, d are correct C) only b, c are correct D) only a, d are correct The force exerted by the lift on the foot of a person is more than his weight, the lift is 		
İ	a) going up and slowing down b) going up speeding up		
	c) going down and slowing down d) going down and speeding up		
 Fill	A) a,b,c,d are correct B) a,b,c are correct C) b,c are correct D) c,d are correct in the blanks:		
5. 6.	The pulley may change the direction of force in the string but not the In case of at wood machine (two masses suspended over pulley with light string)		
7.	Let two bodies of masses m_1 and m_2 are connected by a light inextensible string passing over a massbess smooth pulley if $m_1 > m_2$ then		
	i) acceleration a = ii) Tension T =		
<u>Cor</u>	mprehention type: This section contains management. Based when each management multiple choice questions have to be		
 	This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B),(C) and (D) out of which ONLY ONE i s correct. Choose the correct option.		
8. 	Observe the Figure shown. i) Accelerationo of masses is		
 	Observe the Figure shown. i) Accelerationo of masses is a) g b) $\frac{g}{9}$ c) $\frac{8g}{9}$ d) $\frac{10g}{9}$ ii) The tension in the string between 3 kg and pulley is		
 	a) $\frac{40g}{9}$ b) $\frac{g}{9}$ c) $\frac{8g}{9}$ d) $\frac{10g}{9}$ A $\frac{3kg}{9}$		
	iii) the tension in the string connecting A and B is		
 	a) g b) $\frac{g}{9}$ c) $\frac{8g}{9}$ d) $\frac{10g}{9}$		
9.	In the system shown in the adjoining figure,		
	i) Acceleration of masses is		
	A) g/9 B) 16g/9 C) 40 g/9 D) zero T ₂		
	ii) The tension T_1 is $3kg$		
 	A) g/9 B) 16g/9 C) 40 g/9 D) zero $T_1 + 4kg$		
	iii) The tension T_2 is		
 	A) g/9 B) 16g/9 C) 40 g/9 D) zero		
	h order thinking skills (HOTS):		
10. 	Two mass (M+m) and (M-m) are attached to the ends of a light inextensible string and the string is made to pass over the surface of a smooth fixed pulley. When the masses are released from rest, the acceleration of the system is		

PHYSICS

 	A) gm/M	B) 2gM/m	C)gm/2M	$D) g \left(M^2 \cdot m^2 \right) / 2$	2M
, 11.	In the figure f	ind the mass of		↑ 6m/s ²	
ĺ	right side bloc	ck.		\bigcirc	
l	20	108			
	A) $\frac{20}{3}$ kg B)	<i>kg</i>			
	50	40		5m/s^2	
l	$C)\frac{50}{7}kg$ D)	$\frac{10}{3}$ kg		4kg ↓	
12.	The figure sh	nows a block of mass I	A resting on a ho	orizontal surface.	\frown
	-	tion with which a boy	-		·
1	(neglect mas	s) so as to lift the bloc	ck should be gre	ater than	Ø, m
I	$\Delta \frac{M}{\sigma} = B$	$\left(\frac{M}{m}-1\right)g$ C) $\left(\frac{M}{m}+1\right)g$			
			171		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
13. 		l machine (data as in fi			
1		S_1 and S_2 are also mask		ks are let go,	S,
ļ		in S_1 and S_2 will respectively the second se			
	A) 1/3 kg, 2/3	c , c	4/3 kg	11	
1	C) 2/3 kg , 4/	3 kg D) 2/3 kg,	2/3 kg	40	Кg 2 Кg
İ				124	
			- 1	ndation	
 			ESEARCHERS	(Level-IV)	4 1.1.1 .>
	gle correct a				· · · · · · · · · · · · · · · · · · ·
1. 		g force of 150 N is app m/s.the time taken by			I is moving with a [NTSE 2016]
1	A) 20s	B)30s	C) 5s	D)10s	
2.		e following statement i			[NSEJS 2010-11]
	,	force on a body is zer	•		007070
	,	force on a body is zer coity of a body is const			
1	,	ay have a varying velo			
3.		ce applied to a body A	•		
		ody B gives it an accel ne force is applied to th			
1					[NSEJS 2011-12]
İ	A) 6 ms ⁻²	B) 25 ms ⁻²	,		D) 9 ms ⁻²
4.	What is the	reading of the spring b	alance shown in	the figure below?	
1	2N		2N		[NSEJS 2012-13]
	۸) 0	B)2N			
5.	A) 0 When a car	B)2N turns on a curved road	C) 4N d. vou are pushe	D)6N d against one of th	e doors of the car
	because of		, ,		[NSEJS 2012-13]
	- CLASS				93
))

PHYSICS

1 11 .	15105			_ /	AVVS OF MICTION
6. 7. 8.	 A) inertia C) the centrifu If two bodies of same time, the same time, the A) Velocity The "reaction" A) the action for B) the reaction C) the reaction D) they act on A body is in equilation 	f different masse en both bodies a B) mor force does not c orce is greater th force exists only force is greater different bodies uilibrium under t	•	e acted upon by the san eleration D) kin e because is removed	
9.	 B) all the force C) the sum of D) the lines of a The object at a equal masses part after the e 	s form pairs of e the torques about ction of all the force rest suddenly ex move at right an explosion will be	qual and opposite forc at any point must alway es must pass through the plodes into three parts igles to each other with	vs be equal to zero e centre of gravity of the s with the mass ratio 2 n equal speed V. The	body. 2:1:1. The parts of
	A) 2V	B) V / √2	C) V/2	D) $\sqrt{2} V$	
10.	A rifle of 20kg	mass can fire 4 l	oullets per second. The	e mass of each bullet	is $35 \times 10^{-3} kg$ and
	move backwai A) 80 N	rds while firing th B) 28 N	C) -112 N	D) -56 N	(2017 E)
11.	A bullet of ma	ss 10gm of fired	horizontally with a velo	ocity $1000ms^{-1}$ from a	a rifle situated at a
			. If the bullet reaches t ce in the trajectory of th		<i>,</i>
		d1//	20		(2006 E)
12.		B) 3755 pped into a conv noving at 2 m/s i	C) 3750 eyor belt at a rate of 0.8 s	D) 17.5 5 kg/s.The extra force	required in N to
13.	A) 2 A boat of mass	B) 1 s 3000 kg,initially	C) 4 at rest is pulled by a for of air resistance as zen		(1983 E) ough a distance of
14.	A) 2 m/s A machine gur	B) 4m/s n fires a bullewt o	C) 3 m/s of mass 40g with a velo N on the gun. How m	D) 6 m/s poity of 1200m/s.A ma	-
15.		B) 4 ss 16kg at rest e 4m/s.The K.E. o B) 288J	C) 1 xplodes into 2 pieces c f other mass is C) 192J	D) 3 of masses 4kg and 12 D) 96J	. ,
	, -	,	.,	,	

VIII - CLASS

	KEY
 <u>Φ</u> α	 <u>TEACHING TASK</u>: 1) A, 2) B, 3) B, 4) D, 5) B, 6) A, 7) A, 8) C, 9)String, 10)Desreases, 11)Constant, 12)g, 13) A, 14) i) 3, ii) 2. <u>LEARNER'STASK</u>: BEGINNERS:
 	BEGINNERS: 1) D, 2) B, 3) C, 4) B, 5) D, 6) C, 7) C, 8) A, 9) A, 10) B, 11) B, 12) B, 13) B, 14) D, 15) D ACHIEVERS:
; —	
	1)5N, 2)a $_{block}$ =3/2ms ² , a =3/4ms ² , 3)1125N
	EXPLORERS : 1) A, 2) B, 3) A, 4) C, 5) Tension 6) Tension
 	7) i) $\left(\frac{m_1 - m_2}{m_1 + m_2}\right)$ g ii) $\left(\frac{2m_1m_2}{m_1 + m_2}\right)$ g 8) i) B, ii) A, iii) D, 9) i) A, ii) B, iii) C 10) A, 11) A, 12) B, 13) B,
¦п	RESEARCHERS :
	1) D. 2) B. 3) A. 4) C. 5) A. 6) B. 7) D. 8) B. 9) A. 10) D. 11) D. 12) B. 13) D. 14) D. 15) B
VI	II - CLASS 95