JEE MAIN & ADVANCED	Chemistry							
HINTS & SOLUTIONS								
EXERCISE - 1 Single Choice	13. $E_n = -78.4$ kcal/mole = $-78.4 \times 4.2 = -329.28$ kJ/mole							
1. $R = R_0 A^{1/3} = 1.3 \times 64^{1/3} = 5.2 \text{ fm}$	$=-\frac{329.28}{96.5}$ eV $=-3.4$ eV.							
 Hydrogen atom contains 1 proton, 1 electron and no neutrons. (e/m)_e/(e/m)_α = e/m_e/(2e/4×1836 m_e) = 3672/1 Volume fraction = Volume of nucleus Total vol. of atom = (4/3)π (10⁻¹³)³/(4/3)π (10⁻⁸)³ = 10⁻¹⁵ 	(energy of II orbit of H atom). 14. $r \alpha \left(\frac{n^2}{Z}\right)$ As Z increases, radius of I orbit decreases. 15. Radius = $0.529 \frac{n^2}{Z} \text{ Å} = 10 \times 10^{-9} \text{ m}$ So, $n^2 = 189$ or, $n \approx 14$ Ans. 16. $E_1(H) = -13.6 \times \frac{1^2}{1^2} = -13.6 \text{ eV}$;							
 (4/3)π (10⁻⁵)⁵ 5. Ne contains 10 electrons O²- and F⁻ contain 10 electrons 6. I.E. of one sodium atom = hC/λ 	$E_2(He^+) = -13.6 \times \frac{2^2}{2^2} = -13.6 \text{ eV}$ $E_3(Li^{2+}) = -13.6 \times \frac{3^2}{3^2} = -13.6 \text{ eV}$;							
λ & I.E. of one mole Na atom = $\frac{hC}{\lambda} N_A$ = $\frac{6.62 \times 10^{34} \times 3 \times 10^8 \times 6.02 \times 10^{23}}{242 \times 10^{-9}}$ = 494.65 kJ.mol.	$E_{4}(Be^{3+}) = -13.6 \times \frac{4^{2}}{4^{2}} = -13.6 \text{ eV}$ $\therefore E_{1}(H) = E_{2}(He^{+}) = E_{3}(Li^{2+}) = E_{4}(Be^{3+})$							
 7. Violet colour has minimum wavelength so maximum energy. 8. λ = c/v = 3×10⁸/400×10⁶ = 0.75 m 	17. $V = 2.188 \times 10^6 \frac{Z}{n} \text{ m/s}$ Now, $V \propto \frac{Z}{n}$ so, $\frac{V_{\text{Li}^{2+}}}{V_{\text{H}}} = -\frac{Z_1/n_1}{Z_2/n_2} = \frac{3/3}{1/1} = 1$ or, $V_{\text{Li}^{2+}} = V_{\text{H}}$							
 9. λ = c/v = 3×10⁸/8×10¹⁵ = 3.75×10⁻⁸ m 10. Photoelectric effect is a random phenomena. So, electron It may come out with a kinetic energy less than (hv – w) as some energy is lost while escaping out. 	18. $r_1 - r_2 = 24 \times (r_1)_H$ $\frac{0.529 \times n_1^2}{1} - \frac{0.529 \times n_2^2}{1} = 24 \times 0.529$ $\therefore (n_1^2 - n_2^2) = 24$ So, $n_1 = 5$ and $n_2 = 1$							
11. For photoelectric effect to take place, $E_{light} \ge W$ $\therefore \frac{hc}{\lambda} \ge \frac{hc}{\lambda_0}$ or $\lambda \le \lambda_0$.	19. I.P. = 340 V so, I.E. = 340 eV = 13.6 $\frac{Z^2}{(1)^2}$ so, $Z^2 = 25$ so, $Z = 5$ Therefore, (B) is correct option.							
12. Power = $\frac{\text{nhC}}{\lambda \times t}$ \Rightarrow 40 × $\frac{80}{100}$	20. Velocity $\propto \frac{Z}{n}$; Frequency $\propto \frac{Z^2}{n^3}$;							
$=\frac{n\times 6.62\times 10^{-34}\times 3\times 10^8}{620\times 10^{-9}\times 20} \implies n=2\times 10^{21}$	Radius $\propto \frac{n^2}{Z}$; Force $\propto \frac{Z^2}{n^4}$.							
Atomic Structure	209							

21. S1 : Potential energy of the two opposite charge system **31.** Infrared lines = total lines - visible lines - UV lines decreases with decrease in distance, $=\frac{6(6-1)}{2}-4-5=15-9=6.$ **S4**: The energy of Ist excited state of He⁺ ion $= -3.4 Z^2 = -3.4 \times 2^2$ (visible lines = $4 \quad 6 \rightarrow 2, 5 \rightarrow 2, 4 \rightarrow 2, 3 \rightarrow 2$) -13.6 eV. $(UV lines = 5 \ 6 \rightarrow 1, 5 \rightarrow 1, 4 \rightarrow 1, 3 \rightarrow 1, 2 \rightarrow 1)$ S₂ and S₂ are correct statement. **22.** S1 : Be^{2+} ion has 2 electron so Bohr model is not 32. $r_1 = 0.529 \text{ Å}$ applicable. $r_{2} = 0.529 \times (3)^{2} \text{ Å} = 9x$ S_2 , S_3 and S_4 are correct statement. so, $\lambda = \frac{2\pi r}{r} = \frac{2\pi (9x)}{3} = 6\pi x.$ **23.** (a) Energy of ground $= -13.6 \times 2^2 = -54.4 \text{ eV}$ (iv) state of He⁺ 33. $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_1}} = \sqrt{\frac{200}{50}} = \frac{2}{1}$. $=-27.2 \times 1^2 = -27.2 \text{ eV}$ (ii) (b) Potential energy of I orbit of H-atom $= 13.6 \times \frac{2^2}{3^2} = 6.04 \,\mathrm{eV}$ 34. $\lambda = \frac{h}{mv} = \frac{6.625 \times 10^{-34}}{0.2 \times 5} \times 3600 \approx 10^{-30} \text{ m.}$ (c) Kinetic energy **(i)** of II excited state of He+ (d) Ionisation $= 13.6 \times 2^2 = 54.4 \text{ V}$ (iii) **35.** For a charged particle $\lambda = \frac{h}{\sqrt{2mqV}}$, $\therefore \quad \lambda \propto \frac{1}{\sqrt{V}}$. potential of He+ 24. $\lambda = \frac{hc}{\Delta F} \therefore \lambda \alpha \frac{1}{\Delta F}$ 36. $\Delta p \cdot \Delta x = \frac{h}{4\pi} \implies \Delta x = \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 10^{-34}}$ 25. When electron falls from n to 1, total possible number of lines = n - 1. $= 5.27 \times 10^{-30}$ m. **26.** $E_n = E_1 \frac{Z^2}{Z^2}$ $E_5 = -13.6 \times \frac{(1)^2}{(5)^2} = -0.54 \text{ eV}$ **37.** For an α particle, $\lambda = \frac{0.101}{\sqrt{V}}$ Å. **27.** According to energy, $E_{4 \to 1} > E_{3 \to 1} > E_{2 \to 1} > E_{3 \to 2}$. According to energy, Violet > Blue > Green > Red. **38.** $\lambda \propto \frac{n}{Z}$ \therefore $\frac{n_1}{Z_1} = \frac{n_2}{Z_2}$ or $\frac{2}{3} = \frac{4}{6}$ (n = 4 of C⁵⁺ ion) \therefore Red line \Rightarrow 3 \rightarrow 2 transition. **28.** For 1st line of Balmer series **39.** d⁷: 3 unpaired electrons. \therefore Total spin = $\pm \frac{n}{2} = \pm \frac{3}{2}$. $\overline{V}_1 = R_H(3)^2 \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] = 9R \left(\frac{5}{36} \right) = \frac{5}{4}R$ **40.** Zn^{2+} : [Ar] 3d¹⁰ (0 unpaired electrons). For last line of Pachen series Fe^{2+} : [Ar] 3d⁶ (4 unpaired electrons) maximum. Ni³⁺ : [Ar] 3d⁷ (3 unpaired electrons). $\overline{v}_2 = R_{\rm H}(3)^2 \left| \frac{1}{(3)^2} - \frac{1}{(\infty)^2} \right| = R$ [Ar] 3d¹⁰ (0 unpaired electrons). Cu^+ : so, $\overline{v}_1 - \overline{v}_2 = \frac{5}{4}R - R = \frac{R}{4}$ 41. Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi} = 0.$ $\ell = 0$ (s orbital). **29.** Li^{2+} , H and He⁺ are single electron species. **30.** Visible lines \Rightarrow Balmer series $(5 \rightarrow 2, 4 \rightarrow 2, 3 \rightarrow 2)$. $Cu: 1s^22s^22p^63s^23p^63d^{10}4s^1.$ 42. So, 3 lines. \therefore Cu²⁺: 1s²2s²2p⁶3s²3p⁶3d⁹ or [Ar]3d⁹.

Atomic Structure

210

- **43.** Magnetic moment = $\sqrt{n(n+2)} = \sqrt{24}$ B.M.
 - :. No. of unpaired electron = 4. X_{26} : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$. To get 4 unpaired electrons, outermost configuration will be $3d^6$.
 - \therefore No. of electrons lost = 2 (from 4s²).
 - \therefore n=2.
- 44. Cr (Zn=24) electronic configuration is : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$ so, no of electron in $\ell = 1$ i.e. p subshell is 12 and no of electron in $\ell = 2$ i.e. d subshell is 5.
- **45.** X_{23} : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$. No. of electron with $\ell = 2$ are 3 (3d³).
- **46.** Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi} = 0$
 - (since $\ell = 0$ for s orbital).
- 47. $\operatorname{Cl}_{17}^{-}$: [Ne] $3s^2 3p^6$. Last electron enters 3p orbital. $\therefore \ell = 1$ and m = 1, 0, -1.
- **48.** Number of radial nodes = $n \ell 1 = 1$, n = 3. $\ell = 1$.

Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi}$.

- **49.** Cl₁₇: [Ne] $3s^2 3p^5$. Unpaired electron is in 3p orbital. ∴ n=3, $\ell = 1, m = 1, 0, -1$.
- **50.** (A) $_{24}$ Cr : [Ar]3d⁵4s¹
 - **(B)** $m = -\ell$ to $+\ell$ through zero.
 - (C) $_{47}$ Ag : $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^14d^{10}$. Since only one unpaired electron is present.
- 62. ${}^{11}_{6}C \longrightarrow {}^{11}_{5}B + {}^{0}_{+1}e$ 64. $\frac{n}{n} > 1$
- 65. $\frac{n}{p}$ is minimum for this isotope.
- 66. It is the order of penetrating power.
- 67. Nucleides having $\frac{n}{p} > 1$ undergoes β -emission to decrease $\frac{n}{p}$ ratio in order to attain belt of stability.

 $68. \quad \stackrel{A}{Z}X \longrightarrow \stackrel{A-1}{Z}X + \stackrel{1}{_0}n$

69.
$${}^{238}_{92}U \longrightarrow {}^{214}_{82}Pb + m^4_2He + n^0_{-1}e$$

 $\therefore m = 6 \text{ and } m = 2. \text{ Total} = 8.$
70. $\lambda = v$

then
$$\lambda = \frac{h}{mV}$$
 or $\lambda^2 = \frac{h}{m}$ So, $\lambda = \sqrt{\frac{h}{m}}$

Chemistry

- 71. s orbital is spherical so non-directional.
- 72. Total number of electrons in an orbital = $2(2\ell+1)$. The value of ℓ varies from 0 to n-1. To t a 1

numbers of electrons in any orbit =
$$\sum_{\ell=0}^{\ell=n-1} 2(2\ell + 1)$$
.

73.
$$\Delta x = 2\Delta p$$

 $\Delta x \cdot \Delta p = \frac{\hbar}{2} = \frac{h}{4\pi} \implies 2 \Delta p \cdot \Delta p = \frac{\hbar}{2}$
 $\Rightarrow 2(m\Delta V)^2 = \frac{\hbar}{2} ; (\Delta V)^2 = \frac{\hbar}{4m^2}$
 $\Rightarrow \Delta V = \frac{\sqrt{\hbar}}{2m}.$

74. The lobes of d_{xy} orbital are at an angle of 45° with X and Y axis. So along the lobes, angular probability distribution is maximum.

75.
$$\binom{n_1 + n_2 = 4}{n_1 - n_2 = 2}$$
 so $n_1 = 3$ and $n_2 = 1$.
 $\overline{v} = R(3)^2 \left\{ \frac{1}{(1)^2} - \frac{1}{(3)^2} \right\} = 8R.$

- **76.** $2\pi r = n\lambda = \text{circumference}$
- 77. Spin quantum number does not comes from Schrodinger equation.

$$s = + \frac{1}{2}$$
 and $- \frac{1}{2}$ have been assigned arbitrarily.

78.
$$\frac{\lambda_y}{\lambda_x} = \frac{m_x v_x}{m_y v_y}$$
. $\Rightarrow \frac{\lambda_y}{1} = \frac{m_x v_x}{(0.25m_x)(0.75v_x)} = \frac{16}{3}$.
 $\therefore \quad \lambda_y = 5.33$ Å.

Atomic Structure

79. For an electron accelerated with potential difference V

volt,
$$\lambda = \frac{h}{\sqrt{2mqV}} = \frac{12 \cdot 3}{\sqrt{V}} \dot{A}$$
.
80. $v = \text{RC } Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$.
 $v_1 = \text{RC } Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = \text{RC } Z^2$,
 $v_2 = \text{RC } Z^2 \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = \frac{3}{4} \text{RC } Z^2$.
 $v_3 = \text{RC } Z^2 \left(\frac{1}{2^2} - \frac{1}{2^2} \right) = \frac{1}{4} \text{RC } Z^2$. $v_1 - v_2 = v_3$

EXERCISE - 2 Part # I : Multiple Choice

- 1. Ground state binding energy = $13.6 Z^2 = 122.4 eV.$ $\therefore Z = 3.$
 - 1^{st} excitation energy = 10.2 Z² = 91.8 eV.
 - :. an 80 eV electron cannot excite it to a higher state.

2.
$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{600 \times 10^{-9}} = 5 \times 10^{14} \, \text{sec}^{-1}$$

 $E = \frac{12400}{6000} = 2.07 \text{ eV}.$

 $3. \quad \lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mKE}} = \frac{h}{\sqrt{2mqV}} \; .$

When v, KE and V are same, as m increasing, λ decreases. $\lambda_e > \lambda_p > \lambda_\alpha$ (if v, KE and V are same).

- Max. number of different photons emitted is 4 [(4→3→1 and 4→2→1) or (4→3→2→1 and 4→1)].
 Minimum number of different photons emitted is 1(4→1 and 4→1).
- 5. n=4, m=2Value of $\ell = 0$ to (n-1) but m=2. $\ell = 2$ or 3 only Value of s may be +1/2 or -1/2
- 6. $m_e = 9.1 \times 10^{-31} \text{ kg} = 9.1 \times 10^{-28} \text{ g}.$

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \qquad (m_0: rest mass; m: dynamic mass).$$

As
$$v \uparrow$$
, $\left(1 - \frac{v^2}{c^2}\right) \downarrow \quad \therefore \quad m \uparrow$

Molar mass of e = $9.1 \times 10^{-28} \times 6.023 \times 10^{23}$ = 5.48×10^{-4} g/mole.

Chemistry

For electron,
$$\frac{e}{m} = \frac{1.6 \times 10^{-19}}{9.1 \times 10^{-28}} = 1.7 \times 10^8 \text{ c/g}.$$

- 7. From α particle scattering experiment, distance of closest approach of α particle with nucleus came out to be of the order of 10^{-14} m.
- (A) Since the number of photons is not specified (it may or may not be equal to 4 N_A). So, this statement is not always true.
 - (B) No.of photon emitted per day × Energy of one photon = Energy emitted per day.

For bulb A,
$$n_{e_A} \times \frac{12400}{2000} \times 1.6 \times 10^{-19} = 40 \times 24 \times 3600.$$

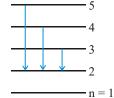
For bulb B,
$$n_{e_B} \times \frac{12400}{3000} \times 1.6 \times 10^{-19} = 30 \times 24 \times 3600.$$

 $n_{e_{A}} : n_{e_{B}} = 8 : 9.$

(C) When an electron make transition from lower to higher orbit, a photon is absorbed.

9. Transition is taking place from $5 \rightarrow 2 \implies \Delta n = 3$ Hence maximum number of spectral line observed

$$=\frac{3(3+1)}{2}=6$$
.



(C) number of lines belonging to the Balmer series = $3(5 \rightarrow 2, 4 \rightarrow 2, 3 \rightarrow 2)$ as shown in figure.

Number of lines belonging to Paschen series = $2(5 \rightarrow 3, 4 \rightarrow 3)$.

10. (A)
$$\lambda$$
 can be calculated as : $\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{1 \times 100}$

 $= 6.626 \times 10^{-36}$ m. (very small).

(B) de-Broglie wavelength associated with macroscopic particles is extremely small and so, difficult to observe.

Atomic Structure

Chemistry)

(C) de-Broglie wavelength associated with electron can

be calculated by using
$$\lambda = \frac{h}{mv}$$
.
(D) $KE_f = 5 + 20 = 25 \text{ eV}$.
 $\therefore \quad \lambda = \sqrt{\frac{150}{KE_f}} = \sqrt{\frac{150}{25}} = \sqrt{6} \text{ Å}.$

11. 1st excitation potential = $10.2 Z^2 = 24 V$ $\therefore Z^2 = 24/10.2$

:. IE =
$$13.6 Z^2 = \frac{13.6 \times 24}{10.2} = 32 \text{ eV}.$$

Binding energy of 3^{rd} excited state = 0.85 Z^2

$$=\frac{0.85\times24}{10.2}=2eV$$

 2^{nd} excitation potential of sample = $12.09 Z^2 = \frac{12.09 \times 24}{10.2}$

$$=\frac{32\times8}{9}$$
 V.

12. $\sqrt{n(n+2)} = 1.732$

Number of unpaired electrons, n = 1.

 $_{25}$ X : [Ar] 4s²3d⁵ For having one unpaired electron, 6 electrons are to be removed (2 from 4s & 4 from 3d). \therefore Y=6.

13. No. of neutrons in ${}^{76}_{32}$ Ge = A - Z = 76 - 32 = 44.

No. of neutrons in ${}^{77}_{33}$ As = 77 - 33 = 44.

No. of neutrons in ${}^{78}_{34}$ Se = 78 - 34 = 44

- 14. Since most part of atom is empty space, so, when α particles are sent towards a thin metal foil, most of them go straight through the foil.
- 16. If photon A has more energy than photon B, then λ of photon A must be less than λ of photon B. If λof photon B is in IR region, λ of photon A can be in Infrared region or visible region or ultra violet region.
- Non integral atomic masses of elements are due to existence of isotopes of that element which have different masses.

Atomic Structure

- Bohr model is only valid for single electron species i.e., Total no. of electrons in the species should be 1.
- **19.** In all the given cases, only one quantum of energy is emitted since only one electronic transition occurs.

20. Spin angular momentum S =
$$\sqrt{s(s+1)} \frac{11}{2\pi}$$

$$s = \frac{1}{2}$$
 \therefore $S = \frac{\sqrt{3}}{2} \times \frac{h}{2\pi}$

21. Change in angular momentum for $3 \rightarrow 2$ transition

$$=(3-2)\frac{h}{2\pi}=\frac{h}{2\pi}.$$

Change in angular momentum for $4 \rightarrow 2$ transition

$$= (4-2)\frac{h}{2\pi} = \frac{h}{\pi}.$$
22. $_{24}Cr: [Ar] 3d^5 4s^1$; $_{29}Cu: [Ar] 3d^{10}4s^1$
 $_{46}Pd: [Kr] 4d^{10} 5s^0$; $_{78}Pt: [Xe] 5d^9 6s^1$
23. $O: HIGL 2s^22n^4$; $S: [Ne] 2s^22n^4$

For 1s, 3s, 3d and 2p orbital, $\ell = 0, 0, 2, 1$ respectively. Orbital angular momentum = $\sqrt{\ell(\ell+1)}\hbar$.

- 25. Magnetic moment = 2.83 so, no. of unpaired electrons = 2 so, Ni²⁺ is the answer.
- 26. $\frac{r_1}{r_2} = \frac{n_1^2}{n_2^2} = \frac{R}{4R} \implies \frac{n_1}{n_2} = \frac{1}{2}$ $\therefore \quad \frac{T_1}{T_2} = \frac{n_1^3}{n_2^3} = \frac{1}{8}.$
- **27.** After np orbital, (n + 1) s orbital is filled.

28.
$$\frac{T_1}{T_2} = \frac{n_1^3}{n_2^3} = \frac{1^3}{2^3} = \frac{1}{8}$$

$$\therefore \quad \left(T = \frac{2\pi r}{V}\right) \quad \text{so, } T \propto \frac{n^3}{Z^2}$$

29. Cr :
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$$

 $n + \ell = 3$
so the combinations are 2p, 3s. So 8 electrons.

30. Angular momentum J = mvr $J^2 = m^2 v^2 r^2$

or
$$\frac{J^2}{2} = \left(\frac{1}{2}mv^2\right)mr^2$$
 or K.E. $= \frac{J^2}{2mr^2}$

31.
$$I_n = \frac{eV_n}{2\pi r_n} = \frac{e \times \left(\frac{2\pi Ke^2}{nh}\right)}{2\pi \times \left(\frac{n^2h^2}{4\pi^2 me^2 K}\right)} = \frac{4\pi^2 mk^2 e^5}{n^3 h^3}.$$

32.
$$\operatorname{Rb}_{37}$$
: [Kr] 5s². \therefore n = 5, ℓ = 0, m = 0, s = $\pm \frac{1}{2}$.

- **33.** Visible lines \Rightarrow Balmer series \Rightarrow 3 lines. $(5 \rightarrow 2, 4 \rightarrow 2, 3 \rightarrow 2)$.
- 34. Shortest wave length of Lyman series of H-atom

$$\frac{1}{\lambda} = \frac{1}{x} = R \left[\frac{1}{(1)^2} - \frac{1}{(\infty)^2} \right] \qquad \text{so, } x = \frac{1}{R}$$

For Balmes series

$$\frac{1}{\lambda} = R (1)^2 \left\{ \frac{1}{(2)^2} - \frac{1}{(3)^2} \right\}$$
$$\frac{1}{\lambda} = \frac{1}{x} \times \frac{5}{36} \qquad \text{so, } \lambda =$$

35. I : For n = 5,
$$l_{min} = 0$$

Orbital angular momentum
=
$$\sqrt{\ell(\ell+1)} \hbar = 0.$$
(False)

36x 5

II : Outermost electronic ... possible atomic number configuration = $3s^1$ or $3s^2$. = 11or 12 (False). III : $Mn_{25} = [Ar] 3d^5 4s^2$ 5 unpaired electrons.

 \therefore Total spin = $\pm \frac{5}{2}$ (False).

Atomic Structure

- IV : Inert gases have no unpaired electrons.
- \therefore spin magnetic moment = 0 (True).

36.
$$\frac{hc}{\lambda} = E_1 - E_2 = KE_2 - KE_1$$

$$\therefore \quad \lambda = \frac{h}{mV} (mV)^2 = \left(\frac{h}{\lambda}\right)^2 \quad ; \quad \frac{1}{2} mV^2 = \frac{1}{2m} \frac{h^2}{\lambda^2}$$

$$\therefore \quad \frac{hc}{\lambda} = \frac{h^2}{2m\lambda_2^2} - \frac{h^2}{2m\lambda_1^2} .$$

$$\therefore \quad \lambda = \frac{2mc}{h} \left\{\frac{\lambda_1^2 \lambda_2^2}{\lambda_1^2 - \lambda_2^2}\right\}.$$

37. IP = 13.6Z² = 16 (given).
1st excitation potential =
$$13.6 \times \frac{3}{4} \times Z^2 = 16 \times \frac{3}{4} = 12 \text{ V}.$$

38. Change is angular momentum =
$$\frac{\Delta nh}{2\pi} = (5-2) \frac{h}{2\pi}$$

= $\frac{3h}{2\pi}$.

Chemistry

39.
$$\frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{\frac{m_{\alpha}KE_{\alpha}}{m_pKE_p}} = \sqrt{\frac{4m_p \times 325}{m_p \times 50}} = \sqrt{26} \approx 5.$$

40. Total energy =
$$\frac{13.6Z^2}{n^2} = \frac{13.6(Z)^2}{(4)^2} = 3.4 \text{ eV}$$

Now K.E. = $3.4 - 1.4 = 2 \text{ eV}$

Now, Total energy =
$$2 + 4 = 6 \text{ eV}$$
 i.e. potential = 6 V
For electron $\lambda = \sqrt{\frac{150}{2}}$ so $\lambda = 5 \text{ Å}$

41. Number of lines in Balmer series = 2. n = 4 (lines will be $4 \rightarrow 2, 3 \rightarrow 2$).

KE of ejected photoelectrons = $E_{photon} - BE_n = 13 - \frac{13.6}{4^2}$

$$= 13 - 0.85 = 12.15$$
 eV.

- 42. The lobes of $d_{x^2-y^2}$ orbital are alligned along X and Y axis. Therefore the probability of finding the electron is maximum along x and y-axis.
- **43.** Number of values of ℓ = total number of subshells = n. Value of $\ell = 0, 1, 2, \dots, (n-1)$. $\ell = 2 \implies m = -2, -1, 0, +1, +2$ (5 values) $m = -\ell$ to $+\ell$ through zero.
- **44.** $E_n \propto Z^2$ \therefore Z doubled $\Rightarrow E_n$ becomes four times. $R_n \propto 1/Z$ \therefore Z doubled $\Rightarrow R_n$ becomes half. $v_n \propto Z$ \therefore Z doubled $\Rightarrow v_n$ becomes two times.

45.
$$E_{absorbed} = E_{emitted}$$

 $\therefore \quad \frac{hc}{300} = \frac{hc}{496} + \frac{hc}{\lambda}$

$$\lambda = 759 \,\mathrm{nm}.$$

46.
$$KE = -TE = 3.4 \text{ eV.}$$
 $\therefore \quad \lambda = \sqrt{\frac{150}{KE}} = \sqrt{\frac{150}{3.4}} \text{ Å.}$
47. $\lambda_e = \frac{h}{\sqrt{2m_e KE_e}} = \frac{h}{\sqrt{2 \times 1/1837m_p \times 16E}}$,
 $\lambda_p = \frac{h}{\sqrt{2m_p KE_p}} = \frac{h}{\sqrt{2m_p \times 4E}}$.
 $\lambda_{\alpha} = \frac{h}{\sqrt{2m_{\alpha} KE_{\alpha}}} = \frac{h}{\sqrt{2 \times 4m_p \times E}}$ $\therefore \quad \lambda_e > \lambda_p = \lambda_{\alpha}$.
48. $P.E. = \frac{Kq_1q_2}{r} = \frac{K(-e)(+4e)}{r} = \frac{1}{4\pi\epsilon_0} \times -\frac{4e^2}{r}$

 $=\frac{-e^2}{\pi\epsilon_0 r}$

49. $\sqrt{n(n+2)} = 4.9$

 \therefore No. of unpaired electrons, n = 4. $_{25}$ Mn : [Ar]4s²3d⁵ For having 4 unpaired electrons, a Mn atom should lose L does not depends on Z. 3 electrons (2 from 4s and 1 from 3d).

 \therefore a=+3.

50. d_{z^2} orbital has two lobes along Z axis and a ring along XY plane.

 $= 4 \times 96$

- **51.** Energy of one photon =
 - $= 384 \, \text{kJ mol}^{-1}$

384 - 288 \therefore % of energy converted to K.E. 384

$$=\frac{96}{384} \times 100 = 25\%$$

- **52.** 1st line from red end in Balmer series. \Rightarrow Line of minimum energy in Balmer series.
 - Transition = $(3 \rightarrow 2)$
- 53. Since some visible quanta were observed along with other quanta, electrons must have made transition from some higher state to n = 2 and then from n = 2 to n = 1. \therefore Transition from 2 \rightarrow 1 is compulsory, because electron from n = 2 will finally fall into n = 1.

Atomic Structure

54.
$$\frac{\mathsf{R}_{\mathsf{n}_1}}{\mathsf{R}_{\mathsf{n}_2}} = \frac{\mathsf{n}_1^2}{\mathsf{n}_2^2} = \frac{1}{4}$$
 \therefore $\frac{\mathsf{n}_1}{\mathsf{n}_2} = \frac{1}{2}$

Among the first four orbits n_1 and n_2 can be 1 and 2 or 2 and 4.

: Energy difference can be : $E_{2,1} = 10.2 \text{ eV}$ or $E_{4,2} = 2.55 \text{ eV}.$

55.
$$\lambda_{p} = \frac{h}{\sqrt{2m_{p}q_{p}V}}$$
 $\lambda_{a} = \frac{h}{\sqrt{2m_{\alpha}q_{\alpha}V}}$
 $\lambda_{a} = \frac{h}{\sqrt{2m_{\alpha}q_{\alpha}V}}$
 $\lambda_{a} = \frac{h}{\sqrt{2 \times 4m_{p} \times 2q_{p} \times V}}$
 $\frac{\lambda_{p}}{\lambda_{\alpha}} = \frac{\sqrt{8}}{1} = \frac{2\sqrt{2}}{1}$
56. $IE_{A} > IE_{B}$
 $\therefore Z_{A} > Z_{B}$.
 $r \propto 1/Z$.
 $u \propto Z$
 $E \propto Z^{2}$ (But it is negative).
 $\therefore E_{A} < E_{B}$.

57. In H-atom, 4 lines are observed in Balmer series. So, electron is in n = 6(6 \rightarrow 2, 5 \rightarrow 2,4 \rightarrow 2,3 \rightarrow 2). In He⁺ ion, one line is observed in Paschen series. So electron is in $n = 4 (4 \rightarrow 3)$.

$$(H)_{6 \to 2} = (He^{+})_{12 \to 4}$$

 \therefore For same n, $L_A = L_B$.

electron in He⁺ will jump from n = 4 to n = 12.

58.
$$(\text{He}^+)_{2 \to 4} = (\text{Li}^{2+})_{n_4 \to n_3}$$

$$\frac{Z_1}{Z_2} = \frac{n_2}{n_4} = \frac{n_1}{n_3} \text{ or } \frac{2}{3} = \frac{2}{n_4} = \frac{4}{n_3}$$

:
$$n_4 = 3$$
 and $n_3 = 6$.

Transition in Li^{2+} ion = 3 $\rightarrow 6$

59.
$$KE_1 = E_{photon} - BE_{n=1}$$

 $KE_2 = E_{photon} - BE_{n=n}$
 $KE_2 - KE_1 = BE_{n=1} - BE_{n=n} = 13.6 Z^2 \left[\frac{1}{1^2} - \frac{1}{n^2} \right]$
= 12.75 (given).
∴ $n^2 = 16$ or $n = 4$.
BE : Binding energy.

215

60. Number of lines of Paschen series
= 5 (8
$$\rightarrow$$
 3, 7 \rightarrow 3, 6 \rightarrow 3, 5 \rightarrow 3, 4 \rightarrow 3).
61. $E_{A \rightarrow C} = E_{A \rightarrow B} + E_{B \rightarrow C}$
 $\frac{12400}{3000} = \frac{12400}{\lambda(A)} + \frac{12400}{6000} \implies \lambda = 6000 \text{ Å.}$
62. $E_{eminted} = \frac{50}{100} \times E_{absorbed}$
No. of emitted photons \times Energy of emitted photon
 $= \frac{50}{100} \times \text{No. of absorbed photon} \times \text{Energy of absorbed photon.}$
 $\therefore n_e \times \frac{12400}{5000} = \frac{50}{100} \times n_a \times \frac{12400}{4000}$.
 $\therefore \frac{n_e}{n_a} = \frac{5}{8}$.
63. $\frac{(e/m)_p}{(e/m)_a} = \frac{e_p / m_p}{2e_p / 4m_p} = \frac{2}{1}$.
64. $\Delta x = 0.1 \times 10^{-9} \text{ m.}$
 $\Delta V = 5.27 \times 10^{-27} \text{ ms}^{-1}$.
 $\therefore \Delta x \times m\Delta V = \frac{h}{4\pi}$
 $\therefore 0.1 \times 10^{-9} \times m \times 5.27 \times 10^{-27} = 0.527 \times 10^{-34}$.
 $\therefore m = 0.1 \text{ kg.} = 100 \text{ gm.}$
65. $\frac{1}{\lambda_1} = R(1)^2 \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right] \text{ and } \frac{1}{\lambda_2}$
 $= R(1)^2 \left[\frac{1}{2^2} - \frac{1}{4^2} \right]$
 $\therefore \lambda_1 = \frac{1}{R} \text{ and } \lambda_2 = \frac{16}{3R}$.
 $\therefore \frac{16}{\lambda_2} = \frac{3}{\lambda_1}$.
66. $\text{KE} = \frac{1}{2} \frac{\text{KZe}^2}{r} = \frac{3e^2}{8\pi\epsilon_0 r}$.
67. $v_1 = \text{Rc}(1)^2 \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right] = 4\text{Rc.}$
 $v_2 = \text{Rc}(2)^2 \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right] = 4\text{Rc.}$

$$v_{3} = \operatorname{Rc}(2)^{2} \left[\frac{1}{2^{2}} - \frac{1}{\infty^{2}} \right] = \operatorname{Rc}.$$

$$\therefore \quad 2(v_{1} + v_{3}) = v_{2} \quad \text{and} \quad v_{1} = v_{3} \quad \text{and} \quad 4v_{1} = v_{2}.$$

Part # II : Assertion & Reason

$$q_{\alpha} = 2q_{p} \quad \text{and} \quad m_{\alpha} = 4m_{p}$$

For principle quantum number n

$$\ell = 0 \text{ to } (n-1) \text{ and } m = -\ell \text{ to } \ell \text{ including zero.}$$

Chemistry

$$4. \quad \lambda = \sqrt{\frac{150}{V}} \text{ Å}$$

1.

2.

5. Statement-1 : Correct statement.
Statement-2 :
$$\frac{1}{\lambda} = R_{H} Z^{2} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right].$$

- 6. For Humphry series, $(n_2 = 7, 8, 9, ...,)$ and $n_1 = 6$.
- Since interaction between a photon and a molecule is always one to one, so a photon of energy 12eV can break only one molecule of A₂ into atoms and remaining 8eV energy becomes kinetic energy of atoms.

e/m ratio for particles in cathode rays comes out to be same for all gases.

 $e\!/m\!=\!1.76\!\times\!10^{11}C\!/kg.$

This led to the conclusion that electrons were fundamental particles.

9. e/m ratio for particles in anode rays is different for different gases as different gases produce different positively charged particles upon ionisation.

EXERCISE - 3
Part # I : Matrix Match Type
2.
$$f_n = \frac{v_n}{2\pi r_n}$$
, $f_n \propto \frac{Z^2}{n^3}$, $T_n = \frac{2\pi r_n}{v_n}$, $T_n \propto \frac{n^3}{Z^2}$.
 $E_n = -13.6 \frac{Z^2}{n^2}$, $E_n \propto \frac{Z^2}{n^2}$, $r_n \propto \frac{n^2}{Z}$.
3. i : For Lyman series, \overline{v} for second line $(3 \rightarrow 1)$
 $= R(1)^2 \left[\frac{1}{1^2} - \frac{1}{3^2} \right] = \frac{8R}{9}$ (c).

ii : For Balmer series,
$$\overline{v}$$
 for second line $(4 \rightarrow 2)$

$$= \mathbf{R}(1)^2 \left[\frac{1}{2^2} - \frac{1}{4^2} \right] = \frac{3\mathbf{R}}{16} \ \mathbf{(d)}.$$

Atomic Structure

iii : In a sample of H-atom for $5 \rightarrow 2$ transition, maximum number of spectral lines observed

$$=\frac{(5-2)(5-2+1)}{2}=6(a).$$

iv : In a single isolated H-atom for $3 \rightarrow 1$ transition, maximum number of spectral lines observed = $2(3\rightarrow 2, 2\rightarrow 1)$ (b).

Part # II : Comprehension

Comprehension #1:

1. Last line of Bracket series for H-atom

$$\frac{1}{\lambda_1} = R \left[\frac{1}{(4)^2} - \frac{1}{(\infty)^2} \right] \qquad \text{so, } \lambda_1 = \frac{16}{R}$$

2nd line of Lyman series

$$\frac{1}{\lambda_2} = R \left[\frac{1}{(1)^2} - \frac{1}{(3)^2} \right]$$
 so, $\lambda_2 = \frac{9}{8R}$

or,
$$\frac{128}{\lambda_1} = \frac{9}{\lambda_2}$$

- Spectral lines of H atom only belonging to Balmer series are in visible range.
 - 2. In the Balmer series of H-atom, first 4 lines are in visible region and rest all are in ultra violet region.
 - 3. 2nd line of Lyman series of He⁺ ion has energy = $(E_{3\rightarrow 1}) \times 2^2 = 12.1 \times 4 = 48.4 \text{ eV}.$

3.
$$\overline{V} = R (4)^2 \left[\frac{1}{(3)^2} - \frac{1}{(4)^2} \right] = \frac{7R}{9}$$

Comprehension # 2 :

- As the frequency of incident radiations increases, the kinetic energy of emitted photoelectrons increases.
 Decreasing order of v ⇒ Violet > Blue > Orange > Red
 ∴ Decreasing order of KE of photoelectrons ⇒ Violet > Blue > Orange > Red
- The interaction between photon and electron is always one to one for ejection of photoelectrons, Frequency of incident radiations > threshold frequency ∴ 5.16 x 10¹⁵ > 6.15 x 10¹⁴
- 3. The number of photoelectrons emitted depend on the intensity or brightness of incident radiation.

Comprehension #3 :

1. Multiply Angular part and Radial part of 1s orbital and

Atomic Structure

square this.

2.
$$\Psi_{2s} = \frac{1}{\sqrt{32\pi}} \left[\frac{1}{a_0}\right]^{3/2} \left[2 - \frac{r}{a_0}\right] e^{-r/2a_0}$$

For radial node at $r = r_0$, $\Psi_{2s}^2 = 0$. This is possible only when

$$\begin{bmatrix} 2 - \frac{r_0}{a_0} \end{bmatrix} = 0.$$
$$r_0 = 2a_0.$$

3. For s-orbital probability of finding an electron is same at all angles at specific radius.

Comprehension #4:

- 1. Two unpaired electrons present in carbon atom are in different orbitals. So they have different magnetic quantum number.
- Electronic configuration of Zn²⁺ ion is 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ so no electron in 4s orbital.

$$\sqrt{s(s+1)} \frac{h}{2\pi} = \sqrt{\frac{1}{2} \left(\frac{1}{2}+1\right)} \frac{h}{2\pi} = \frac{\sqrt{3}}{2} \frac{h}{2\pi} = 0.866 \frac{h}{2\pi}$$

Comprehension # 5 :

1.
$$\Delta x = \frac{h}{4\pi \text{ Me}} \times \frac{1}{\Delta V}$$
 $\Delta V = V' \frac{0.001}{100} = 300 \times 10^{-5} \text{ m/s}$
 $\Delta x = 5.8 \times 10^{-5} \times \frac{1}{300 \times 10^{-5}} = 1.92 \times 10^{-2} \text{ m}$

2. The maximum KE of potoelectron is corresponding to maximum stopping = 22 eV

$$\therefore \quad \text{E}_{\text{incident}} = \text{E}_{\text{thresold}} + \text{KE}_{\text{maxi}} = 40 \text{ eV} + 22 \text{ eV} = 62 \text{ eV}$$
$$\lambda_{\text{incident}} = \frac{12400 \text{ Å}}{62} = 200 \text{ Å}$$

3. Circumference = $2\pi r = n\lambda$

de-broglie
$$-\lambda = \frac{2\pi r}{n} = \frac{3nm}{3} = 1 \text{ nm} = 10\text{\AA}$$

$$\therefore \lambda = \frac{12.3}{\sqrt{V}} \text{ Å}$$

$$\Rightarrow KE = \left(\frac{12.3}{10}\right)^2 = 1.51 \text{ eV}.$$

Chemistry)

:. KE of electron in third orbit = 1.51 eV = binding energy of third orbit in this atom $\lambda = of photon required to ionise = \frac{1240 \text{ eV} \text{ Å}}{1.51 \text{ eV}} = 821 \text{ nm}$

Comprehension #6:

- 1. Cr = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ Mn⁺ = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ Fe²⁺ = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ Co³⁺ = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$
- 2. $\sqrt{n(n+2)} = 1.73$ n(n+2) = 3 n+2n = 3 $n^{2} + 2n - 3 = 0$ (n+3)(n-1) = 0 n = 1Number of unpaired electron = 1 $V^{4+} \Rightarrow [Ar] 3s^{1} 4s^{0}$
- 3. $Fe^{3+} = [Ar] 3d^5$ $Ti^{3+} = [Ar] 3d^1$ $Co^{3+} = [Ar] 3d^6$ all are having unpaired electron hence paramagnetic & coloured.
- 4. Fe = [Ar] $3d^6 4s^2$

$\uparrow\uparrow$	\uparrow	\uparrow	\uparrow	\uparrow		↑↓
					•	<u> </u>

Hund's and Pauli's principle is voileted.

5. Spin quantum number (m) = $\frac{1}{2}$, 0, $+\frac{1}{2}$ that is one orbital

accomodate maximum $3e^{2}$ Number of element in any period = $3r^{2}$

 $n = \frac{p+2}{2}$ (for even period no.)

$$n = \frac{2+2}{2} = 2$$

number of element \Rightarrow 3 × 4 \Rightarrow 12

6. for g - sub-shell
n = 5
ℓ = 0, 1, 2, 3, 4
ℓ = 4 {g - subshell}

Atomic Structure

number of electron = $2(2\ell + 1)$

 $= 2 \times 9 \implies 18$

number of orbital = $(2\ell + 1) \Rightarrow 9$

any orbital can have more two electron

EXERCISE - 4 Subjective Type

Distance to be travelled from mars to earth= 8 × 10⁷ km
 ∴ Velocity = 3 × 10⁸ m/sec

٨

:. Time = D/V =
$$\frac{8 \times 10^{10}}{3 \times 10^8}$$
 = 2.66 × 10² sec.

2. (a) I.P.
$$= \Delta E_{1=\infty} = E_{\infty} - E_1 = 0 - (-15.6) = 15.6 \text{ l.v.}$$

(b) $n = \infty$ $n = 2$
 $\Delta E = [0 - (-5.3)] = 5.3 \text{ l.v.}$
 $\Delta E = \frac{1240}{\lambda(nm)}$ $\lambda = \frac{1240}{5.3} = 233.9 \text{ nm}$

(c)
$$|\Delta E_{3 \to 1}| = |-3.08 - (-15.6)| = 15.6 - 3.08 = 12.521.v.$$

= $\frac{1240}{\lambda} = \frac{12.52}{1240} = \frac{1}{\lambda} (n.m)$

$$\lambda = 1.808 \times 10^7 \text{ m}^{-1}$$
(d) (l) E = -15.6 - (-6) = -15.6 + 6 = -9.6
(l) E = -15.6 - (-11) = -15.6 + 11 = -4.6

3.
$$1.6 \times 10^{-19} \text{ J} = 1 \text{ eV}$$

 $10^{-17} = \frac{10^{-17}}{1.6 \times 10^{-19}} \text{ eV} = 0.655 \times 10^{2}$
 $\text{E} = \frac{\text{n hc}}{\lambda}$ $0.625 \times 10^{2} = \text{n}\frac{1240}{550}$
 $2.77 \times 10 = \text{n}$
4. $330 \text{ J} = \text{n}(\text{hv})$
 $330 \text{ J} = \text{n}[6.62 \times 10^{-34} \times 5 \times 10^{13}]$
 $\frac{330}{6.62 \times 10^{34} \times 5 \times 10^{13}} = \text{n}$ $10^{22} = \text{n}$

5.
$$E = \frac{hL}{\lambda}$$
 $n = \frac{3.15 \times 10^{-14} \times 850 \times 10^{-9}}{6.62 \times 10^{-34} \times 3 \times 10^8}$
 $n = 134.8 \times 10^3$ $n = 1.35 \times 10^5$

6.
$$\lambda = 1093.6 \text{ nm}$$
 $R_{H} = 1.09 \times 10^{7} \text{ m}^{-1}$
 $= 1093.6 \times 10^{-9} \text{ m.} n_{2} = ? n_{1} = 3$
 $\frac{10^{9}}{1093.6 \times 10^{7} \times 1.09} = \frac{1}{9} - \frac{1}{n_{2}^{2}}$
 $\frac{1}{n_{2}^{2}} - \frac{1}{9} - \frac{0.83}{n_{2}^{2}} - \frac{1}{9.253}$
218

$$\begin{aligned} \textbf{JEE MAIN & ADVANCED} \\ n_2^2 = 36 & \boxed{n_2 = 6} \\ \textbf{7.} \quad n_2 = 3 \quad n_1 = 2 \quad [first line] \\ n_2 = 4 \quad n_1 = 2 \quad [second line] \\ \frac{1}{\lambda} = R_H \left[\frac{1}{4} - \frac{1}{9} \right] \\ \frac{1}{6565} & \mathring{A} = R_H \left[\frac{1}{4} - \frac{1}{9} \right] \\ \frac{1}{6565} & \mathring{A} = R_H \left[\frac{1}{4} - \frac{1}{9} \right] \\ \frac{1}{\lambda} = R_H \left[\frac{1}{4} - \frac{1}{16} \right] \\ \frac{1}{\lambda} = R_H \left[\frac{1}{4} - \frac{1}{16} \right] \\ \frac{1}{\lambda} = R_H \left[\frac{1}{4} - \frac{1}{16} \right] \\ \frac{1}{\lambda} = R_H \times 2^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R_H \times 4 \left[\frac{1}{4} - \frac{1}{9} \right] \\ \frac{1}{\lambda_1} = R_H \times 2^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R_H \times 4 \left[\frac{1}{4} - \frac{1}{9} \right] \\ \frac{1}{\lambda_1} = R_H \times 2^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R_H \times 4 \left[\frac{1}{4} - \frac{1}{9} \right] \\ \frac{1}{\lambda_1} = R_H \times 2^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{1} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{2} - \frac{1}{4} \right] \\ \frac{1}{\lambda_2} = R_H \times 4 \left[\frac{1}{\lambda_2} - \frac{$$

T.E. =
$$-13.6 \times \frac{n^2}{Z^2} lv. = 0.85 l.v. = -1.36 \times 10^{-19} J$$

12. $E_n = \frac{-21.7 \times 10^{-12}}{n^2}$ 1 erg = 10^{-7} Joule
 $E_n = \frac{-21.7 \times 10^{-12}}{4}$
J.E. = $0 - \left[\frac{-21.7 \times 10^{-12}}{4} \right] = \frac{21.7 \times 10^{-12}}{4}$
= $5.425 \times 10^{-12} ergs$
(b) $5.425 \times 10^{-12} = \frac{6.624 \times 10^{-34} \times 10^8}{\lambda}$
 $\lambda = \frac{6.624 \times 3 \times 10^8 \times 10^{12}}{5.425 \times 40^{34}} = 3.7 \times 10^{-14} (nm)$
= $3.7 \times 10^{-14} \times 10^9 cm = 3.7 \times 10^{-5} cm$
13. $\Delta E = 11E \left[\frac{1}{4} - \frac{1}{1} \right]$
 $2.17 \times 10^{-11} erg/atom \left[\frac{1}{4} - \frac{1}{1} \right] = \frac{hc}{\lambda(m)}$
 $2.17 \times 10^{-11} \times 10^{-7} J \left[\frac{1}{4} - \frac{1}{1} \right] = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{\lambda}$
 $\lambda = \frac{6.626 \times 10^{-34} \times 3 \times 10^8 \times 4}{2.17 \times 10^{-18} \times 3} = \frac{6.626 \times 4 \times 10^8}{2.17}$
 $= 12.20 \times 10^{-8} m$
 $1 m \rightarrow 10^{10} Å$
 $6.10 \times 10^{-8} m \rightarrow \frac{12.2 \times 10^{10}}{10^8} = 1220 Å$
14. $V_n = 2.18 \times 10^6 \times \frac{Z}{n} = \frac{2.18 \times 10^6}{n}$
 $\frac{2.18 \times 10^6}{n} = \frac{1}{275}$
 $\frac{2.18 \times 10^6}{n} = \frac{1}{275}$
 $\frac{2.18 \times 10^6}{n} = \frac{1}{275}$
 $\frac{2.18}{n(300)} = \frac{1}{275}$
 $\frac{1}{n} = \frac{300}{599.5}$

Atomic Structure

- Chemistry

$$n = \frac{599.5}{300} = \frac{1}{275} \qquad \frac{1}{n} = \frac{300}{599.5}$$

$$n = 1.99 \ge 2$$
15. $Z = 3, n_1 = 1, n_2 = 3$

$$E_n = 13.6 \times (Z^2) \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = 13.6 \times 9 \left[\frac{1}{1} - \frac{1}{9} \right]$$

$$= 13.6 \times 9 \times \frac{8}{9} = 108.8 \text{ eV}$$
16.(i) $E_{n_1 \rightarrow n_1} = 13.6 \times Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = 13.6 \left[1 \right]^2 \left[\frac{1}{1} - \frac{1}{4} \right]$

$$= 13.1 \times 1 \times \frac{3}{4} = 10.22 \text{ eV}$$
(ii) $\frac{1}{\lambda} = R_H Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$

$$\frac{1}{3 \times 10^{-8}} = 1.09 \times 10^7 \times Z^2 \left[\frac{1}{4} - \frac{1}{1} \right]$$

$$\frac{10^8}{3 \times 10^7 \times 1.09} = Z^2 \times \frac{X - 3}{4}$$

$$\frac{10 \times 4}{3 \times 10^9 \times -3} = Z^2 \qquad Z^2 = -4 \quad Z = 2$$
17. 1.8 mole = (1.8 Na) atoms
$$27\% = IIIrd energy level = 1.8 \times Na \times 0.27$$

$$15\% = IInd energy level = 1.8 \times Na \times 0.15$$

$$\Delta E = \frac{\Delta E_1}{3 \rightarrow 1} + \frac{\Delta E_2}{2 \rightarrow 1} = 1.8 \times N_A \times 0.27 \times IE \left[\frac{1}{9} - \frac{1}{1} \right] + 1.8 \times N_A \times 0.15 \times IE \left[\frac{1}{4} - \frac{1}{1} \right] = 292.68 \times 10^{21} atom$$
18. Number of atom in 3nd orbit = 0.5 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit = 0.25 N_A
Number of atom in 3nd orbit =

$$\frac{-3.4}{-13.6} = \frac{1}{n^2} \qquad n^2 = \frac{3.4}{3.4}$$

$$n^2 = 4 \Rightarrow n = 2$$

$$= 2\left(\frac{6.626 \times 10^{-34} \times 7}{2 \times 22}\right) = \frac{h}{\pi} \text{ or } \frac{6.62 \times 10^{-39} \times 7}{2}$$

$$0. 4.5 \text{ eV} = \frac{1240}{\lambda(\text{nm})} \qquad \frac{1}{\lambda} = \frac{4.5}{1240}$$

$$\frac{1}{\lambda} = 0.0036 \text{ nm}^{-1} \qquad 1 \text{ nm} \rightarrow 10^{-9} \text{ m}^{-1}$$

$$0.0036 \text{ nm}^{-1} \rightarrow 3.6 \times 10^6 \text{ m}^{-1}$$

$$1. \frac{n(n-1)}{2} = 15 \qquad n^2 - n = 30$$

$$n^2 - n - 30 = 0 \qquad n = 6$$

$$\frac{1}{\lambda A} = R_{\text{H}} \left[\frac{1}{1} - \frac{1}{36}\right]$$

$$\frac{1}{x} = \frac{1}{912} \times \frac{35}{36} = \frac{35 \times 2496}{32832}$$

$$2. V_2 = V_0 \times \frac{1}{2} = \frac{V_0}{2}$$

$$x = v \times t$$

$$x = \frac{V_0}{2} \times 10^{-8} \sec = \left(\frac{V_0 \times 10^{-8}}{2}\right) \text{m}$$

$$2\pi r \rightarrow 1 \text{ round}$$

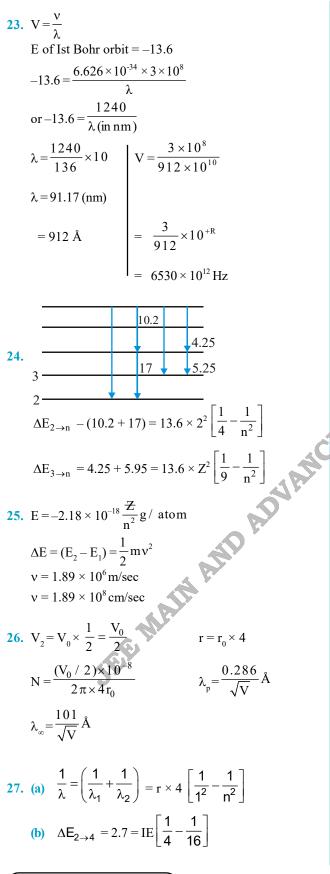
$$\frac{V_0 \times 10^{-8}}{2} = \frac{V_0 \times 10^{-8}}{2} \times \frac{1}{2\pi r}$$

$$r_2 = r_0 \times n^2 = 4r_0$$
so, no. of revolutions = $\frac{V_0 / 2 \times 10^{-8}}{2\pi \times 4r_0} = \frac{V_0 \times 10^{-8} \times 1}{2 \times 2\pi \times 4r_0}$

$$= \frac{2.18 \times 10^6 \times 10^{-18}}{2.6 \times 10^{-21}} = 0.838 \times 10^9 = \frac{8 \times 10^6}{8 \times 10^6}$$

Atomic Structure

Chemistry



$$IE = 2.7 \times \frac{16}{3} \text{ eV}$$
(c) $\Delta E_{4\to 1}^{\text{max}} = IE\left[\frac{1}{k} - \frac{1}{1}\right]$
 $\Delta E_{4\to 3} = IE\left[\frac{1}{16} - \frac{1}{9}\right]$
29. B.E. = 180.69 kJ/mole \Rightarrow w = hv₀
 $\frac{180.69}{96.368} \text{ eV/atom} = hv_0$
 $E = 1240 \text{ eV}$
 $E = 497.9 \text{ kJ/mol}$
30. E = $\frac{1240}{240} \text{ eV}$
 $E = 497.9 \text{ kJ/mol}$
31. hv₁ = hv₀ + 2E₁
hv₂ = hv₀ + E₁
hv₁ - w₀ + 2E₁
hv₂ - w₀ = hv₁ - w₀
 $h [2v_2 - v_1] = w_0$
 $w_0 = 6.62 \times 10^{-34} (2 \times 10^{15} - 3.2 \times 10^{15})$
 $w_0 = 6.62 \times 10^{-34} \times 0.8 \times 10^{15}$
 $w_0 = 5.29 \times 10^{-19}$
 $w_0 = 318.9 \text{ kJ/mol}$
32. $\frac{hc}{\lambda_1} = w_0 + E_1$
 $\frac{hc}{\lambda_2} = w_0 + E_2$
 $\frac{hc}{\lambda_1} - E_1 = w_0$
 $\frac{hc}{\lambda_2} - E_2 = w_0$
 $\frac{hc}{\lambda_1} - E_1 = \frac{hc}{\lambda_2} - E_2$
33. 2000 eV = $\frac{hc}{\lambda} = \frac{1240}{\lambda(\text{nm})}$
 $\lambda = \frac{1240}{20000} = 62 \times 10^{-3} \text{ nm} = 0.62 \text{ Å}$
34. (KE) max = stopping potential
 \therefore stopping potential = 3.06 V
35. $U_{avg} = \sqrt{\frac{8kJ}{\pi \text{m}}}$

Atomic Structure

$$U_{avg.} = \sqrt{\frac{8 \times 1.38 \times 10^{-23} \times 298}{3.14 \times 4 \times 1.67 \times 10^{-27}}}$$

$$U_{avg.} = 1.25 \times 10^{3}$$

$$\lambda = \frac{h}{mV} \Rightarrow \frac{6.62 \times 10^{-34}}{4 \times 1.67 \times 10^{-27} \times 1.25 \times 10^{3}}$$

$$\lambda = 0.79 \text{ Å}$$
36. $500 = \sqrt{\frac{150}{V}}$

$$\therefore \frac{150}{250000} = V \qquad \therefore V = 6 \times 10^{-4} \text{ volt}$$
37. $\frac{1}{10} \times 3 \times 10^{8} = \Delta V = 3 \times 10^{7}$

$$\Delta x \times \Delta m \times \Delta v = \frac{h}{4\pi}$$

$$\Delta x \times 1.672 \times 10^{-27} \text{ kg} \times 3 \times 10^{7} = \frac{6.626 \times 10^{-34}}{4 \times 3.14}$$

$$\Rightarrow \Delta x = \frac{6.626 \times 10^{-34} \times 100}{1.672 \times 10^{-27} \times 3 \times 10^{7} \times 4 \times 314}$$

$$\frac{\Delta x = 1.05 \times 10^{-13} \text{ m}}{38. 1 \times 10^{-10} = 6.6 \times 10^{-34}}$$

$$= \sqrt{2 \times 1.67 \times 10^{-27} \times 1.6 \times 10^{-19} \times V}$$

$$\therefore 1 = 6.6 \times 10^{-24} = \sqrt{5.344 \times 10^{-8}} \text{ eV}$$

$$\therefore 1 = 6.6 \times 10^{-24} = \sqrt{5.344 \times 10^{-8}} \text{ eV}$$

$$\therefore \sqrt{5.344 \times V} = 6.6 \times 10^{-37}$$
39. Cu = [Ar]. 4s, 34^{47}
or
$$\frac{1}{12} \boxed{11 11 11 11 1}$$
no. of ex change pair $= \frac{n(n+1)}{2} = \frac{5 \times 4}{2} = 10$

$$\frac{4 \times 3}{2} = 6$$
Total exchanges = 10 + 6 = 16
41. E of light absorbed in one photon $= \frac{hc}{\lambda_{aburbed}}$

Atomic Structure

Let n₁ photons are absorbed, therefore, Total energy absorbed = $\frac{n_1 hc}{\lambda_{absorbed}}$ Now, E of light re-emitted out in one photon = $\frac{hc}{\lambda_{emitted}}$ Let n₂ photons are re-emitted then Total energy re-emitted out = $n_2 \times \frac{hc}{\lambda_{amitted}}$ As given $E_{absorbed} \times \frac{47}{100} = E_{re-emitted out}$ $\frac{hc}{\lambda_{absorbed}} \times n_1 \times \frac{47}{100} = n_2 \times \frac{hc}{\lambda_{emitted}}$ $\therefore \frac{n_1}{n_2} = \frac{47}{100} \times \frac{\lambda_{emitted}}{\lambda_{absorbed}} = \frac{47}{100} \times \frac{5080}{4530}$ $\therefore \frac{n_1}{n_2} = 0.527$ 42 $H_2 + Br_2 \xrightarrow{hv} 2HBr$ $Br_2 \xrightarrow{hv} 2Br$ BE = 192 kJ / mole $\frac{192}{93.368} \text{ eV/mole} = \frac{hv}{\lambda} \text{ or } \frac{192}{96.368} = \frac{1240}{\lambda(\text{nm})}$ $\lambda = 6235 \text{ Å}$ 43. $\frac{0.2 \text{ n}}{\text{Na}} = 0.01 \text{ mole}$ $\frac{0.2 \times \text{n}}{1 + 128} = 0.01$ $\frac{0.2 \times \text{n}}{10 \times 127} = \frac{1}{100}$ $2 \times \text{n} = \frac{127}{10}$ $n = \frac{127}{10 \times 2} = \frac{12.7}{2} = 6$ No. of protons $=\frac{6 \times 10^{22}}{2} = 3 \times 10^{22}$ **44.** $\frac{243}{96.368} = \frac{1240}{\lambda(nm)}$ $\lambda = \frac{1240 \times 96.368}{243} = 491.75 \times 10^{-9} \,\mathrm{m} \approx 4.9 \times 10^{-7} \mathrm{m}$ 45. Energy required to break H-H bond

$$= \frac{430.53 \times 10^{3}}{6.023 \times 10^{23}} \text{ J/molecule} = 7.15 \times 10^{-19} \text{ J}$$

Energy of photon used for this purpose $= \frac{\text{hc}}{\lambda}$
 $= \frac{6.625 \times 10^{-34} \times 3.0 \times 10^{8}}{253.7 \times 10^{-9}} = 7.83 \times 10^{-19} \text{ J}$
 \therefore Energy left after dissociation of bond
 $= (7.83 - 7.15) \times 10^{-19}$
or Energy converted into K.E. $= 0.68 \times 10^{-19} \text{ J}$
 $\therefore \%$ of energy used in kinetic energy $= \frac{0.68 \times 10^{-19}}{7.83 \times 10^{-19}} \times 100 = 8.68\%$
46. Energy given to I₂ molecule
 $= \frac{\text{hc}}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{4500 \times 10^{-10}} = 4.417 \times 10^{-19} \text{ J}$
Also energy used for breaking up of I₂ molecule

$$=\frac{240\times10^3}{6.023\times10^{23}}=3.984\times10^{-19}\,\mathrm{J}$$

- : Energy used in imparting kinetic energy to two I atoms $= [4.417 - 3.984] \times 10^{-19} \text{J}$
- :. K.E./iodine atom = $[(4.417 3.984)/2] \times 10^{-19}$ $= 0.216 \times 10^{-19} \,\mathrm{J}$

=
$$0.216 \times 10^{-19}$$
 J
48. $\lambda = \sqrt{\frac{150}{10^3 \times 100}} = 3.88 \times 10^{-2}$ Å = 3.88 pm

49.
$$\lambda = \frac{6.6 \times 10^{-34}}{6 \times 10^{24} \times 3 \times 10^6} = \frac{1 \times 1}{3} \times 10^{-65} = 3.68 \times 10^{-65} \,\mathrm{m}$$

50. $\Delta V = 30 \times 10^2 \text{ cm/sec}$

$$\lambda = 5000 \text{ Å} \qquad \qquad \mathbf{m} = 200 \text{ g}$$
$$\lambda = \frac{\text{h}}{\text{mV}} \qquad \qquad 500 = \frac{\text{h}}{\text{m} \times \text{V}}$$
$$500 = \frac{\text{m}}{\text{m} \times \text{V}}$$

$$P = mV = \frac{1000}{6.626 \times 10^{-26}} = 30 \times 10^{2} \times 200$$
$$= 1.75 \times 10^{-29}$$

51. v = 40 m/sec Δv = 0.01
∴ Δx =
$$\frac{h}{4\pi \times 9.1 \times 10^{-37} \times 99.99 \times 40}$$

Chemistry

$$= \frac{0.53 \times 100 \times 10^{-54}}{40 \times 99.99 \times 9.1 \times 10^{-37}}$$

$$= \frac{0.53 \times 10^{-3} \times 100}{40 \times 9.1 \times 99.99} \text{ m.} \Delta x. \Delta x = \frac{h}{4\pi}$$

$$\Delta x = \frac{5.27 \times 10^{-34}}{9.1 \times 10^{-31} \times 40 \times 0.04 \times \frac{1}{100}} = 1.447 \times 10^{-3} \times 100$$
52. Given that $\lambda_1 = 486.1 \times 10^{-9} \text{ m}$

$$= 486.1 \times 10^{-7} \text{ cm}$$

$$\lambda_2 = 410.2 \times 10^{-9} \text{ m} = 410.2 \times 10^{-7} \text{ cm}$$
and $\overline{v} = \overline{v}_2 - \overline{v}_1 = \left[\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right]$

$$= R_H = \left[\frac{1}{2^2} - \frac{1}{n_2^2}\right] - R_H \left[\frac{1}{2^2} - \frac{1}{n_1^2}\right]$$

$$v = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right] - \dots \dots (1)$$
For line I of Balmer series

$$\frac{1}{\lambda_1} = R_H \left[\frac{1}{2^2} - \frac{1}{n_1^2}\right] = 109678 \left[\frac{1}{2^2} - \frac{1}{n_1^2}\right]$$

$$\circ n_1 = 4$$
For line II of Balmer series ;

$$\frac{1}{\lambda_{1}} = R_{H} \left[\frac{1}{2^{2}} - \frac{1}{n_{2}^{2}} \right] = 109678 \left[\frac{1}{2^{2}} - \frac{1}{n_{2}^{2}} \right]$$

or
$$\frac{1}{410.2 \times 10^{-7}} = 109678 \left[\frac{1}{2^{2}} - \frac{1}{n_{2}^{2}} \right]$$

 $:. n_2 = 6$

Thus given electronic transition occurs from 6th to 4th shell. Also by eq. (I)

$$\overline{\mathbf{v}} = \frac{1}{\lambda} = 109678 \left[\frac{1}{4^2} - \frac{1}{6^2} \right]$$

$$\therefore \lambda = 2.63 \times 10^{-4} \,\mathrm{cm}$$

53.
$$E_{ext} = 2.18 \times 10^{-19} \left(1 - \frac{1}{9} \right) \times 6.023 \times 10^{23} = 116.71 \text{ kJ/mol H}$$

Atomic Structure

D.E. = 116.71 × 2.67 = 311.62 kJ/mol H₂ $n = \frac{PV}{RT} = \frac{1}{0.082 \times 300} = 0.04$ $\implies T.E. = 0.04 \times 311.62 + 0.08 \times 116.71 = 21.8kJ$

54. $E(ev) = \frac{1240}{\lambda(nm)}$

Energy of 1st photon =
$$\frac{1240}{108.5}$$
 = 11.428 eV

Energy of 2st photon =
$$\frac{1240}{30.4}$$
 =40.79 eV
En = 52.217-54.4 = -2.182 eV (E₁=-54.4 eV)
-2.182 = $-\frac{13.6 \times 4}{n^2} \Rightarrow n = 5$

- **55.** Since we obtain 6 emission lines, it means electron comes from 4th orbit energy emitted is equal to, less than and more than 2.7 eV. So it can be like this :
- $$\begin{split} & E_4 E_2 = 2.7 \text{ eV}, & E_4 E_3 < 2.7 \text{ eV}, \\ & E_4 E_1 > 2.7 \text{ eV} \\ \textbf{(a)} \quad n = 2, \\ & (E_4 E_2)^{\text{atom}} = (E_4 E_2)^{\text{H}} \times Z^2 \\ & 2.7 = 2.55 \times Z^2 = 1.029 \end{split}$$
- (b) IP = $13.6 Z^2 = 13.6 \times (1.029)^2 = 14.4 eV$ (c) Maximum energy emitted $=E_4 - E_1 = (E_4 - E_1)^H \times Z^2$ $= 12.75 \times (1.029)^2$ = 13.5eVMinimum energy emitted $=E_4 - E_3 = (E_4 - E_3)^H \times Z^2$ $= .66 \times (1.029)^2 = 0.7eV$

56.
$$n \rightarrow 2\Delta E = 27.2 \text{eV}(17 + 10.2)$$

57. $\lambda = 975 \text{ Å}$ $\lambda = 6.626 \times 10^{-34} \times 3 \times 10^{8}$

$$E = \frac{\lambda c}{\lambda} = \frac{0.020 \times 10^{-1.0} \times 3 \times 10^{-1.0}}{975 \times 10^{10}} = 2.03 \times 10^{-1.8} \text{J} = 12.75 \text{eV}$$

So electron will excite to 4th energy level and when

comeback number of emission line will be 6. minimum energy emitted = $E_4 - E_3 = 0.66 \text{ eV}$ $\lambda = \frac{hc}{E} = \frac{1.9878 \times 10^{-25}}{.66 \times 1.6 \times 10^{-19}} = 1.882 \times 10^{-6} \text{ m} = 18820 \text{ Å}$ 58. (a) $kE = qV = 2 \times 1.6^{-19} \times 2 \times 10^6 = 6.4 \times 10^{-13} \text{ J}$ (b) At distance $d = 5 \times 10^{-14} \text{ m}$ let K.E. is x J and $PE = \frac{k q_1 q_2}{d} = \frac{9 \times 10^9 \times 2 \times 1.6 \times 10^{-19} \times 47 \times 1.6 \times 10^{-19}}{5 \times 10^{-14}}$ $PE = 4.33 \times 10^{-13} \text{ J}$ By energy conservation : $6.4 \times 10^{-13} = x + 4.33 \times 10^{-13}$ $x = 2.06 \times 10^{-13} \text{ J}$, kE = PE $6.4 \times 10^{-13} = \frac{9 \times 10^9 \times 2 \times 47 \times (1.6 \times 10^{-19})^2}{d}$ $\Rightarrow d = 3.384 \times 10^{-14} \text{ m}$ 59. $pE = \frac{-ke^2}{3r^3}$, since $F = -\frac{du}{dr} = -\frac{ke^2}{r^4}$ For stable atom $F = \frac{mv^2}{r}$ so $\frac{ke^2}{r^4} = \frac{mv^2}{r}$...(1)

$$mv^2 = \frac{ke^2}{r^3} \qquad \dots (2)$$

$$kE = \frac{1}{2}mv^{2} = \frac{ke^{2}}{2r^{3}}, PE = \frac{-ke^{2}}{3r^{3}}$$
$$T.E = \frac{ke^{2}}{2r^{3}} - \frac{ke^{2}}{3r^{3}} = +\frac{ke^{2}}{6r^{3}} \qquad ...(3)$$

Form bohr's postulate mvr = $\frac{nh}{2\pi} \Rightarrow V = \frac{nh}{2\pi mr}$ putting this in equation (2)

$$m\left(\frac{nh}{2\pi mr}\right)^{2} = \frac{ke^{2}}{r^{3}} \implies m\left\{\frac{n^{2}h^{2}}{4\pi^{2}m^{2}r^{2}}\right\} = \frac{ke^{2}}{r^{3}}$$
$$r = \frac{4\pi^{2}mke^{2}}{n^{2}h^{2}}$$
putting this in equation (3)

T.E. =
$$\frac{\mathrm{ke}^2}{6\left\{\frac{4\pi^2 \mathrm{m}^2 \mathrm{ke}^2}{\mathrm{n}^2 \mathrm{h}^2}\right\}^3} = \frac{\mathrm{ke}^2}{6\left\{\frac{64\pi^6 \mathrm{m}^3 \mathrm{k}^3 \mathrm{e}^6}{\mathrm{n}^6 \mathrm{h}^6}\right\}}$$

Atomic Structure

224

[Chemistry]

Chemistry

$$E = \frac{n^{6}h^{6}}{384 \text{ m}^{3}\pi^{6}\text{k}^{2}\text{e}^{4}}$$
60. (a) $(E_{3}-E_{2})=68 \text{ eV} = (E_{3}-E_{2})^{H} \times Z^{2}$
 $s=6$
(b) $(\text{kE})_{1}=-E_{1}=13.6 \times 36 = 489.6 \text{ eV}$
(c) Energy required $= -E_{1} = 489.6 \text{ eV}$
 $\lambda = \frac{1240}{489.6} = 2.53 \text{ nm}$
61. $E_{1} = \text{IP}$
 $= -4 \text{ R} = -4 \times 2.18 \times 10^{-18} \text{ J}$
 $= -8.72 \times 10^{-18} \text{ J}$
 $E_{2} = \frac{E_{1}}{4} = -2.18 \times 10^{-18} \text{ J} = \frac{\lambda c}{\lambda}$
 $\lambda = \frac{1.9878 \times 10^{-25}}{6.54 \times 10^{-18}} = 0.3039 \times 10^{-7} \text{ m} = 303.9 \text{ Å}$
 $E_{1}=-8.72 \times 10^{-18}=-21.79 \times 10^{-19} \times Z^{2} \Rightarrow Z = 2$
(II) $r_{1} = \frac{0.529 \times 1}{2} \text{ A}^{\circ} = 0.2645 \text{ A}^{\circ} = 2.645 \times 10^{-11} \text{ m}$
62. (a) $\lambda = 12.4 \text{ nm}$, $E(\text{ev}) = \frac{1240}{12.4} = 100 \text{ eV}$
 $W_{0} = 25 \text{ eV}$
 $\text{kE} = \text{E} - W_{0} = 75 \text{ eV} \Rightarrow \text{V} = 75 \text{ volt}$
(b) $\lambda = \sqrt{\frac{150}{V}} \text{ A}^{\circ} = \sqrt{2} \text{ A}^{\circ} = 1.414 \text{ A}^{\circ}$
(c) since $p = \frac{h}{\lambda} \Rightarrow dp = \frac{h}{\lambda^{2}} d\lambda$
 $d\lambda = \frac{\lambda^{2} dp}{h} = \frac{(1.414 \times 10^{-10})^{2} \times 6.62 \times 10^{-28}}{6.626 \times 10^{-34}}$
 $d\lambda = 2 \times 10^{-14} \text{ m}$
63. Since electron is in some exited state of He⁺ so it's energy $\leq 13.6 \text{ eV}$ so energy need to exitation is also $< 13.6 \text{ eV}$ so only for hydrogen $E_{2} - E_{2} < 13.6 \text{ eV}$ So $Z = 1$. Now for

& only for hydrogen
$$E_3 - E_1 < 13.6 \text{ eV}$$
. So Z =1. Now for He⁺ this energy is equal to the energy gap of 2nd and 6th orbit so initial state is 2 and final state is 6.

64. mvr =
$$\frac{nh}{2\pi} \Rightarrow 3.1652 \times 10^{-34} = n \left\{ \frac{6.026 \times 10^{-14}}{2 \times 3.14} \right\}$$

n = 3

$$\overline{v} = R\left[\frac{1}{1} - \frac{1}{3^2}\right] = \left(\frac{8R}{9}\right)$$
EXERCISE - 5
Part # I : AIEEE/JEE-MAIN
1. $\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \frac{1}{\lambda} = 1.097 \times 10^7 \text{ m}^{-1}\left(\frac{1}{1^2} - \frac{1}{\infty^2}\right)$
 $\therefore \lambda = 91 \times 10^{-9} \text{ m} = 91 \text{ m}.$
2. For 4f orbital electrons, n = 4
 $\ell = 3$ (because $\underset{O \ 1 \ 2 \ 3}{} \text{ p d } f$) m = + 3, + 2, + 1, 0, -1, -2, -3 s = + 1/2.
3. $_{24}\text{Cr} \rightarrow 1\text{s}^2, 2\text{s}^2, 2\text{p}^6, 3\text{s}^2, 3\text{p}^6, 3\text{d}^5, 4\text{s}^1$ $\ell = 1, \ell = 1, \ell = 2$
(we know for p, $\ell = 1$ and For $\ell = 1$, total number of electrons = 12
For $\ell = 2$, total number of electron = 5.
4. For hydrogen the energy order of orbital is $1\text{s} < 2\text{s} = 2\text{p} < 3\text{s} = 3\text{p} = 3\text{d} < 4\text{s} = 4\text{p} = 4\text{d} = 4f.$

The electron having same principle quantum number and azimuthal quantum number will be the same energy in absence of magnetic and electric field.

(IV)
$$n=3, l=2, m=1$$

(V) $n=3, l=2, m=0$

have same n and l value.

6. According to Heisenberg's uncertainity principle

$$\Delta \mathbf{x} \times \Delta \mathbf{p} = \frac{\mathbf{h}}{4\pi}$$
$$\Delta \mathbf{x} \times (\mathbf{m}.\Delta \mathbf{v}) = \frac{\mathbf{h}}{4\pi} \implies \Delta \mathbf{x} = \frac{\mathbf{h}}{4\pi \mathbf{m}.\Delta \mathbf{v}}$$

here
$$\Delta v = \frac{0.001}{100} \times 300 = 3 \times 10^{-3} \, \text{ms}^{-1}$$

$$\therefore \quad \Delta x = \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 3 \times 10^{-3}} = 1.29 \times 10^{-2} \text{m}$$

7. Angular momentum of the electron,
$$mvr = \frac{nh}{2\pi}$$

where n = 5 (given)

$$\therefore \quad \text{Angular momentum} = \frac{5h}{2\pi} = 2.5 \frac{h}{\pi}$$

Atomic Structure

Chemistry

JEE MAIN & ADVANCED

8. $_{28}Ni \rightarrow [Ar]3d^8 4s^2$

Number of unpaired electrons (n) = 2

 $\mu = \sqrt{n(n+2)} = \sqrt{2(2+2)} = \sqrt{8} \approx 2.84$

9. The atoms of the some elements having same atomic number but different mass numbers are called isotopes.

(A)
$$\stackrel{A}{Z} \chi \xrightarrow{-\alpha} \stackrel{A-4}{Z-2} Y$$
 (B) $\stackrel{A}{Z} \chi \xrightarrow{-\beta} \stackrel{A}{Z+1} Y$
(C) $\stackrel{A}{Z} \chi \xrightarrow{-0} \stackrel{1}{\longrightarrow} \stackrel{A-1}{Z} \gamma X$ (D) $\stackrel{A}{Z} \chi \xrightarrow{-\beta+} \stackrel{A}{\longrightarrow} \stackrel{Z}{Z-1} Y$

10. I.E. = $1.312 \times 10^6 \, \text{J mol}^{-1}$ The energy required to excite the electron in the atom from $n_1 = 1$ to n = 2.

$$= 1.312 \times 10^{6} \left[1 - \frac{1}{4} \right]$$
$$= 1.312 \times 10^{6} \times \frac{3}{4}$$
$$= 9.84 \times 10^{5} \,\mathrm{J \, mol^{-1}}$$

- 11. The electron have n + l higher value have hegher energy.
 - n+1=3+0=3n+1=3+1=4n+1=3+2=5(highest energy) n+l=4+0=4

n+1=3+0=3
n+1=3+1=4
n+1=3+2=5 (highest energy)
n+1=4+0=4
12. Cl-Cl(g) → 2Cl(g) ; ΔH=242 KJ mol

$$= \frac{242 \times 10^{3}}{6.02 \times 10^{23}} J \text{ molecule}^{-1}$$

$$E = \frac{hc}{\lambda}$$
242×10⁻²³×10³ 6.6×10⁻³⁴×3×10⁸

$$= \frac{242 \times 10^{-1}}{6.02 \times 10^{23}} \text{ J molecule}^{-1}$$

$$E = \frac{hc}{\lambda}$$

$$\frac{242 \times 10^{-23} \times 10^3}{6.02} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{\lambda}$$

$$\lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{242 \times 10^{-23} \times 10^3} = \frac{6.6 \times 3 \times 6.02}{242} \times 10^{-6}$$
$$= 0.494 \times 10^{-6}$$
$$= 494 \times 10^{-9} \text{ m} = 494 \text{ nm}$$

13. I.E. of He⁺ = 19.6×10^{-18} J atom⁻¹ $I.E. = -E_1$ E_1 for He⁺ is = -19.6×10^{-18} J atom⁻¹

$$\frac{(E_{1})_{He^{+}}}{(E_{1})_{L}|_{3^{+}}} = \frac{(Z_{He^{+}})^{2}}{(Z_{L}|_{2^{+}})^{2}}$$

$$\frac{-19.6 \times 10^{-18}}{(E_{1})_{L}|_{2^{+}}} = \frac{4}{9}$$

$$E_{1}(Li^{2^{+}}) = \frac{-19.6 \times 9 \times 10^{-18}}{4} = -44.1 \times 10^{-18}$$

$$= -4.41 \times 10^{-17} \text{ J atom}^{-1}$$
14. $E = E_{1} + E_{2}$

$$\frac{hc}{\lambda} = \frac{hc}{\lambda_{1}} + \frac{hc}{\lambda_{2}}$$

$$\frac{1}{\lambda} = \frac{1}{\lambda_{1}} + \frac{1}{\lambda_{2}}$$

$$\frac{1}{\lambda_{2}} = \frac{1}{\lambda_{1}} + \frac{1}{\lambda_{2}}$$

$$\frac{1}{355} = \frac{1}{680} + \frac{1}{\lambda_{2}}$$

$$\lambda_{2} = 742.76 \text{ nm.}$$
15. $hv = \Delta E = 13.6 z^{2} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right)$

$$v_{He^{+}} = v_{H} \times z^{2} \left(\frac{1}{\left(\frac{n_{1}}{2}\right)^{2}} - \frac{1}{\left(\frac{n_{2}}{2}\right)^{2}}\right)$$
For H-atom
$$n_{1} = 1, \quad n_{2} = 2$$
16. (a) $4p$
(b) $4s$
(c) $3d$
(d) $3p$
Acc. to $(n + \ell)$ rule, increasing order of energy
(d) < (b) < (c) < (a)
17. $_{37}Rb = [Kr] 5s^{1}$

$$n=5, l=0, m=0, s=+\frac{1}{2}$$

18.
$$-\frac{13.6z^2}{n^2} \Rightarrow \text{ for hydrogen }; z = 1 \Rightarrow -\frac{13.6}{n^2}$$

Possible is -13.6, -3.4, -1.5 etc.

19.
$$\Delta KE = -q. \Delta v = e.v$$

$$\therefore \quad \frac{\ln}{\lambda} = \sqrt{2.m} (\Delta KE)$$

 $=\sqrt{2mev}$

21. Radius of nth Bohr orbit in H-atom = $0.53 \text{ n}^2\text{\AA}$ Radius of II Bohr orbit = $0.53 \times (2)^2 = 2.12 \text{ \AA}$

1. $r_n = 0.529 \frac{n^2}{Z} \overset{o}{A}$

For hydrogen, n = 1 and Z = 1; $r_{H} = 0.529$ For Be³⁺, n = 2 and Z = 4;

:.
$$r_{Be^{3+}} = \frac{0.529 \times 2^2}{4} = 0.529$$

Therefore, (D) is correct option.

2. ψ^2_{2s} = probability of finding electron with in 2s orbital $\psi^2_{at node} = 0$ (probability of finding an electron is zero at node)

For node at $r = r_0$, $\psi^2 = 0$

So,
$$\psi^2 = 0 = \frac{1}{4\sqrt{2\pi}} \left[\frac{1}{a_0}\right]^3 \left[2 - \frac{r_0}{a_0}\right] \times e^{r_0/2a_0}$$

$$\Rightarrow \left[2 - \frac{r_0}{a_0}\right] = 0 \text{ or } 2 = \frac{r}{a_0}$$

$$\Rightarrow r = 2a$$

(b) The wavelength can be calculated with the help of de-Broglie's formula i.e.,

$$\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{100 \times 100 \times 10^{-3}} = \frac{6.626 \times 10^{-34}}{10,000 \times 10^{-3}}$$
$$= 6.626 \times 10^{-35} \, \text{m} \quad \text{or} \quad 6.626 \times 10^{-25} \, \text{\AA}$$

(c) (1) The atomic mass of an element reduces by 4 and atomic number by 2 on emission of an α -particle.

(II) The atomic mass of an element remains unchanged and atomic number increases by 1 on emission of a β -particle.

Atomic Structure

Thus change in atomic mass on emission of 8α -particles will be $8 \times 4 = 32$

New atomic mass = old atomic mass -32=238-32=206

Similarly change in atomic number on emission of 8α -particle will be : $8 \times 2 = 16$

i.e., New atomic number = old atomic number -16=92-16=76

On emission of 6β -particles the atomic mass remains unchanged thus, atomic mass of the new element will be 206.

The atomic number increases by 6 unit thus new atomic nubmer will be 76+6=82

Thus, the equation looks like :

$$_{02}X^{238} \xrightarrow{-8\alpha}_{-6\beta} _{82}Y^{206}$$

3. (a) For hydrogen atom,
$$Z = 1$$
, $n = 1$

$$v = 2.18 \times 10^6 \times \frac{Z}{n} \text{ ms}^{-1} = 2.18 \times 10^6 \text{ ms}^{-1}$$

de Broglie wavelength,
$$\lambda = \frac{h}{mv}$$

$$= \frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.18 \times 10^{6}} = 3.32 \times 10 - 10 \text{ m} = 3.3 \text{ Å}$$

(b) For
$$2p, \ell = 1$$

 $\therefore \text{ Orbital angular momentum} = \sqrt{\ell (\ell + 1)} \frac{h}{2\pi}$

$$=\sqrt{2}\cdot\frac{h}{2\pi}$$

2

$$K_{n} = \frac{KZe^{2}}{2r}$$
4. $V_{n} = -\frac{KZe^{2}}{r}$

$$E_{n} = -\frac{KZe^{2}}{2r}$$
so, $\frac{V_{n}}{K_{n}} = -2 \text{ and } E_{n} \propto \frac{1}{r}.$

5. For lower state (S₁) No. of radial node = 1 = n − ℓ − 1 Put n = 2 and ℓ = 0 (as higher state S₂ has n = 3) So, it would be 2s (for S₁ state)

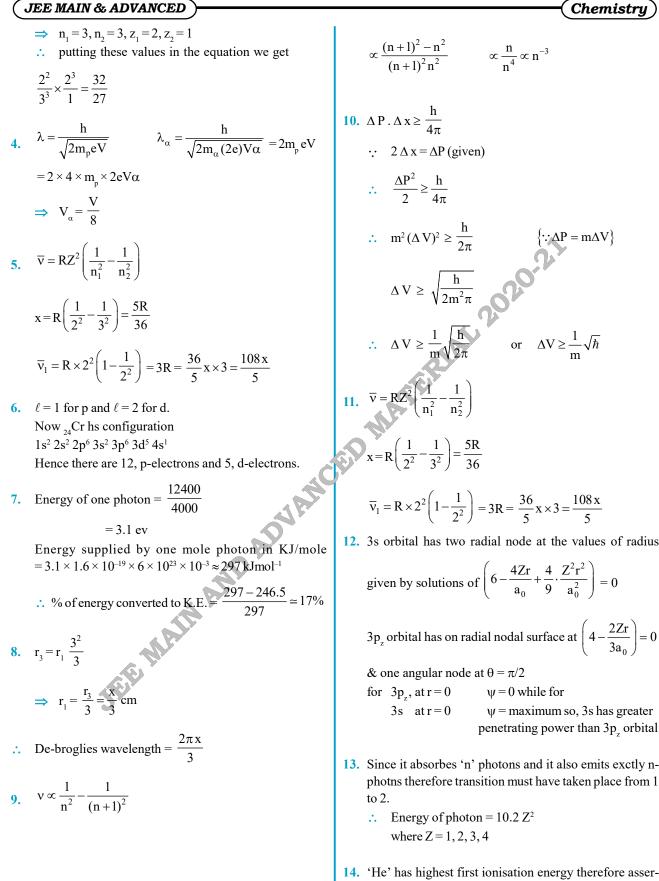
227

6. Energy of state $S_1 = -13.6 \left(\frac{3^2}{2^2}\right) eV/atom$ 11. $\begin{array}{c}
\overset{27}{13}\text{AI} \xrightarrow{(\text{ii}) \rightarrow {}_{2}\text{He}^{4}} \xrightarrow{30}_{15}\text{P} + \overset{1}{\underset{(y) \text{ neutron}}{15}} n \\
\overset{(i) \rightarrow {}_{2}\text{He}^{4}} \xrightarrow{1}_{14} \xrightarrow{(y) \text{ neutron}} \xrightarrow{(y) \text{ neutron}} \xrightarrow{1}_{14} \overset{(y) \text{ neutron}}_{14} \xrightarrow{1}_{15} \overset{(y) \text{ neutron}}_{14} \xrightarrow{1}_{14} \overset{(y) \text{ neutron}}_{$ $=\frac{9}{4}$ (energy of H-atom in ground state) = 2.25 (energy of H-atom in ground state). 12. $^{63}_{29}$ Cu $+^{1}_{1}$ H \rightarrow 6^{1}_{0} n $+^{4}_{2}\alpha + 2^{1}_{1}$ H + X 7. For state S_2 64 = 6 + 4 + 2 + A \Rightarrow A=52 No. of radial node = $1 = n - \ell - 1$ (eq.-1) $29 + 1 = 30 = 0 + 2 + 2 + z \implies z = 26$ Energy of S_2 state = energy of e^- in lowest state of H-Element X should be iron in group 8. atom =-13.6 eV/atom $m_{\ell} = 1, -1$ **13.** n = 4, Hence ℓ can be $=-13.6\left(\frac{3^2}{n^2}\right)$ eV/atom i.e. H_r ; 2 orbitals H_d ; 2 orbitals n = 3.H_; 2 orbitals put in equation (1) $\ell = 1$ Hence total of 6 orbitals, and we want $m_s = -\frac{1}{2}$, that is so, orbital \Rightarrow 3p (for S₂ state). only one kind of spin. So, 6 electrons. 8. $E_{\text{photon}} = \frac{12400}{3000} = 4.13 \text{ ev}$ 14. For multielectron system (n + l) rule is valid Photoelectric effect can take place only if $E_{photon} \ge \phi$ energy Thus, 3s < 3p < 3d. Maximum degenerating in d orbital and hence = 5Li, Na, K, Mg can show photoectric effect. 15. С 16. Α 3d 9. $\frac{27}{3} \times 13.6 \times 2^{2} \left\{ \frac{1}{4} - \frac{1}{36} \right\} = 13.6 \times \left\{ \frac{1}{4} - \frac{1}{16} \right\}$ So, electrons with spin quantum number $= -\frac{1}{2}$ will be $\frac{27}{32} \times \frac{8}{36} = \frac{3}{16}$ 1 + 3 + 5 = 9. 17. $mv(4a_0) = \frac{h}{\pi}$ 10. **MOCK TEST** In the given figure if line 'E' is in visible region then line belongig to ultraviolet region will have moe energy than 'E' i.e. line A 2. Let n be the number of Photons emitted so $KE = \frac{1}{2} mv^2 = \frac{1}{2} m \cdot \frac{h^2}{16m^2\pi^2 a_0^2} = \frac{h^2}{32m\pi^2 a_0^2}$ $\Rightarrow \frac{12400}{6000} \times 1.6 \times 10^{-19} \times n = 60 \times 10 \times 60 \times 60$ \Rightarrow n=6.5 × 10²⁴ 3. $\frac{f_1}{f_2} = \frac{z_1^2}{n_1^3} \times \frac{n_2^3}{z_2^2}$

Atomic Structure

228

Chemistry



Atomic Structure

tion is wrong and also additio of extra electron to the outer most shell of fully filed orbitals absorbes energy. Hence reason is also wrong.

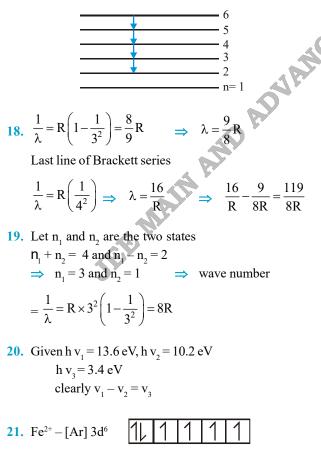
15.
$$m \Delta V \Delta x = \frac{h}{4\pi}$$

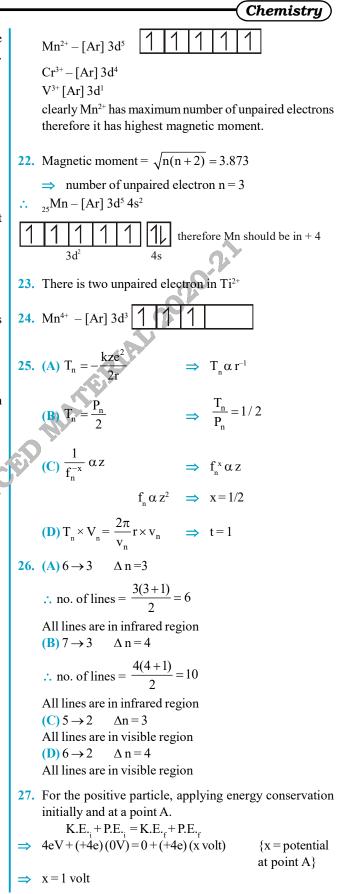
$$\Rightarrow \Delta v = \frac{6.62 \times 10^{-34}}{9.1 \times 10^{-31} \times 4 \times 3.14 \times 10^{-11}}$$

 $\simeq 6 \times 10^6 \, \text{m/s}$

as uncertainty in velocity is very high so we cannot define the trajectroy of an electron.

- 16. 2nd excitation energy = 108.9 eV
 - $\Rightarrow 108.9 = 12.1Z^2 \Rightarrow Z = 3$ Sample is Li⁺⁺
- : Series limit of paschen is last lineof paschen series
 - $=\frac{\mathbf{R}\mathbf{Z}^2}{\mathbf{n}^2}=\mathbf{R}\times\frac{\mathbf{3}^2}{\mathbf{3}^2}$
- **17.** Since if is a single isolated atom therefore maximum number of spectral line observed will be





230

Atomic Structure

Now applying energy conservation for the negative particle at point 'A' and initially

- \Rightarrow K.E._i+(-2e)(4V)=0+(-2e)(1 volt)
- $K.E._{i} 8 eV = -2 ev$
- \Rightarrow K.E._i=6 eV.

28. From Bohr model $mvr = \frac{nh}{2\pi}$ $mv = \frac{nh}{2\pi r}$

De broglie wavelength $\lambda = \frac{h}{mv} \Rightarrow \lambda = \frac{h}{\frac{nh}{2}}$

$$\Rightarrow \lambda = \frac{2\pi r}{n}$$

.:. number of waves made in one revolution

$$= \frac{2\pi r}{\lambda} = \frac{2\pi r}{\frac{2\pi r}{n}} = n = \text{Orbit number} = 3$$

29. (a) mur = $\frac{nh}{2\pi}$

$$u = \frac{nh}{2\pi mr} = \frac{1 \times 6.626 \times 10^{-34}}{2 \times 3.14 \times 9.108 \times 10^{-31} \times 0.529 \times 10^{-10}}$$

 $\cdot = 2.19 \times 10^6 \text{ m/s}$

$$\lambda = \frac{h}{mu} = \frac{6.626 \times 10^{-34}}{9.108 \times 10^{-31} \times 2.19 \times 10^{6}}$$

$$= 3.32 \times 10^{-10} \,\mathrm{m} = 3.32 \,\mathrm{\AA}$$

(b) Orbital angular momentum for 2p-orbital $(\ell = 1)$

$$= \sqrt{\ell(\ell+1)} \cdot \frac{h}{2\pi} = \frac{h}{2\pi} \sqrt{1(1+1)} = \sqrt{2} \left[\frac{h}{2\pi} \right]$$
$$= \frac{h}{\sqrt{2\pi}} = \sqrt{2}\hbar \quad (\hbar = h/2\pi)$$
$$(a) (a) = -\frac{1}{2\pi} \left(\frac{1}{2\pi} \right)^{1/2} \left(2 - \frac{r}{2\pi} \right) e^{-r/2a_0}$$

30. (a) $(\psi)_{2s} = \frac{1}{2\sqrt{2\pi}} \left(\frac{1}{a_0}\right) \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$

For radical node at $r=r_{_0}^{},\;\psi_{2s}^2=0$. this is possible only

when
$$\left(2 - \frac{r}{a_0}\right) = 0$$

or $2 = \frac{r_0}{a_0}$
 \therefore $r = 2a$.

(b) Given : m = 100, g = 0.1 kg; $u = 100 \text{ ms}^{-1}$

wavelength
$$\lambda = \frac{h}{mu} = \frac{6.626 \times 10^{-34}}{0.1 \times 100} = 6.626 \times 10^{-35} \text{ m}$$

Chemistry

31. We have

$$\Delta E = \frac{3}{4} \times 0.85 \text{eV}$$

as energy = 0.6375 the photon will belong to brackett series (as for brackett $0.31 \le E \le 0.85$)

$$0.85 \times \left(1 - \frac{1}{4}\right) = 13.6 \left(\frac{1}{4^2} - \frac{1}{n^2}\right)$$
$$0.85 \left(1 - \frac{1}{4}\right) = \frac{13.6}{16} \left[1 - \left(\frac{4}{n}\right)^2\right] \qquad \therefore \qquad \frac{4}{n} = \frac{1}{2}$$

 \Rightarrow n = 8 Hence x = 8.

 $2\pi r$

32.
$$\frac{X}{2} \longrightarrow \frac{X^+}{2} + e \qquad \frac{1}{2}$$
 I.E.(1)

$$e + \frac{X}{2}$$
 $\frac{1}{2}E.A.(-ve)$ (II)
(I) + (II)

$$X \longrightarrow \frac{1}{2}x^{+} + \frac{1}{2}X^{-} \quad \frac{1}{2}(I.E. - E.A.) = 410 \text{ kJ}$$

I.E. - E.A. = 820 J

Now
$$\frac{1}{2}X^{-} \longrightarrow \frac{1}{2}X^{+} + 2e^{-}$$
(III) $\Delta H = 735$

Now evaluation (III) can be achieved by (I) + reverse (II) and we will get

$$\frac{1}{2}I.E. + \frac{1}{2}E.A. = 735$$

I.E. + E.A. = 1470(IV)
2 E.A. = 650
E.A. = 325 kJ/mol.

Atomic Structure