SYMBOLS AND FORMULAE

🖙 SYMBOLS AND FORMULAE 🖙

In previous chapter (Elements, Molecules and Compounds), we have learnt about the different types of elemtns, nature of mistures and compunds. In this chapter we shall discuss about the Symbols of elements used for writing formulae of the copounds

<u>§§</u> <u>Symbol :</u>

As you denote '+' is a symbol to addition and ' $\frac{\bullet}{\bullet}$ ' is a symbol for division in mathematics similarly each element is denoted by a symbol in chemistry.

<u>¶</u> Definition :

Short hand notation of an element is called Symbol. Symbols can be denoted by the single letter, two letters & three letters. Many elements have their symbol derived from either the first letter (H for Hydrogen) or the first two letterrs (He for Helium) of their names.

<u>§§</u> <u>Rules for assigning symbols :</u>

1) An element is represented with the first letter in capital of the english name of the element.

H - Hydrogen, N - Nitrogen, C - Carbon, O - Oxygen.

2) When the names of two or more elements begins with the same initial letter, the letter followed by the next letter is used to represent the element.

He - Helium, Ca - calcium, Si - Silicon.

§§ Basic concept of an atom

We know that an element is a pure substance which cannot be subdivided into two or more new substance by any means. Chemists have found 119 elements which exist in nature.

The smallest unit of any element is called an atom. The atoms of different elements combine with one another to form new substance called compounds. The compounds so formed are neutral in character, i..e, they have no electricc charges on them. All matters are made by the combination of atoms of different elements combined together in some fixed ratio. In a way, atoms are the basic building blocks of the matter. Atom is the smallest unit of matter which takes part in chemical reaction.

Geometrical structure of atom

SYMBOLS AND FORMULAE

CHEMISTRY

(i) An atom consists of positively charged nucleus made up of protons which are responsible for almost the entire mass of the atom.

(ii) Electrons revolve around the nucleus in certain permitted circular orbits of definite radius and while revolving they do not radiate energy.

(iii)The different energy levels or orbits were numbered as 1, 2, 3, 4, \dots etc and called as K, L, M, N \dots etc. respectively.

As we have discussed above that there are a number of shells present in atom. These are numbered as 1, 2, 3, 4, ..., 250 and so on or K, L, M, N, ... 250 on respectively. As we move outwards from the nucleus and the electrons are present in these shells.

The distribution (arrangement) of the electrons in the different energy shells of the atom is known as the electronic configuration of that element.

The distribution of electrons into different orbit of an atom was suggested by Bohr and Bury.

<u>SS</u> BOHR-BURY SCHEME OF DISTRIBUTION OF ELECTRONS :

The following rules are given by Bohr and Bury for writing the number of electrons in different energy levels or shells.

(i) The maximum number of electrons that can be present in a given shell is equal to $2n^2$, where n = number of shell.

Hence, the maximum number of electrons in different shells can be given as follows:

Shell	Maximum No. of electrons present
(a) 1 st shell or K-shell (n = 1)	$2 \times (1)^2 = 2$
(b) 2 nd shell or L-shell (n = 2)	$2 \times (2)^2 = 8$
(c) 3 rd shell or M-shell (n = 3)	$2 \times (3)^2 = 18$
(d) 4^{th} shell or N-shell (n = 4)	$2 \times (4)^2 = 32$

(ii) The maximum number of electrons that can be accommodated in the outermost orbit is 8 Except if atom has only one shell which can have two electrons (duplet)..

(iii) Electrons do not enter into a new shell until unless the inner shells are completely filled or we can easy that shells are filled in a step-wise manner.

(iv) The outermost orbit is also known as valence orbit and the number of electrons in that orbit are known as valence electrons.

SYMBOLS AND FORMULAE

CHEMISTRY

Element	Symbol	Atom ic No. (No. of electrons)	tomic No. Distribution of (No. of electrons in electrons) different shells			Short representation of electronic configuration	
			К	L	Μ	Ν	
Hydrogen	Н	1	1				1
Helium	He	2	2				2
Lithium	Li	3	2	1			2, 1
Beryllium	Вe	4	2	2			2, 2
Boron	В	5	2	3			2, 3
Carbon	С	6	2	4			2,4
Nitrogen	N	7	2	5			2,5
Oxygen	0	8	2	6			2,6
Fluorine	F	9	2	7			2,7
Neon	Ne	10	2	8			2,8
Sodium	Na	11	2	8	1		2, 8, 1
Magnesium	Mg	12	2	8	2		2,8,2
Aluminium	AI	13	2	8	3		2, 8, 3
Silicon	Si	14	2	8	4		2, 8, 4
Phosphoru s	Р	15	2	8	5	al	2, 8, 5
Sulphur	S	16	2	8	6		2,8,6
Chlorine	CI	17	2	8	7		2, 8, 7
Argon	Ar	18	2	8	8		2, 8, 8
Potassium	К	19	2	8	8	1	2, 8, 8, 1
Calcium	Са	20	2	8	8	2	2, 8, 8, 2
		2)7'				

Geometrical representation of few elements are as follows

CHEMISTRY SYMBOLS AND FORMULAE A) O₂ C) CI D) Ne B) H 7. The maximum of electrons which can be present in any shell of an atom is given by the formula A) 2n B) 2n² C) 3n D) n 8. The electrons in the shell close to nucleus are held strongly by the electric pull of protons these electrons are called A) Valency electrons B) Free electrons C) Bond electrons D) Bind electrons 9. Distribution of electrons revolving around the nucleus of an atom in different orbits is called B) Electro positivity A) Electronegativity C) Electorn effinity D) Electronic configuration II) Multi correct answer type : This section contains multiple choice questions. Each question has 4 choices (A), (B), (C), (D), out of which **ONE or MORE** is correct. Choose the correct options 10. Which of the following symbols of elements are correct? A)Mercury - Hg B)Sodium - S C) Potassium - K D) Fluorine - F 11. Which of the following elements following latin names A)Sodium B) Potassium C) Iron D) Mercury 12. The orbits present in atom A) k-shell C) M-shell D) L- shell B) B-shell III) **Comprehension Type** This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** *i*s correct. Choose the correct option. As we have discussed above that there are a number of shells present in atom. These are numbered as 1, 2, 3, 4, ..., 250 and so on or K, L, M, N, ... 250 on respectively. As we move outwards from the nucleus and the electrons are present in these shells. The distribution (arrangement) of the electrons in the different energy shells of the atom is known as the electronic configuration of that element. 13. The general configuration for Phosphorus is A) 2,8,3 B) 2,8,5 C) 2,8,7 D) 2,8,6 14. The number of electrons that can be accomodated in M shell is A) 36 B) 18 C) 8 D) 32 V) Match the following This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column-I have to be matched with statements (p, q, r, s) in **Column-II**. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows: 15. **COLUMN -I COLUMN -II** a)2,8,7 1) Oxygen 2) Neon b)2,8,2

SYMBOLS AND FORMULAE

	3)Magne	sium		c) 2,8					
	4) chlorin	e		d) 2,6					
16.	Element	Name	Valenc	y electro	ns				
	1) Fluorir	ne		a) 2					
	2) Alumin	nium		b) 6					
	3)Sulpho	ur		c) 3					
	4) Calciu	m		d) 7					
			P						
				KEY					
				SECT	ION-I				1
	1-A 2-D	3-D	4-D	5-B	6-D	7-B	8-D	9-D	
				SECT	ION-II				
	10-A,C,D	11-A,B,C	,c12-A,C,D						
		-		SECT	ION-III	1	T		
	13-B	14-B							
				SECT	ON-IV				
	15-d,c,b,a	a 16-d,c,b,	,a						J
					. 6				
		()				7/			
				RNER'S	TASK				
		V	DEON						
		◆ ▋ <u></u> ●	DEGINI	NERS (L	<u>evei - 1)</u>	< ₽ - ₿ >			
Ŋ	<u>MCQ's w</u>	vith singl	e correct a	answer :					
1.	Maximun	n number	of electron	s present	in 3rd orb	it of an ato	om		
	A) 3		B) 18		C) 8		[D) 32	
2.	Configura	ation of ca	alcium						
	A) 2, 8, 8		B) 2, 8	, 2	C) 2	, 8, 8, 2	Γ	D) 2, 8, 18	
3.	Magnesi	um will att	ain which e	element's o	configurat	ion for its	stability		
	A) He		B) Mg		C) N	le	[D) Ar	
4.	Configura	ation of th	e atom if is	electrons	are these	in the atc	m		
	A) 2, 8, 3		B) 2, 2	, 8, 1	C) 2	, 7, 4	[D) 2, 8, 2, 1	
5.	How mar proton nu	ny electro umber is 7	ns should b 7.	e share ir	the third	shell, of a	n neutral	atom, if its	
	A) 7		B) 8		C) 1	8	[D) 0	
6.	There are	e seven el a to Bohr-	ectrons in t -Burv's forr	hird orbit c nula Ther	of a neutral n what is t	l atom by f	illing the	before two of atom	orbits
	A) 7	3 · · · · · ·	B) 17		C) 1	8]	D) 8	
7.	Maximun	n number	of electron	s that can	be accon	nodated in	M shell	, -	
	A) 2		B) 8		C) ^	18) 32	
8.	Which of	the follow	ving shells	can be ac	⊂, comodate	d 32 elect	rons	-, •-	
	A) K		B) I		C) N	M		D) N	
			2, 2		0,1			-,	

SYMBOLS AND FORMULAE

9.	The symbol used to	represent atomic numb	ber	
	A) Z	B) A	C) Y	D) K
<mark> </mark> 10.	The formula used to	find the no. of neutrons	sis	
	A) M - Z	B) A - Z C)2n ²		D) None
11.	The atomic number	of sodium element is		
	A) 11	B) 22	C) 14	D) 32
12.	Sn is the symbol of			
	A) Tin	B)Antimony	C) Sulphur	D) Ferrus
13.	The symbol H_2 means	ans		
İ	A) One atom of hydro	ogen	B) Two atoms	of nascent hydrogen
	C) Two molecules of	hydrogen	D) One molect	ule of hydrogen
14. 	The number of un pa	ired electrons present	in Cr	
	A)4 B) 6	C) 5	D)3	
^{15.}	i ne electronic config	Juration of scandium (ξ	D)N	
 16	A) (Ar)45-30' B) (Al	/45'30' C)(Ar)45'30'	D)None	;
10.	Δ Ph B)Mn			off
17	Latin Name of Mercu	rv	D) 0a	U'
	A)Hvdragvrum B) Hv	dro C)Araentum	D)All	
 18.	The atomicity of sulp	hur is		
i	A) 8	B) 2 C) 4	-0	D)3
19.	Latin Name of Tin		26	
	A)Stibium	B) Stanum C) Au	rum	D) Ferrum
20 .	The atomicity of pho	sphorous is		
	A) 8	B)4 C) 2		D) 1
[⊥] 21.	How many electrons	present in N-Shell		
i	A)32	B)18 C)8		D)All
i				
l				
1				
ļ				
1				
ļ				

D) Ne

D) ₁T³

Fill in the blanks :

Element	Symbol	Atomic No. (No. of electrons)	Distribution o	Short representation of electronic configuration			
			К	L	Μ	Ν	
Beryllium	Be		2	2			2,2
Auminium	A	13	2	8	3		
	Si	14	2		4		2, 8, 4
	Р	15	2	l	5		2,8,5
Sulphur	S	16	2	8	6		
Chlorine	D		2	8	7		2,8,7
	Ar	18	2		8		2,8,8
Potassium	К	19	2	8	-1	1) P
Calcium	G	20	2	8	8	2	2,8,8,2
C FOUR							

EXPLORERS (Level - III)

I) MCQ's with more than one correct answer

- 1. Which of the following elements belongs to L Shell
- A) H B) C C) O 2. The isotopes of hydrogen are
 - A) $_{1}P^{1}$ B) $_{1}D^{2}$ C) $_{6}C^{13}$
- Which of the following statement is correct reg. ArgonA) Its general configuration is 2,8,7
 - B) atomic number is 18
 - C) It is a Noble gas
 - D) Its symbol is "ar"
- 4. Which of the following statement is wrong
 - A) Atomic number of Sodium is 11
 - B) Symbol of Chlorine is "Ca"
 - C) General configuration of Silicon is 2,8,4
 - D) L-Shell can accomodate a maximum of 18 electrons

This section contains multiple choice questions. Each question has 4 choices (A), (B),
 (C),(D),out of which **ONE or MORE** is correct. Choose the correct options

l II)	Comprehension type							
•	This section contains paragraph. Based upon each paragraph multiple choice questions							
1	have to be answered. Each question has 4 choices (Å), (B), (C) and (D) out of which ONLY							
	ONE i s correct. Choose the co	rrect option.						
1								
1	$((\bigcirc))((\bigcirc))((\bigcirc))$	$((\circ))$						
	Al Si	P S						
 		_						
5	The number of electrons pr	esent in sulphur						
6	Number of protons present	in Phosphorus is equal	l to ite					
0.	A) Atomic number R Vc	llonco electrons	C) Both 1 8 2					
	Posson and Assortion typ		C) Dour 1 & Z	D) None				
,	Reason and Assertion typ		1 on					
i 🔸	This section contains certain r	number of questions. Ea	ch question contains S	Statement – 1				
	[Assertion] and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option							
	A) Both statement L and statement II are true							
	B) Both statement I and state	tement II are false.	9					
İ	C) statement I s true and st	atment II is false.						
	D) statement I s false and s	statment II is true.						
7.	Assertion : The path of rota	ation of electron is calle	d as orbit.					
	Reason : Orbits are design	ated by K,L,M,N						
8.	Assertion : General configu	uration of neon is 2,8,8						
İ	Reason : Neon is a rare ga	S						
9.	Assertion : Atomic number	of carbon is "6"						
	Reason : The number of p	protons is considered a	as atomic number and	d in case of				
 \	neutral atom, electron number is also considered as atomic number.							
· V)	Match the following :							
i 🔸	This section contains Matrix-M	latch Type questions. Ec	ach question contains s	statements				
	given in two columns which ha to be matched with statement.	ve to be matchea. Stater s (n. a. r. s) in Column–	nents (A, B, C, D) in Co l II . The answers to thes	se questions				
	have to be appropriately bubb	oled as illustrated in the	following example.					
 	If the correct matches are A-p,.	A-s,B-r,B-r,C-p,C-q and	D-s,then the correct bu	bbled 4*4				
	matrix should be as follows:							
24.	Elements	Valency electrons						
	a) Oxygen	1) 1						
	b) Flourine	2) 5						
 	c) Phosphorous	3) 6						
I 	d) Hydrogen	4) 7						
I								
I								

$\Phi \Phi$ **TEACHING TASK**:

BEGINNERS LEVEL KEY										
1-B	2-C	3-C	4-A	5-D	6-B	7-C	8-D	9-A	10-B	11-A
12-A	13-D	14-B	15-A	16-A	17- A,	18-A,	19-B,	20-B	21-A	
	EXPLORERS LEVEL KEY									
1B,C,D	2-A,B,D	3-B,C	4-B,D	5-A	6-A	7-B	8-C	9-A	a-3,b-4,c-	2,d-1

<u>§§</u> <u>VALENCY</u> :

The combining power of an element is know as "Valency". The number of electrons donated or accepted by an atom of an element so as to have eight electrons in its outermost orbit, is called as valency.

When an atom looses or gains electron it converts into an "ion"

§§ Types of ions :

lons are two types depending upon the nature of the charge carried by them. They are Electro positive ions or cations and Electronegative ions or anions.

<u>¶</u> Positive valency (Electropositive ions):

If the atom donates its electrons from its outermost orbit to get stability, the valency is called as positive valency and the that ion is called as cation.

If it donates one electron or two electrons or three electrons is called as monovalent positive valency or divalent positive valency or trivalent positive valency respectively.

Example: Na⁺, Ca²⁺, Al³⁺, *NH*₄⁺ Monovalent electropositive ions

Monovalent Electopositive ions						
Name of Element	Name of Element Cation Symbol					
Hydrogen	H⁺	+1				
Lithium	Li ⁺	+1				
Sodium	Na^+	+1				
Potassium	K	+1				
Rubidium	Rb⁺	+1				
Copper	Cu+ Cuprous or Copper (I)	+1				
Silver	Ag^+	+1				
Gold	Au^+ Aurous or gold (I)	+1				
Mercury	Hg ⁺¹ Mercurous or Mercury (I)	+1				
Ammonium	NH_4^+	+1				
Phosphonium	PH4 ⁺	+1				

<u>§§</u> Divalent electropositive ions

Divalent Electropositive ions are formed by loosing two electrons and has a charge of+2

Bivalent Electopositive ions						
Name of Element	Cation Symbol	Charge on cation				
Beryllium	Be ²⁺	+2				
Magnesium	Mg ²⁺	+2				
Calcium	Ca ²⁺	+2				
Strontium	Sr ²⁺	+2				
Barium	Ba ²⁺	+2				
Radium	Ra ²⁺	+2				
Nickel	Ni ²⁺	+2				
Manganese	Mn ²⁺ Manganous or Manganese (II)	+2				
Cadmium	Cd ²⁺	+2				
Zinc	Zn ²⁺	+2				
Tin	Sn ²⁺ Stannous or Tin (II)	+2				
Chromium	Cr ²⁺ Chromous	+2				
Cobalt	Co ²⁺ Cobaltous of Cobalt (II)	+2				
Mercury	Hg ²⁺ Mercuric or Mercury (II)	+2				
Lead	Pb ²⁺ Plumbous or lead (II)	+2				

<u>§§</u> <u>Trivalent electropositive ions</u>

Trivalent Electropositive ions are formed by loosing two electrons and has a charge

Trivalent Electopositive ions						
Name of Element	Cation Symbol	Charge on cation				
Boron	B ³⁺	+3				
Aluminium	Al ³⁺	+3				
Antimony	Sb ³⁺ Antimonous or Antimony (III)	+3				
Arsenic	As ³⁺ Arsenous or Arsenic (III)	+3				
Chromium	Cr ³⁺	+3				
Manganese	Mn ³⁺ Manganic or Manganese (III)	+3				
Iron	Fe ³⁺ Ferric or Iron (III)	+3				
Cobalt	Co ³⁺ Cobaltic or Cobalt (III)	+3				
Gold	Au ³⁺ Auric or gold (III)	+3				

of +3

§§ Tetravalent electropositive ions

Tetravalent Electropositive ions are formed by loosing two electrons and has a charge of +4

Tetravalent Electopositive ionsName of ElementCation SymbolCharge on cationLeadPb⁴⁺ Plumbic or Lead (IV)+4TinSn⁴⁺ Stannic or Tin (IV)+4PlatinumPt⁴⁺ Platinic or Platinum (IV)+4

<u>¶</u> Variable electropositive valency:

They are some elements which show different valencies in different compounds if the elements shows more than one valency in its compounds then the element is said to exhibit variable valency.

Examples:

1. The valency of Fe in FeCl_2 is 2 and that of FeCl_3 is 3

2. In Cu₂Cl₂ and CuCl₂ the valency of Cu is 1 and 2

How to name the element with two different valencies

The compound in which the element shows the higher valency is indicated by the suffix - **ic**, while the compound in which the element shows the lower valencies is indicated by the suffix -**ous**

Exmples :-

Iron exhibit two valencies 2 and 3 Iron in its lower valency 2 is named as **ferrous** Iron in its higher valency 3, is named as **ferric**

<u>§§</u> <u>Negative valence :</u>

Non metals tend to take electrons from other elements so as to have eight electrons in their outermost orbit. The number of electrons accepted by an atom of an element is its negative valency.

An ion or radical formed by the accepted of one electron or two electrons or three electrons for its stability is called as monovalent negative ion or divalent negative ion or trivalent negative ion respectively.

Example: $CI^{-}, O^{2-}, N^{3-}, SO_{4}^{2-}, O_{2}^{2-}$

Name of	f the anion			Svm	bol	Charge
Fluoride	F ⁻	- 1		-1		
Chloride			CI⁻			-1
Bromide			Br–			-1
Iodide			I_			-1
Hypochlorite			CIO	_		-1
Iodate			1O ₃			-1
Nitrite			NO	2		-1
Nitrate			NO	3-		-1
Bicarbonate or Hydro	ogen Carbonate		нсо	D ₃ ⁻		-1
Bisulphate			HS	04		-1
Bisulphite or Hydrog	en Sulphite		HSC) ₃ ⁻		-1
Bicarbonate or Hydro	ogen Carbonate		нсс	03-		-1
Acetate			CH	₃COO [−] or	$C_2H_3O_2$	-1
Formate			$HCOO^{-}$ or CHO_2^{-}			-1
Hypophosphite or D	H2F	2 ⁻		-1		
Cyanide	CN			-1		
Thiocyanate / Sulphocyanide				SCN		
Permanganate			MnO ₄			-1
Hydride		γ'	H			-1
Hydroxide	N = 2)[2_	ОН	-		-1
Superoxide		-	0 ₂ ⁻			-1
Hydrogen peroxide			HO	2		-1
	Divalent Elec	trone	gativ	ve ions		
	Name of Anio	n Sym	bol	Charge		
	Sulphide	S ²⁻		-2		
	Sulphite	SO ₃	2-	-2		
	Sulphate	SO ₄	2-	-2		
	Oxide	0 ²⁻		-2		
	Peroxide	02 ²⁻		-2		
	Carbonate	CO ₃	2-	-2		
	Chromate	CrO.	2- 4	-2		
	Dichromate	Cr ₂ C) ₇ ²⁻	-2		
	Manganato		2-	2		
	IVIdiigaliale		J_{Δ}	-2		

Zincate

-2

ZnO₂²⁻

SYMBOLS AND FORMULAE

tion

Trivalent Electronegative ion						
Name of Anion	Charge					
Aluminate	AIO ₃ ³⁻	-3				
Arsenate	AsO4 ³⁻	-3				
Boride	B ³⁻	-3				
Nitride	N ³⁻	-3				
Phosphide	P ³⁻	-3				
Borate	BO3 ³⁻	-3				
Phosphite	PO3 ³⁻	-3				
Phosphate	PO4 ³⁻	-3				

ILLUSTRATIONS

Illustration -2

Explain the variable valencies of phosphorous

Solution : Phosphorous shows two valencies they are 3,5.

Becuase of phosphorous shows three unpaired electrons in first excited state so valency is 3.

Phosphorous shows five unpaired electrons in secound excited state. So valency is 5

<u>Illustration 3:</u> If in an element X there are seven electrons present in its outer most orbit then it is a

Solution : it is an example of halogens , X=9 electronic configuration = 1s²2s²2p⁵ It is a flourine and non metal

TEACHING TASK

 	 B) Along with valence electrons, inner electrons also participate under such conditions 							
 	C) Nuclear cha	rge changes, so attra	action decreases in certa	in conditions				
	D) All the above							
5.	, Negative valence	cv refers						
	A) Protons and	neutrons are equal						
	B) Atom lost ele	ectrons						
1	C) Atom gained	electrons						
İ	D) Motion numb	er is more than electro	on number					
6.	The valency of	hydrogen is one in NI	H ₃ . What is the valency of	fnitrogen				
	A) 1	B) 2	C) 3	D) 4				
7.	The valency of	phosphate radical is	,					
İ	A) 2	B) 3	C) 4	D) 5				
8.	The valency of	nitrogen is						
	A) 1	B) 3	C) 5	D) both B, C				
9.	What is the syn	nbol for the nitrate ior	ן ?					
I	$\wedge \rangle NO^{-}$	\mathbf{P} \mathbf{NO}^{-}	$\sim N0^{-}$	D No^{3-}				
	A) NO	B) NO_2	() $()$	$D) NO_2$				
10. 	I ne valency of	carbon is						
 m	A) I MCO's with m	$D) \ge 0$	C) 3	D) 4				
") ^	This section control	ing multiple choice qu	<u>stiana</u> Each quastion has	A = hoises(A)(D)(C)(D)				
•	out of which ONE	C or MORE is correct.	Choose the correct option	$A \in Choices(A), (D), (C), (D),$				
 11	The valency of	copper	2					
	A)+1	B)+2	C)-1	D)-3				
12.	Which of the fol	lowing elements hav	ving valancy 3	_, .				
 	A)chromium	B)aluminium	C)nitrogen	D)phosphorous				
13.	valency is a	,	, 0	// /				
l	A) Number of e	electrons gained	B)Number of electrons	lost				
	C) Number of e	lectrons shared	D) Valency electrons					
14.	which of the foll	owing is a radical						
	A) Sulphate	B)Phosphate	C)Ammonium D)) Sodium				
15.	which are divale	ent electrolent radical	l					
	A) Oxide	B) Sulphide	C)Zincate	D)sodium				
Υ)	Match the foll	<u>owing</u>						
•	This section conto	uins Matrix-Match Typ	e questions. Each questio	n contains statements				
	given in two colum	nns which have to be r th statements (n_a_r	natched. Statements (A, B) s) in Column–II . The ans	, C, D) in Column-I have				
	have to be approp	priately bubbled as ill	ustrated in the following e	example.				
	If the correct mate	hes are A-p,A-s,B-r,B	-r,C-p,C-q and D-s,then th	e correct bubbled 4*4				
	matrix should be	as follows:						
22.	A) carbon	1) triva	alent					

CHE	MISTRY	S	SYMBOLS AND FORMULAE
	B) hypochlorite	2) monovalent	
1	C) sulphate	3) divalent	
	D) borate	4) tetravalent	
İ] i
		KEY	
		SECTION	Δ
1-0	2-A 3-C 4-D	5-0 6-0	7-B &B &C 10-D
	Section-II	SECTION-III	
11. A,	B 12-B,C,D 13-A,B 14-A,B,C	15-A,B,C 22-a-4,b-2,c-3,d-1	
<u> </u>			
		LEARNER'S TASK	
1	* 1 -1 *	BEGINNERS (Leve	<u> -)</u> ◆₽- ◆
D	MCQ's with single correct	answer :	
1 [°]	The valency of lead is		. fiO
 	A) +2 B) + 4	4 C) + 3	D) A & B
2.	Which element occurs in fre	e state in nature.	,
	A) Fe B) CO	C) Pt	D) Ni
3.	The metalloid amongest the	following is	ŕ
1	A)As B) Na	C)Au	D) Fe
4.	The volatile metal is	- 02 ·	
	A)Ag B) Cu	ı C) Na	D) Fe
5.	Ferrous ion is		
	A) monovalent B) divalent	C) trivalent	D) None
6.	In which of the following doe	es manganese have an c	oxidation state of +4.
	A) Mn_2O_3 B) Mr	n ₂ O C) Mn ₂	O ₃ D) MnO ₂
¦7.	Valency of Nitride		
	A) +3 B) -3	C) +2	D) -2
8.	Symbol for mercury		
	A) Mc B) Hg	C) Mr	D) My
1 9.	Valency of the positive radio	al ammonium	
	A) 2 B) 3	C) 1	ט (ט
10.	One valency of copper is +1	, the other one is	
 11	$A_{1}+Z$ $B_{1}+1$		D) +3
11. 	A) Nitroto	legative valency among	
12	A) Nillale B) Su		m D) Carbide
12.		icy respectively in calciu ວິດເຊັ້າ	יייי א ג וח
 13	σ_{12} , D_{2} , D_{2} ,	z 0,0,2	<i>Uj Z</i> , 0
1 3 .			

CHEMISTRY SYMBOLS AND FORMULAE B) *SO*₃²⁻ C) so_{2}^{2-} A) *SO*²⁻ D) SO_{4}^{-} 14. The bivalent ion among the following is A) Nitride B) Phosphade C) Antimony D) Sulphate Identify tetra valent ion 15. C) Carbide A) Ferry cyanide B) Ferro cyanide D) Hydride 16. Which of the following is Monovalent anion A) Acetate B) Oxide C) Zincate D) Nitride Two atoms of hydrogen combine with one atom of oxygen to form a molecule of 17. water. The valency of hydrogen is A) 3 B) 1 C) 2 D) 4 ACHIEVERS (Level - II) * 1-1 * **Descriptive type questions :** Write the symbols of following ions 1. A) Stannus B) Cobaltous C) Auric D) Platinic 2. Write about Electropositive cations and Electronegative anions 3. Write about variable valancy Write three examples each for bivalent and trivalent electronegative ions 4. Write four differenes between Cations and Anions 5. EXPLORERS (Level - III) MCQ's with more than one correct answer : **I**) 4 This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which **ONE or MORE** is correct. Choose the correct options Which of the following has same valency 1. A) Sodium B) Ammonium C) Mercurus D) Plumbus 2. Which of the following Tri valent species A) Ferric B) Manganese C) Arsenic D) Plumbic Stability atom depends on 3. A) Octet configuration C) Size D) proton numbe B) Energy 4. Radicals are formed by A) Single atoms only B) Two atoms of same element C) Two atoms of different elements D) Loosing or gaining of electrons Which of the followig startements are incorrect 5. A) Symbol of Chromate ion is CrO₄²⁻ B) Symbol of Permanganate is MnO¹/₄ C) Symbol of Oxalate ion is $C_2 O_4^{-1}$ D) Symbol of Acetate ion is CH₃COO⁻ 6. Which of the followig startements are correct

- A) The valency of Fe in FeCl₂ is 2
- B) In Cu₂Cl₂ and CuCl₂ the valency of Cu is 2 and 1
- C) Valency of FeCl₃ is 3
- D) All are incorrect

Reason and Asserton type

- This section contains certain number of questions. Each question contains Statement 1 (Assertion) and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choose the correct option.
 - A) Both statement I and statement II are true.
 - B) Both statement I and statement II are false.
 - C) statement I s true and statment II is false.
 - D) statement I s false and statment II is true.
- Assertion : Short hand notation of an element is called Symbol
 Reason : Symbol of Argon is As
- 8. Assertion : Atom gains electron to become an electronegative ion **Reason** : Symbol of Dichromate ion is $Cr_2O_7^{2-}$

Comprehension type

This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option.

They are some elements which show different valencies in differtent compounds if the elements shows more than one valency in its compounds then the element is said to exhibit variable valency.

- 9. The valency exhibited by Iron are
 - A) 2 B) 3 C) Both D) None
- 10. Iron in its lower valency is named asA) FerrousB) FerricC) Iron (III)D) None

II) <u>Match the following:</u>

This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example.

If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows:

	Column - I	Column - II
11.	a) carbide	1) one
	b) Ferric	2) two
	c) carbonate	3) three
	d) Chloride	4) four
12.	Column - I C	column - II
	a) Cation	1) NH ₄ ⁺
	b) Anion	2) N ³⁻
	c) Stable	3) CO ₃ ²⁻
	d) compound	4) NH ₃

SYMBOLS AND FORMULAE

BEGINNERS LEVEL KEY									
1-A 2-D 3-A 4-C 5-B 6-D 7-B 8-B 9-C 10-A									10-A
11-D	12-B	13-A	14-D	15-C	16-A	17-B			
EXPLORERS LEVEL KEY									
1-A,B,C	2-A,B,C	3-A,C	4- A, B,C,C	5-A,B	6-A,C	7-C	8-B	9-C	10-A
8 + 4 h 3 c 2 d 1 9 + 1 h 3 c 2 d 4									

§§ FORMULA OF COMPOUND :

Write the symbolic representation of one molecule of a compound representing the number of atoms of various elements present in it is called formula of the compound.

<u>§§</u> <u>Criss - cross Method:</u>

Step I: Write the symbol of positive ion or radical to the left side and for the negative ion or radical to the right side.

Step II: Put the valency number of each radical or ion on its top right. Divide the valency numbers by highest common factor, if any, to get simple ratio. Now ignore (+) and (-) symbols. Interchange the valency numbers of radicals or ions as once superscript to others subscript and vice versa.

Step III: If the radicals receives a number more than one, enclose it within brackets. Donot enclose ions in brackets.

Example 1 :	Step I: Ca²+, Cl-	Step II: Ca	Step III: CaCl ₂ .
Example 2:	Step I: Mg²⁺, OH ⁻	Step II: Mg OH	Step III: Mg(OH) ₂ .

§§ Information from the formula of a compound:

When a numeral is written on the left hand side before the formula, it represents number of molecules of the compound.

Example: 2NaCl, 4ZnO etc.

When the numeral is written on the right bottom side of the symbol, it represents the number of atoms in one molecule of a compound .

Example: $Al_2(SO_4)_3$.

In this 2 atoms of aluminium , 3 atoms of sulphur and 12 atoms of oxygen are present.

It is able to calculate its molecular weight by looking at a molecular formula.

<u>§§</u> <u>Atomicity:</u>

Number of atoms present in a molecule of an element is called as atomicity. **Mono atomic molecules** - All Noble gases[He,Ne, Ar, Xe, Kr, Rn] **Diatomic molecules** - Hydrogen $[H_2]$, Oxygen $[O_2]$, Nitrogen $[N_2]$,

CHE		SYMBC	JLS AND FORMULAE
		Chlorine[Cl ₂], Bromine,[Br ₂],	lodine[l ₂],
	Tri atomic molecules -	Ozone[O ₃],	
	Tetra atomic molecules -	Phosphorous[P ₄],	
	Octa atomic molecules -	Sulphur[S ₈],	
<u> </u>	Isoelectronic:		
	Isoclectronics spec	ies are elements or ions tht hav	/e the same or equal
numb	per of electrons		
	C ⁻⁴ >N ⁻³ >O ⁻² >F ⁻ >Ne ³	•Na⁺>Mg⁺2>Al⁺3>Si⁺⁴	
	TE	ACHING TASK	
)	MCQ's with single correc	<u>t answer</u>	
Ι.	By using criss-cross method	I, the formula may obtain for ox	ide and potassium is
	A) K_2O_3 B) K_2O_3	D_{2} C) K_{2} D) KO	
2.	Number of electrons preser	t in ammonium ion are	-
	A) 9 B) 10	C) 11	D) 12
3.	Isoelectronic with O ²⁻ is	121	
	A) CH ₄ B) Al ³⁺	C) Mg ²⁺	D) all
I .	To form a molecule of Alumir	ium nitride, how many aluminiu	m and nitrogen atoms are
	required respectively		
	A) 2, 3 B) 3,	2 C) 2, 2	D) 1, 1
5.	Formula for the radicals ma	gnesium and sulphide	
	A) Mg_2S_3 B) Mg_2	S C) Mg ₃ S ₂	D) MgS ₂
5.	Outermost shell of two elem	ents X and Y have three and fiv	e electrons respectively.
	If they combine expected fo	rmula of the compound will be	
	A) XY B) X ₂	$\mathbf{C}) \mathbf{X}_{3} \mathbf{Y}_{4}$	$D) X_{2} Y_{3}$
7.	Molecular weight of MgCO ₃		
	A) 74 B) 84	C) 72	D) 68
3.	The chemical formula of ph	otassium super oxide is	
	A) KO ₂ B) K ₂ O	C) K ₂ O ₂ D) KO	
Э.	Chemical formula for calciu be:	m sulphate is $CaSO_4$. The form	ula for ferric sulphate will
	A) $Fe_2(P_2O_7)_3$ B) Fe	$P_4P_3O_{14}$ C) $Fe_2(SO_4)_3$	D) Fe ₃ PO ₄
10.	Select the correct formula for	or each of the following compou	inds:
	i) Calcium carbonate		
	ii) Calcium hydrogen carbor	ate	
	(i) (ii)	(i)	(ii)
	A) Ca(OH), CaC(), B) CaCO,	Ca(HCO_)
	C) CaCO Ca(Ω	$\begin{array}{ccc} H \\ H \\ \end{array} \qquad \qquad D \\ D \\ Ca(HCO) \\ \end{array}$	Ca(OH)
11	A metal M forms a compound	d M HPO What will be the form	u_1 of the metal subhate?
• • •	A) M SO R) M	(SO) C) MSO	
	-710_200_4 D) 101_2	(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	$O_1 W(OO_4)_3$

SYMBOLS AND FORMULAE

	A) arrangement of atoms in the compound								
 	B) mass of atoms in each of its molecule								
	C) number of atoms that have chemically combined in a molecule								
İ	D) number of atoms that have been mixed physically mixed in a molecule.								
5.	Molecular weight of	water is							
	A) 28	B) 18	C) 8	D) None					
 6.	The number of oxyg	en atoms in $Pb(NO_3)$, are						
	A) 2	B) 3	C) 5	D) 6					
7.	The number of oxyg	en atoms in sulphur o	lioxide is						
	A) 1	B) 2	C) 3	D) 4					
8.	The ratio of hydroge	n and oxygen in wate	r is						
	A) 1 : 2 B) 2 :	1 C) 4 : 1	D) 1 : 4						
9.	Formula for calcium	carbonate is							
	A) CaCO ₃	B)CaHCO ₃	C) Na ₂ CO ₃	D)CuCO ₃					
10.	That symbol of lead	is		, and a second sec					
1	A) Pb	B) Cu	C) Ag	D) Au					
11.	A formula has		-						
İ	A) Qualitative signific	cance only		V					
!	B) Quantitative signi	ficance only	2020						
	C) Both qualitative a	nd quantitative signifi	cance.	D) None of these					
12.	What is the formula	of hydrochloric acid							
	A) HC/	B) H ₂	C) Cl_2	D) H_2SO_4					
13 .	The symbolic repres	entation of actual nu	mber of atoms in i	molecule is called					
	A) Valency	B) Formula	C) Both 1 & 2	D) lon					
14. 	The chemical formu	la of water is:	_						
	A) H_2O_2	B) $H_2O \sim C) C$		D) H ₂					
15. 	The valency of tin in	$SnCl_2$ is Aa	and SnCl ₄ is B	·					
!	A B		A B						
	A) 2 4	В)	4 2						
	C) 1 1	D)	2 2						
' 16. 	Identify the right che	mical formula for the	following compou	nds.					
Ì		II) Magnesium oxid		nitrite					
		<i>"</i>	<i>III</i>						
	A) $Ca(HSO_4)_2$	MgO	KNO ₃						
	B) $CaSO_4$	MgO	KNO ₂						
Ì	C) CaS	Mg ₂ O ₂	KNO ₃						
	D) None of the above	e							
17.	Sodium phosphate h	has the chemical forn							
 /a	A) $Na_2P_2O_7$	В) Na ₃ PO ₄	C) $Na_4P_2O_7$	D) Na ₃ PO ₃					
· 18. 	Correct formula of a	trivalent metal nitride	IS:						
İ	A) M ₃ N ₂	в) М ₃ N ₃	C) MIN	D) Both 2 and 3					

ACHIEVERS (Level - II) **Descriptive type questions :** 1. A metal Ca forms a compound [Ca₂P₂O₇] Calcium pyro phosphate. Predict the formula of the Ferric pyrophosphate by criss cross method? 2. The formula of a metal phosphate is MPO₄. The formula of its nitrate according to criss cross method? 3. The atomicity of Ar is.....? 4. What is the molecular weight of tetra atomic phosphorus & Octa atomic Sulphur 5. Calculate the number of electrons in NH₃, CH₄ & N⁻³ species? EXPLORERS (Level - III) +H 8 +H 8 MCQ's with more than one correct answer I) 4 This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D),out of which ONE or MORE is correct. Choose the correct options 1. The information that you can observe from a formula A) number of atoms B) shape of the molecule D) colour C) molecular weight 2. Identify the atoms that which can form negative valencies A) chlorine B) berylium C) oxygen D) nitrogen 3. Identify the elements which can form variable valency B) copper A) oxygen C) Iron D) Flourine Which contain same electron number from the following 4. A)H B)He C) Li⁺ D) Na⁺ 5. The atoms that will donate electrons for their stability A) Na B) Li C) N D) Ca 6. The compounds that can form using two carbons one oxygen and six hydrogen from the following are C) CH₂CH₂O A) C_2H_5OH B) CH₃CHO D) CH₃-O-CH₃ 7. Which of the following contain same valence electrons B) Neon A) Argon C) Magnesium ion D) Oxide ion 8. Which following contain same number as valence orbit A) Sulphur (16) B) Oxygen (8) C) Silicon (14) D) Argon (18) 9. Identify the correct statement A) The representation of a molecule of a substance (element or compound) in terms of symbols and subscript numbers is known as the formula. B) Atoms of different elements combine in certain fixed ratio to form a compound. C) All chemical compounds are represented by their respective formulae. D) None of the above. 10. Which of the following formula is having 2 atoms? C) CaO A) HC/ B) HgCl₂ D) CaCO,

II) <u>Comprehension Type</u>

This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option.

The representation of a molecule of a substance in terms of symbols & subscripts numbers is known as formule. The representation of a molecule of a substance (element or compoun4) in terms of symbols and subscript numbers is known as the formula.

- 11.A metal M forms a compound MPO4. What will be the formula of the metal sulphate?A) M_2SO_4 B) $M_2(SO_4)_3$ C) MSO_4 D) $M(SO_4)_3$
- **12.** Chemical formula for sodium sulphate is Na_2SO_4 . The formula for trivalent metal sulphate will be:
- A) $M_2(P_2O_7)_3$ B) $M_4P_3O_{14}$ C) $M_2(SO_4)_3$ D) M_3PO_4 **13.** The phosphate of a metal has the formula MPO₄. The formula of its nitrate will be: A) MNO₃ B) $M_2(NO_3)_2$ C) $M(NO_3)_2$ D) $M(NO_3)_3$

III) Match the following

This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column-I have to be matched with statements (p, q, r, s) in Column-II. The answers to these questions have to be appropriately bubbled as illustrated in the following example.

If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix should be as follows:

Column-I

- **14.** a) Mercurous chloride
 - b) Lead chromate
 - c) Solid carbondioxide
 - d) Calcium oxychloride

Column-II
1) PbCrO ₄
2) CaOC/ ₂
3) CO ₂
4) Hg ₂ C/ ₂
5) H ₂ SO ₄

BEGINNERS LEVEL KEY									
1-C	2-C	3-A	4-C	5-B	6-D	7-B	8-B	9-A	10-A
11-C	12-A	13-B	14-B	15-A	16-B	17-B	18-D		
	EXPLORERS LEVEL KEY								
1-A,C 2-A,C,D 3-B,C 4-A,B,C 5-A,B,D 6-A,D 7-A,B,C,D 8-A,C,D 9-A,B,C 10-A,C							10-A,C		
11-B 12-C 13-D 14- a-4,b-1,c-3,d-2									