

(3) Pro	operties of Cathode rays
	(i) Cathode rays travel in st`raight line.
	(ii) Cathode rays produce mechanical effect, as they can rotate the wheel placed in their path.
	(iii) Cathode rays consist of negatively charged particles known as <i>electron</i> .
 	(iv) Cathode rays travel with high speed approaching that of light (ranging between 10^{-9} 10^{-11} to <i>cm/sec</i>)
	(v) Cathode rays can cause fluorescence.
	(vi) Cathode rays heat the object on which they fall due to transfer of kinetic energy to the object.
	(vii) When cathode rays fall on solids such as Cu, X - rays are produced.
 	(viii) Cathode rays possess ionizing power i.e., they ionize the gas through which they pass. (ix) The cathode rays produce scintillation the photographic plates.
	(x) They can penetrate through thin metallic sheets.
	(XI) The nature of these rays does not depend upon the nature of gas of the cathode material used in discharge tube.
Note :	(xii) The e/m (charge to mass ratio) for cathode rays was found to be the same as that for an $e^{-}(-1.76 \times 10^{8} \text{ coloumb per } gm)$. Thus, the cathode rays are a stream of electrons. When the gas pressure in the discharge tube is 1 atmosphere no electric current flows through the tube. This is because the gases are poor conductor of electricity.
 	fluorescence on the television screen coated with suitable material. Similarly, fluorescent light tubes are also cathode rays tubes coated inside with suitable materials which pro- duce visible light on being hit with cathode rays.
(4)	<i>R.S. Mullikan</i> measured the charge on an electron by oil drop experiment. The charge on each electron is -1.602×10^{-19} C.
(5)	Name of electron was suggested by $J.S.$ Stoney. The specific charge (e/m) on electron was first determined by $J.J.$ Thomson.
(6)	Rest mass of electron is 9.1 x 10^{-28} gm = 0.000549 amu = 1/1837 of the mass of hydrogen atom.
(7)	According to <i>Einstein's theory of relativity, mass</i> of electron in motion is, m
ļ	= Rest mass of electron(m)
	$\sqrt{[1-(u/c)^2]}$
	Where $u =$ velocity of electron, $c =$ velocity of light.
(8)	Molar mass of electron = Mass of electron × Avogadro number = 5.483×10^{-4}
(9)	1.1×10^{27} electrons =1gram.
(10)	1 mole electron = 0.5483 <i>mili gram</i> .
(11) I	Energy of free electron is ? 0. The minus sign on the electron in an orbit, represents attraction between the positively charged nucleus and negatively charged electron.
(12)	Electron is universal component of matter and takes part in chemical combinations.
(13) 	The physical and chemical properties of an element depend upon the distribution of electrons in outer shells.
(14)	The radius of electron is 4.28×10^{-12} cm.
(15)	The density of the electron is = $2.17 \times 10^{-17} g/mL$.
VII - C	TLASS 33

(2) **Goldstein (1886)** used perforated cathode in the discharge tube and repeated Thomson's experiment and observed the formation of anode rays. These rays also termed as *positive* or *canal rays*.

(3) Properties of anode rays (i) Anode rays travel in straight line. (ii) Anode rays are material particles. (iii) Anode rays are positively charged. (iv) Anode rays may get deflected by external magnetic field. (v) Anode rays also affect the photographic plate. (vi) The *e/m* ratio of these rays is smaller than that of electrons. (vii) Unlike cathode rays, their e/m value is dependent upon the nature of the gas taken in the tube. It is maximum when gas present in the tube is hydrogen. (viii) These rays produce flashes of light on ZnS screen. Charge on proton = 1.602×10^{-19} coulombs = 4.80×10^{-10} e.s.u. (4) (5) Mass of proton = Mass of hydrogen atom= $1.00728 \text{ amu} = 1.673 \text{ x} 10^{-27} \text{ gram} = 1837 \text{ of the mass of electron}.$ (6) Molar mass of proton = mass of proton x Avogadro number =1.008 (approx). (7) Proton is ionized hydrogen atom (H⁺) i.e., hydrogen atom minus electron is proton. Proton is present in the nucleus of the atom and it's number is equal to the (8) number of electron. Charge on 1 mole of protons is \approx 1.007 gram. The volume of 1 (9) (10)The volume of a proton (volume = $\frac{4}{2}\pi^{-3}$) is $\approx 1.5 \times 10^{-38}$ cm³ (11)Specific charge of a proton is 9.58 x 10⁴ Coulomb/gram. (12) Neutron (n¹, N) $_{4}\text{Be}^{9} + _{2}\text{He}^{4} \rightarrow _{6}\text{C}^{12} + _{0}\text{n}^{1} \text{ or }_{5}\text{B}^{11} + _{2}\text{He}^{4} \rightarrow _{7}\text{N}^{14} + _{n}\text{n}^{1}$ (1) Neutron was discovered by James Chadwick (1932) according to the following nuclear reaction. $_{A}Be^{9} + _{2}He^{4} \rightarrow _{c}C^{12} + _{n}n^{1} \text{ or }_{5}B^{11} + _{2}He^{4} \rightarrow _{7}N^{14} + _{n}n^{1}$ The reason for the late discovery of neutron was its neutral nature. (2) Neutron is slightly heavier (0.18%) than proton. (3) (4) Mass of neutron = 1.675×10^{-24} gram = 1.675×10^{-27} kg = 1.00899 amu \approx mass of hydrogen atom. Specific charge of a neutron is zero. (5) Density = 1.5×10^{-14} gram / c.c. (6) 1 mole of neutrons is \approx 1.008 gram. (7) Neutron is heaviest among all the fundamental particles present in an atom. (8) (9) Neutron is an unstable particle. It decays as follows : $_{0}n^{1} \longrightarrow _{1}H^{1} + _{-1}e^{0} + _{0}\nu^{0}$ neutron proton electron anti nutrino neutron $_{0}n^{1} \longrightarrow _{1}H^{1} + _{-1}e^{0} + _{0}\nu^{0}$ neutron proton electron anti nutrino neutron

Atomic Structure

Different Types of Atomic Species

tom ic species	Similarities	Differences	Examples
	(i) Atomic No. (Z)	(i) Mass No. (A)	(i) ${}^{1}_{1}H, {}^{2}_{1}H, {}^{3}_{1}H$
	(ii) No. of protons	(ii) No. of neutrons	(ii) ${}^{16}_{0}O, {}^{17}_{0}O, {}^{18}_{0}O$
- .	(iii) No. of electrons	(iii) Physical properties	(···) 35 ct 37 ct
Isotopes	(iv) Electronic		(iii) $\prod_{17}^{17} Cl, \prod_{17}^{17} Cl$
(Soddy)			
	(v) Chemical properties		
	table		
	(i) M ass No. (A)	(i) Atomic No. (Z)	(i) $\frac{40}{4r} \frac{40}{4r} \frac{40}{4r} \frac{40}{6} \frac{1}{6} Ca$
	(ii) No. of nucleons	(ii) No. of protons, electrons	(1) $_{18}^{130}$ = $_{120}^{130}$ = $_{130}^{130}$ =
		and neutrons	(11) $_{52}^{130} Te$, $_{54}^{130} Xe$, $_{56}^{130} Ba$
Isobars		(iii)Electronic configuration	
		(iv) Chemical properties	
		(v) Position in the perodic	
		table.	
	No. of neutrons	(i) Atomic No.	(i) ${}^{30}_{14}Si, {}^{31}_{15}P, {}^{32}_{16}S$
		(11) Mass No., protons and	(ii) $^{39}_{19}K$, $^{40}_{20}Ca$
		(iii) Electronic	(iii) ${}^{3}_{1}H, {}^{4}_{2}He$
Isotones		configuration	(iv) ^{13}C ^{14}N
		(iv) Physical and chemical	$(1^{v})_{6}^{c}, 7^{v}$
		properties	
		(v) Position in the periodic	
	Leeterie Ne	table.	0.05 0.01
	1 sotopic N 0.	(I) At NO., Mass NO.,	(i) $_{92} U^{235}$, $_{90} Th^{231}$
Isodiaphers	(N - Z) of $(A - 2Z)$	neutrons.	(ii) $_{19} K^{39}, _{9} F^{19}$
		(ii) Physical and chemical	(iii) $_{29} Cu^{65}$, $_{24} Cr^{55}$
		properties.	27 7 24
	(i) No. of electrons	At. No., mass No.	(i) $N_2O, CO_2, CNO^-(22e^-)$
- 1	(ii) Electronic		(ii) $CO, CN^{-}, N_{2}(14 e^{-})$
I soe lectron ic species	configuration		(iii) $H^-, He, Li^+, Be^{2+}(2e^{-})$
·F			(iv)
			$P^{3-}, S^{2-}, Cl^{-}, Ar, K^{+}and Ca^{2+}(18 e^{-})$
	(i) No. of atoms		(i) N_2 and CO
	(ii) No. of electrons		(ii) CO_2 and N_2O
Isosters	(iii) Same physical and		(iii) <i>HCl</i> and F_2
	chemical properties.		(iv) CaO and MgS
			(v) $C_6 H_6$ and $B_3 N_3 H_6$

VII - CLASS

T

Note : In all the elements, tin has maximum number of stable isotopes (ten). Average atomic weight/ The average isotopic weight

_%of1stisotope×relativemassof1stisotope+%of2nd isotope×relativemassof2nd isotope

Example :1 Atomic weight of Ne is 20.2. Ne is a mixutre of Ne^{20} and Ne^{22} . Relative abundance of heavier isotope is (a)90 (b)20 (c)40 (d)10

Solution:(d) Average atomic weight/ The average isotopic weight

 $=\frac{\% \text{ of 1st isotope } \times \text{ relative mass of 1st isotope } +\% \text{ of 2nd isotope } \times \text{ relative mass of 2nd isotope}}{100}$

:.
$$20.2 = \frac{a \times 20 + (100 - a) \times 22}{100}$$
; :. $a = 90$

per cent of heavier isotope = 100 - 90 = 10 **Example : 2** The relative abundance of two isotopes of atomic weight 85 and 87 is 75% and 25% respectively. The average atomic weight of element is (a)75.5 (b)85.5 (c)87.5 (d)86.0

Solution:(b) Average atomic weight/ The average isotopic weight

 $=\frac{\% \text{ of 1st isotope } \times \text{ relative mass of 1st isotope } +\% \text{ of 2nd } \text{ isotope } \times \text{ relative mass of 2nd } \text{ isotope}}{100}$

$$\frac{85 \times 75 + 87 \times 25}{100} = 85.5$$

Electromagnetic Radiations.

(1) Light and other forms of radiant energy propagate without any medium in the space in the form of waves are known as *electromagnetic radiations*. These waves can be produced by a charged body moving in a magnetic field or a magnet in a electric field. e.g. α -rays, γ -rays, cosmic rays, ordinary light rays etc.

$(2) \, \textbf{Characteristics}:$

- (i) All electromagnetic radiations travel with the velocity of light.
- (ii) These consist of electric and magnetic fields components that oscillate in directions perpendicular to each other and perpendicular to the direction in which the wave is travelling.
- (3) A wave is always characterized by the following five characteristics:
- (i) Wavelength : The distance between two nearest crests or nearest troughs is called the wavelength. It is denoted by *λ* (lambda) and is measured is terms of centimeter(cm), angstrom(Å), micron(μ) or nanometre (nm).

$$1 \overset{?}{A} = 10^{-8} \ cm = 10^{-10} \ m$$

$$1 \mu = 10^{-4} \ cm = 10^{-6} \ m$$

$$1 nm = 10^{-7} \ cm = 10^{-9} \ m$$

 $1cm = 10^{8} \text{ Å} = 10^{4} \mu = 10^{7} nm$ (ii) Frequency: It is defined as the number of waves which pass through a point in one second. It is denoted by the symbol v(nu) and is expressed in terms of cycles (or waves) per second (cps) or hertz (Hz). λ_{V} = distance travelled in one second = velocity = c $v = \frac{c}{\lambda}$ (iii) Velocity : It is defined as the distance covered in one second by the wave. It is denoted by the letter 'c'. All electromagnetic waves travel with the same velocity, i.e., 3 x 10¹⁰ cm / sec $c = \lambda v = 3 \times 10^{10} cm / sec$ Thus, a wave of higher frequency has a shorter wavelength while a wave of lower frequency has a longer wavelength. (iv) Wave number: This is the reciprocal of wavelength, i.e., the number of wave lengths per centimetre. It is denoted by the symbol $\overline{\nu}$ (nu bar). It is expressed in cm⁻¹or m⁻¹. atiol $\overline{v} = \frac{1}{2}$ (v) Amplitude: It is defined as the height of the crest or depth of the trough of a wave. It is denoted by the letter 'A'. It determines the intensity of the radiation. The arrangement of various types of electromagnetic radiations in the order of their increasing or decreasing wavelengths or frequencies is known as electro-

magnetic spectrum.

Name	Wavelength (Å)	Frequency (Hz)	Source
Radio wave	$3 \times 10^{14} - 3 \times 10^{7}$	$1 \times 10^{5} - 1 \times 10^{9}$	Alternating current of high frequency
Microwave	$3 \times 10^{7} - 6 \times 10^{6}$	$1 \times 10^9 - 5 \times 10^{11}$	Klystron tube
Infrared (IR)	6×10 ⁶ -7600	$5 \times 10^{11} - 3.95 \times 10^{16}$	Incandescent objects
Visible	7600 - 3800	$3.95 \times 10^{16} - 7.9 \times 10^{14}$	Electric bulbs, sun rays
Ultraviolet (UV)	3800 - 150	$7.9 \times 10^{14} - 2 \times 10^{16}$	Sun rays, arc lamps with mercury vapours
X-Rays	150 - 0.1	$2 \times 10^{16} - 3 \times 10^{19}$	Cathode rays striking metal plate
γ – Rays	0.1-0.01	$3 \times 10^{19} - 3 \times 10^{20}$	Secondary effect of radioactive decay
Cosmic Rays	0.01- zero	3×10^{20} – infinity	Outer space

	TEACHIN	IG TASK	
	Lev	el - I	
1.	The fundamental particles present in the	nucleus of an atom a	re
	(a) Alpha particles and electrons	(b)Neutrons and pro	otons
	(c) Neutrons and electrons	(d)Electrons, neutro	ns and protons
2.	Cathode rays were discovered by		
l h	(a) William Crookes (b) J. Stoney	(c)Rutherford	(d)None of these
3. 	Cathode rays are	(a)Noutrona	(d) a particlas
l,	(a) Frotons (b) Electronis	(c)neutions	(u) a-particles
Ľ.	$(2) + (2)^{28} + (2)^{13}$	(a)	(d)
 	(a) $9.1 \times 10^{-20} g$ (b) $9.1 \times 10^{-23} g$	$(C)9.1 \times 10^{-10} g$	$(\mathbf{U}) 9.1 \times 10^{-10} g$
<i>Б.</i> 	I ne mass of a mole of proton and electr	on is	()) =
i	(a) $6.023 \times 10^{23} g$ (b) $1.008 g$ and $0.55 m_{\odot}$	g (C) $9.1 \times 10^{-28} kg$	(d)2 <i>gm</i>
β.	Anode rays were discovered by		<i>A</i>
	(a)Goldstein (b) J. Stoney	(c) Rutherford	(d)J.J. Thomson
1/. I	I he proton and neutron are collectively of	called as	(d)Nucleon
l la	(a)Dedition (b)Position		
U.	(a) James Chadwick	(b)William Crooks	
	(c)J. J. Thomson	(d)Rutherford	
9.	Which of the following reactions led to th	e discovery of the neu	itron
	(a) $\int_{C}^{14} C + \int_{T}^{1} n \rightarrow \int_{T}^{14} N + \int_{0}^{1} n$	(b) ${}^{11}B + {}^{2}D \rightarrow {}^{12}C$	$+\frac{1}{2}n$
1	$(1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$		1
ĺ	(C) ${}^{2}_{4}Be + {}^{2}_{2}He \rightarrow {}^{12}_{6}C + {}^{1}_{0}n$	$(a) \qquad {}^{\circ}_{4}Be + {}^{\circ}_{2}He \rightarrow {}^{11}_{6}$	$C + \frac{1}{0}n$
<u>1</u> 0.	Heaviest particle is	(a) Dratan	(d) Electron
 14 1	(a) Meson (b) Neutron	(C) Proton	(a) Electron
. 	(a)Rutherford-Proton	(b) L L Thomson-F	lectron
1	(c)J H Chadwick-Neutron	(d) Bohr-Isotope	
112.	An elementary fundamental particle is	(u) 2011 10010p0	
	(a)An element present in a compound	(b)An atom present	in an element
	c)A sub-atomic particle	(d)A fragment of an	atom
h3.	The number of electrons in Cl^{-} ion is		
1	(a)19 (b)20	(c)18	(d)35
14.	The number of neutron in tritium is		
Í.	(a)1 (b)2	(c)3	(d)0
15.	The total number of protons in one mole	cule of nitrogen dioxid	
 16	(a)23 (b)46	(C)69	(a)92
176. 	Number of neutrons in neavy hydrogen a	alom is	(d)3
17	(a)u (U) I The nucleus of belium contains	(<i>U)</i> 2	(u)3
	(a) Four protons	(b)Four neutrons	
	(c)Two neutrons and two protons	(d) Four protons and	d two electrons
	CLASS	· / ·····	40
' ** [_]			

CHE	MISTRY			Atomic Structure
18.	An atom has 26 electrons	and its atomic \	weight is 56. The nur	nber of neutrons in
1	the nucleus of the atom wil	be	() = =	()) = -
	(a)26 (b)30		(c)36	(d)56
19.	I he atomic number of an e	lement represe	ents ////////////////////////////////////	
	(a) Number of neutrons in t	ne nucieus	(b)Number of protor	is in the nucleus
	The mass of an atom is con	ntituted mainly	(d) valency of eleme	n
μ <i>υ.</i>	(a)Neutron and neutrino	Istituted maining	(b)Neutron and elec	tron
1	(c)Neutron and proton		(d)Proton and electr	on
	(-)	<u>LEVE</u>	<u>L-II</u>	
İI.	Single answer type ques	stions		
<u>h</u> .	The charge on an electron	is		
	$(a)_{-4.8 \times 10^{-10}} esu$ (b) ₋₁	6×10 ^{−19} C	(c)Unit negative	(d)All
12.	The e/m for positive rays in	o comparison t	o cathode rays is	
	(a)Verv low (b)Hic	ıh	(c)Same	(d)None of these
B	Which is correct statemen	t about proton	())	
ľ	(a)Proton is nucleus of deu	terium	(b) Proton is ionized	hydrogen molecule
	(c)Proton is ionized hydroc	ien atom	(d) Proton is a narti	rle
I И	The mass of neutron is nea	arly		
г. 	$(a)_{10}^{-23} l$ (b) $(a)_{10}^{-23} l$	24 <i>,</i>	$(c)_{10} = 26$	$(d)_{10} - 27 u$
۔ ۲	$(a)_{10} = kg$ $(b)_{10}$	^{-•} kg Sodium ion in tk	$(0)_{10} \sim kg$	$(\mathbf{u})_{10} \sim kg$
р. Г	(a) Electron (b) Dr	otopo		(d)Deee not differ
	(a) Election (b) Pr			(d)Does not diller
р. I		one molecule	of CO_2 are	(-1)00
	(a)22 (b)44		(C)66	(d)88
Υ. Ι	Six protons are found in the	enucleus of		
Ĺ	(a)Boron (b)Lith	nium	(c)Carbon	(d)Helium
β.	The number of electrons a	nd neutrons of	an element is 18 and	d 20 respectively. Its mass
	numberis			
1	(a)17 (b)37		(c)2	(d)38
9.	The number of electrons ir	$\left[\begin{bmatrix} 40\\19 \end{bmatrix} K \right]^{-1}$ is		
i	(a)19 (b)20		(c)18	(d)40
10.	Iso-electronic species is			
	(a) $_{F^{-}, O^{-2}}$ (b) $_{F^{-}, O^{-2}}$	0	(C) _{F⁻,O⁺}	(d) _{F⁻, O⁺²}
) 1.	Multi answer type quest	ions		
11.	Pick out the isoelectronic s	tructure from th	ne following	
i	i) CH ₃ ⁺ ii) H ₃ C)+	iii) NH ₃	iv)CH ₃ -
l	a)i&ïii b)i&	ii	c) iii & iv	d) ii, iii & iv
h2.	Among the following, unpa	ired electrons r	present in	
1	i) KO ₂ ii) Al _x ()-2	iii) BaO	iv) NO ₂ +
1	a) i & iii b) i &	ii	c)iii & iv	d) ii, iii & iv
i	, , , , , , , , , , , , , , , , , , , ,		,	, ,
				l

CHE	EMISTRY Atomic Struct	ire
III.	Assertion and reasoning type questions	
	1. Both A & R are true and R is the correct explanation of A	
1	2. Both A & R are true and R is not the correct explanation of A	
Ì	3. A is true, R is false. 4. A is false, R is true.	Ì
113	A: Atom is electrically neutral	Í
	R: A nuetral particle, neutron is present in the nucleus of an atom.	
h4.	A: Cathode rays are deflected towards positive plate in an electrical feild	
1	R: These consist of negatively charged particles.	
, 115.	A: Electromagnetic radiations around 1015 Hz are called as visible light.	ĺ
İ	R: This is the only part of electromagnetic radiation which is visible to eves.	İ
IV.	Matching type	l
16.	Column-I Column-II	
1	a) J.J. Thomson 1) Discovery neutron	
1	b) Mosley 2) Nuclear model of atom	
i	c) Chadwick 3) Cathode rays	i
	d) Rutherford 4) X-ray spectra	
	5) Radioactivity	
17 .	Column I Column II	
1	a) Electron 1) Atom is electrically neutral	
Ì	b) Proton 2) Negative charge	ĺ
Ì	c) I homson model of atom (3) Positive charge	Ì
	d) Muliken's oil drops experiment 4) Quantization of charge	
v .	Comprenension type:	
1	clauroue rays consists of negatively charged material particles called electrons. In	
1	elections are fundamental sub atomic particles can ying negative charge and having n	200
İ	9.1 × 10 ⁻³¹ kg. Discovered by J.J Thomson.Charge to mass $(\frac{e}{m})$ ratio of an electron	n isj
	1.76 × 10 ⁸ C/g. Charge to mass $(\frac{e}{m})$ ratio for an proton is 9.55 × 10 ⁴ C/g.	
1 18.	Particles in cathode rays have same charge to mass ratio as:	
	a) α - particles b) β - particles c) γ - rays d) Protons	
h9.	The ratio of specific charge of a proton and that of an $ lpha $ -	
	particle is:	
1	a)1:2 b)1:1 c)2:1 d)1:4	
20.	Which of the following particles has maximum charge to mass ratio?	
i	a) Electrons b) Protons c) α - particles d) Neutons	i
	LEVEL-III	
11.	Which of the following statement is not correct regarding cathode rays	
1	(a) Cathode rays originate from the cathode	
Ì	(b) Charge and mass of the particles constituting cathode rays depends upon the	Ì
İ	(c) Charge and mass of the particles present does not depend upon the material of th	, İ
	cathode	ļ
 	(d) The ratio charge/mass of the particles is much greater than that of anode rays	I
VII -	- CLASS	12

2.	Density of the electr	ronis		
	(a) $2.17 \times 10^{-17} g/mL$	(b) $4.38 \times 10^{-17} g/mL$	(c) $2.17 \times 10^{-14} g/mL$	(d)None of these
β.	The minimum real of	charge on any particle	e which can exist is	ĺ
	(a) 1.6×10 ⁻¹⁹ Coulomb	(b) 1.6×10^{-10} Coulomb	(C) 4.8×10^{-10} Coulomb	(d)Zero
4.	What is false to say	about anode rays		
	(a) Their <i>e/m</i> ratio d	epends upon the nat	ure of residual gas	
Ì	(D) They are deflect	ed by electrical and n	nagnetic field	ĺ
	(d) These are produ	iced by ionization of r	nolecules of the resid	lual das
Г Б.	Neutron is a fundam	nental particle carryin	g	
	(a) A charge of +1 u	nit and a mass of 1 u	nit (b) No charge an	d a mass of 1 unit
	(c) No charge and n	io mass	(d) A charge of –	1 and a mass of 1 unit
6. I	The nitrogen atom h	nas 7 protons and 7 e	electrons, the nitride ic	(N^{3-}) will have
	(a)7 protons and 10	electrons	(b)4 protons and 7 e	lectrons
	(c)4 protons and 10	electrons	(d)10 protons and 7	
μ. Ι	I ne electronic conf	Iguration of a dipositi	Ve metal M^{2+} is 2, 8, M^{2+}	14 and its atomic
1	(a)30	(b)32	(c)34	(d)42
8.	If W is atomic weigh	nt and N is the atomic	number of an elemer	nt, then
	(a) Number of $e^{-1} = b^{-1}$	W - N	(b) Number of $_0n^1 = n^2$	W - N
İ	(c) Number of $_1H^1 =$	W - N	(d) Number of $_0n^1 = 1$	N
9.	Tritium is the isotop	e of	1 27	
1	(a)Hydrogen	(b)Oxygen	(c)Carbon (d)Sul	phur
ļ	The change of the	LEVE	L-IV The velue of free she	· · · · · · · · · · · · · · · · · · ·
I. 	The charge of an el	(b) $10^{-1.6} \times 10^{-19} C$.	The value of free cha	arge on Li^+ ion will be
l h	(a) $_{3.6 \times 10^{-19}}C$	(D) $_{1\times10}^{-19}C$	(c) $1.6 \times 10^{-19} C$	(a) $2.6 \times 10^{-19} C$
2.		(b) <i>n n e a</i>	(c) n n a e	(d)n a n e
3.	The number of aton	ns in 0.004 <i>g</i> of magn	lesium are	
1	(a) _{4×10²⁰}	(b) $_{8 \times 10^{20}}$	(c) ₁₀ ²⁰	$(d)_{6.02 \times 10^{20}}$
4.	In an X-ray experim	ent, different metals a	are used as the target	. In each case, the
	frequency (n) of the	e radiation produced	is measured. If Z= ato	omic number, which of the
1	tollowing plots will b	e a straight line		
	(a) _v against Z	(b) $\frac{1}{v}$ against Z	(c) $\sqrt{\nu}$ against Z	(d) $_{\nu}$ against \sqrt{Z}
5.	Atoms consists of p	rotons, neutrons and	electrons. If the mass	of neutrons and
	electrons were mad	de half and two times	respectively to their a	actual masses,
	then the atomic ma	iss of ${}_{6}C^{12}$		l
	(a) Will remain appr	oximately the same		
1	(b) Will become app (c) Will remain appr	oximately two times	5	
i	(d)Will be reduced b	ov 25%		ļ
		-		

LEARNER'S TASK • III • BEGINNERS (Level - 1) • III • BEGINNERS (Constances to Show floorescence (C)They travel in straight line • The electron is
 BEGINNERS (Level - 1) Cathode rays are (a)Protons (b)Electrons (c)Neutrons (d)Alpha-particles Cathode rays have (a)Mass only (b)Charge only (c)No mass and charge (d)Mass and charge both Cathode rays are produced when the pressure in the discharge tube is of the order of (a)76 cm of Hg (b)10⁻⁶ cm of Hg (c)1 cm of Hg (d)10⁻² to 10⁻³ mm of Hg Which one is not true for the cathode rays (a)They have kinetic energy (b)They cause certain substances to show fluorescence (c)They travel in straight line (d)They are electromagnetic waves
 Cathode rays are (a)Protons (b)Electrons (c)Neutrons (d)Alpha-particles Cathode rays have (a)Mass only (b)Charge only (c)No mass and charge (d)Mass and charge both Cathode rays are produced when the pressure in the discharge tube is of the order of (a)76 cm of Hg (b)10⁻⁶ cm of Hg (c)1 cm of Hg (d)10⁻² to 10⁻³ mm of Hg Which one is not true for the cathode rays (a)They have kinetic energy (b)They cause certain substances to show fluorescence (c)They travel in straight line (d)They are electromagnetic waves
 (a)Protons (b)Electrons (c)Neutrons (d)<i>Alpha</i>-particles Cathode rays have (a)Mass only (b)Charge only (c)No mass and charge (d)Mass and charge both Cathode rays are produced when the pressure in the discharge tube is of the order of (a)76 cm of Hg (c)1 cm of Hg (d)₁₀⁻⁶ cm of Hg (d)₁₀⁻² to ₁₀⁻³ mm of Hg Which one is not true for the cathode rays (a)They have kinetic energy (b)They cause certain substances to show fluorescence (c)They travel in straight line (d)They are electromagnetic waves
 (a)Mass only (b)Charge only (c)No mass and charge (d)Mass and charge both Cathode rays are produced when the pressure in the discharge tube is of the order of (a)76 cm of Hg (b)₁₀-6 cm of Hg (c)1 cm of Hg (d)₁₀-2 to 10-3 mm of Hg 4. Which one is not true for the cathode rays (a)They have kinetic energy (b)They cause certain substances to show fluorescence (c)They travel in straight line (d)They are electromagnetic waves
 (c)No mass and charge (d)Mass and charge both Cathode rays are produced when the pressure in the discharge tube is of the order of (a)76 cm of Hg (b)₁₀-6 cm of Hg (d)₁₀-2 to 10⁻³ mm of Hg (c)1 cm of Hg (d)₁₀-2 to 10⁻³ mm of Hg Which one is not true for the cathode rays (a)They have kinetic energy (b)They cause certain substances to show fluorescence (c)They travel in straight line (d)They are electromagnetic waves The electron is
 Cathode rays are produced when the pressure in the discharge tube is of the order of (a)76 cm of Hg (b)₁₀-6 cm of Hg (c)1 cm of Hg (d)₁₀-2 to ₁₀-3 mm of Hg Which one is not true for the cathode rays (a)They have kinetic energy (b)They cause certain substances to show fluorescence (c)They travel in straight line (d)They are electromagnetic waves The electron is
(a) 76 <i>cm</i> of <i>Hg</i> (b) $_{10}^{-6}$ <i>cm</i> of <i>Hg</i> (c) 1 <i>cm</i> of <i>Hg</i> (d) $_{10}^{-2}$ to $_{10}^{-3}$ <i>mm</i> of <i>Hg</i> 4. Which one is not true for the cathode rays (a) They have kinetic energy (b) They cause certain substances to show fluorescence (c) They travel in straight line (d) They are electromagnetic waves 5. The electron is
 (c)1 cm of Hg (d)₁₀-2 to ₁₀-3 mm of Hg Which one is not true for the cathode rays (a)They have kinetic energy (b)They cause certain substances to show fluorescence (c)They travel in straight line (d)They are electromagnetic waves
 Which one is not true for the cathode rays (a)They have kinetic energy (b)They cause certain substances to show fluorescence (c)They travel in straight line (d)They are electromagnetic waves The electron is
 (a) They have kinetic energy (b) They cause certain substances to show fluorescence (c) They travel in straight line (d) They are electromagnetic waves
(c) They travel in straight line (d) They are electromagnetic waves (c) The electron is
5. The electron is
(a)a-rays particle (b)b-ray particle (c)Hydrogen ion (d)Positron
5. Proton is
(a) An ionized hydrogen molecule (b) An <i>a</i> -ray particle
(c) A fundamental particle (d) Nucleus of heavy hydrogen
(. Penetration power of proton is
(a) More than electron (b) Less than electron (c) More than peutron (d) None of these
3. Which of the following is always a whole number
(a)Atomic weight (b)Atomic radii
(c)Equivalent weight (d)Atomic number
9. Chlorine atom differs from chloride ion in the number of
(a) Proton (b) Neutron (c) Electrons (d) Protons and electrons
10. I he number of electrons in the atom which has 20 protons in the nucleus is
(a) 20 (b) 10 (c) 30 (d) 40 11 Δ sodium cation has different number of electrons from
(a) a^{2-} (b) r^{-} (c) a^{++}
12 The nucleus of the element having atomic number 25 and atomic weight 55 will
contain
a) 25 protons and 30 neutrons (b)25 neutrons and 30 protons
(c)55 protons (d) 55 neutrons
13. The number of electrons in an atom of an element is equal to its
(a)Alomic weight (b)Alomic number (c)Equivalent weight (d)Electron affinity
14 Number of electrons in $-CONH_{2}$ is
(a) 22 (b) 23 (c) 20 (d) 28
15 In the nucleus of Ca^{40} there are
(a) 40 protons and 20 electrons (b) 20 protons and 40 electrons
(c) 20 protons and 20 neutrons (d)20 protons and 40 neutrons
VII - CLASS 44

h6.	$_{Na^+}$ 1. ion is is	so-electronic with			
İ	(a) _{<i>Li</i>⁺}	(b) $_{Mg^{2+}}$	(C) _{Ca²⁺}	(d) $_{Ba^{2+}}$	
h7.	Iso-electronic	species are			
1	(a) K^+, Cl^-	(b) Na ⁺ , Cl ⁻	(C) Na, A	r (d) Mg^+, Ar	
18.	Which of the f	ollowing is iso-electro	nic with carbon at	om	
Ì	(a) _{Na} +	(b) _{Al} ³⁺	(C) _{O²⁻}	(d) $_{N^+}$	
19.	Be^{2+} is iso-e	electronic with			
1	(a) _{Mg²⁺}	(b) _{Na⁺}	(c) $_{Li^+}$	(d) $_{H^+}$	
20.	Be^{2+} is iso-ele	ctronic with			
	(a) _{Mg²⁺}	(b) _{Na} +	(c) _{Li⁺}	(d) $_{H^+}$	
1			VERS (Level - II		
į		¢∎⊣≰≱ <u>Auriil</u>			ĺ
h.	The ratio of sp	becific charge of a pro	ton and an a-part	icle is	
l b	(a)2:1 The density of	(b)1:2	(C)1 : 4	(d)1:1	
2.	$(2)_{10} = \frac{3}{2} I_{10}$			(d) -12	
 	$(a)_{10} = \frac{1}{kg}/cc$	$(D)_{10} \circ_{kg/cc}$	$(C)_{10} \rightarrow kg/cc$	$(\mathbf{u})_{10} + kg/cc$	
р. I	(a) Neutrons a	ronneution becomes v	very late because	200	
	(b)Neutrons a	re highly unstable part	icles		
ļ	(c) Neutrons a	ire chargeless	FOR		
	(d)Neutrons d	o not move	26		
4.	The electronic	c configuration of a dip	positive metal M^{2+}	is 2, 8, 14 and its atomic	
l	weight is 56 a	.m.u. The number of r	neutrons in its nuc	lei would be	
	(a)30 The muchause	(b)32	(c)34	(d)42	
ю. 	(a)Proton and	neutron	(h)Proton a	nd electron	
i	(c)Neutron and	d electron	(d)Proton r	nu electron	
6.	Which of the f	ollowing atom has mo	re electrons than	neutrons	
1	(a) C	(b) $_{F^{-}}$	(C) 0 ²⁻	(d) _{Al} ³⁺	
7 .	The ratio betw	veen the neutrons in C	and Si with respe	ect to atomic masses 12 and	1 28
ļ	is				
 	(a) 2 : 3	(b) 3 : 2	(c) 3 : 7	(d) 7 : 3	
8. 	CO has same	electrons as or the io	n that is iso-electi	onic with CO is	
	(a) N ₂ ⁺	(b) _{CN} -	(C) O ₂ ⁺	(d) O_2^-	
19. I	Which one of	the following grouping	represents a coll	ection of iso-electronic spec	ies
	(a) Na^+, Ca^{2+}, Mg	(b) N^{3-}, F^-, Na^+	(C) Be, Al^{3+}, C	l^{-} (d) Ca^{2+}, Cs^{+}, Br	
10. 	Assertion (A)	: The atoms of difference	ent elements havi	ng same mass number but	
	Reason (R) :	The sum of protons a	nd neutrons. in th	e isobars is alwavs different	·
1	(a) Both A and	R are true and R is a	correct explanati	on of A	
 	(b) Both A and R are true but R is not a correct explanation of A				
-	(c) A is true bu	it the <i>R</i> is false (d) A is false but R	'is true	

11					
11.	1 angstrom = ?				
	a) 10⁻¹⁰m	b) 10⁻ଃ cm	c) 10⁻⁰ m	d) None	
12.	Which of the follov	/ing are the units of v	vavelength?	İ	
	a)Angstrom	b) Nanometer	c) Picometer	d) Microns	
13.	Which of the follow	ving properties are p	roportional to the e	nergy of electromanagement	
	wave				
	i) wave length	ii) w	ave number		
	iii) number of phot	ons iv)f	requency	1	
	a) i & iii	b) i & ii	c) iii & iv	d) ii, iii & iv	
14.	Which of the follov	ing two ions have the	e same number of ι	inpaired electrons	
	i) Mn⁺²	ii) Fe⁺³	iii) Cr ⁺³	iv) Ti ⁺³	
	a) i & iii	b) i & ii	c) iii & iv	d) ii, iii & iv	
/// .	Assertion and re	asoning type ques	tions:	l	
	1. Both A & R are t	rue and R is the corr	ect explanation of A	A	
	2. Both A & R are t	rue and R is not the	correct explanatior	nofA	
	3. A is true, R is fals	se. 4. A	is false, R is true.		
15.	A: Atomic weights	of elements are non	-intergal		
	R: Elements conta	ain isotopes of differe	ent masses.		
16.	A: The atoms of dif	ferent elements havir	ng same mass numb	per but different atomic number	
	are known as isob	ars.			
	R:The sum of prot	ons and neutrons in	the isobars is alway	rs different.	
17.	A: The mass of the	e nucleus can be eit	her less than or mo	re than the sum of masses of	
	nucleons present i	n it	01-1-1-		
	R: The whole mas	s of the atom is cons	idered in the nucleu	us I	
18.	A: Electrons in the	atoms are held due	to coulumb forces		
	R: The atom is stable only becuase the centripetel force due to columb's law is balanced				
	by the centrifugal f	orce			
IV.	Matching type			l	
19.	Column-l		Column-II		
	a) Electron		1) Goldstein		
	b) Proton		2) Thomson	1	
	c) Neutron		3) Mosely		
	d) Atomic number		4) Chadwick	i	
			5) Neils Bohr	i	
20.	Column-l		Column-II	I	
	a) Nucleus		1) cm	l	
	b) Electro magne	ic radiation	2) Visible light		
	c) Wave length		3) Rutherford		
	d) Frequency		4) Sec ⁻¹		
	_		5) Einstein		
V.	Comprehension	type		i	
	The frequency (v)	, wavelength (λ) and	velocity of light (c) a	re related by the equations c =	
	,			1	
20.	Column-I a) Nucleus b) Electro magner c) Wave length d) Frequency	ic radiation	5) Nells Bohr Column-II 1) cm 2) Visible light 3) Rutherford 4) Sec ⁻¹ 5) Einstein		

CHEN	MISTRY Atomic Structure
21.	Which of the following relations are correct?
	a) Frequency × wavelength = Velocity of light b) $\frac{1}{\nu}$ = $\frac{1}{\lambda}$
	c) $\lambda = \frac{c}{v}$ d) All of these
22.	Light or any electro magnetic radiation travels in vaccum or air with a speed of :
	a) 3×10^8 m/s b) 3×10^2 m/s c) 2×10^8 m/s d) 1×10^8 m/s
23.	The wave number of a radiation is 97540 cm^{-1} . Calculate its frequency.
	ALL FXPLORERS (Level - III.) + I-I €
ļ	Which of the following has the same mass as that of an electron
. 	(a)Photon (b)Neutron (c)Positron (d)Proton
1 12.	A strong argument for the particle nature of cathode rays is that they
Í.	(a)Produce fluorescence (b)Travel through vacuum
	(c)Get deflected by electric and magnetic fields (d)Cast shadow
ß.	Ratio of masses of proton and electron is
1	(a)Infinite (b) $_{1.8 \times 10^{+3}}$ (c)1.8 (d)None of these
4.	Nitrogen atom has an atomic number of 7 and oxygen has an atomic number 8.
	I he total number of electrons in a nitrate ion will be
	The total number of unnaired electrons in d-orbitals of atoms of element of atomic num-
р. I	ber 29 is
1	(a)10 (b)1 (c)0 (d) 5
6.	The number of electrons in the nucleus of C ¹² is
!	(a) 6 (b) 12 (c) 0 (d) 3
7 .	The hydride ions (H) are iso-electronic with
h	(a) L_I (b) He ⁺ (c) He (d) Be
ö.	vy nich of the following atoms and lons are iso-electronic <i>i.e.</i> have the same
	(a) F_{a} (b) O_{a} (c) Ma (d) N_{a}
0	(a) (b) Cxygen atom (c) mg (d) N^-
р. I	(a)SnCl (b)SO (c)HaCl (d)All the above
	★### ★ <u>RESEARCHERS (Level - IV)</u> ★###★
 1.	The charge on an electron is $_{4.8 \times 10^{-10} esu}$. What is the value of charge in $_{Li^+}$ ion
į	(a) $_{4.8 \times 10^{-10} esu}$ (b) $_{9.6 \times 10^{-10} esu}$ (c) $_{1.44 \times 10^{-9} esu}$ (d) $_{2.4 \times 10^{-10} esu}$
þ.	The specific charge of proton is $9.6 \times 10^7 C kg^{-1}$ then for an a-particle it will be
İ	(a) $38.4 \times 10^7 C kg^{-1}$ (b) $19.2 \times 10^7 C kg^{-1}$ (c) $2.4 \times 10^7 C kg^{-1}$ (d) $4.8 \times 10^7 C kg^{-1}$
3.	If molecular mass and atomic mass of sulphur are 256 and 32 respectively, its atomicity is
, L	(a) Z (b) δ (c) 4 (d) 16
ft.	atomic number are known as isobars
VII - 0	CLASS 47

Atomic Structure

Atomic Structure

CHEMISTRY

Unstability of atom

Bohr's atomic model.

(1) This model was based on the quantum theory of radiation and the classical law of physics. It gave new idea of atomic structure in order to explain the stability of the atom and emission of sharp spectral lines.

(2) **Postulates** of this theory are :

- (i) The atom has a central massive core nucleus where all the protons and neutrons are present. The size of the nucleus is very small.
- (ii) The electron in an atom revolve around the nucleus in certain discrete orbits. Such orbits are known as *stable orbits* or *non – radiating* or *stationary orbits*.
- (iii) The force of attraction between the nucleus and the electron is equal to centrifugal force of the moving electron.

Force of attraction towards nucleus = centrifugal force

(iv) An electron can move only in those permissive orbits in which the angular momentum (mvr) of the electron is an integral multiple of $h/2\pi$. Thus

$$mvr = n\frac{h}{2\pi}$$

Failure of Bohr Model

- Bohr theory was very successful in predicting and accounting the energies of line spectral of hydrogen i.e. one electron system. It could not explain the line spectra of atoms containing more than one electron.
- (ii) This theory could not explain the presence of multiple spectral lines.
- (iii) This theory could not explain the splitting of spectral lines in magnetic field
 (Zeeman effect) and in electric field (Stark effect). The intensity of these spectral lines was also not explained by the Bohr atomic model.
- (iv) This theory was unable to explain of dual nature of matter as explained on the basis of De broglies concept.
- (v) This theory could not explain uncertainty principle.
- (vi) No conclusion was given for the concept of quantisation of energy.

Electronic configuration principles.

The distribution of electrons in different orbitals of atom is known as electronic configuration of the atoms. Filling up of orbitals in the ground state of atom is governed by the following rules:

(1) Aufbau principle

- (i) Auf bau is a German word, meaning 'building up'.
- (ii) According to this principle, "In the ground state, the atomic orbitals are filled in order of increasing energies i.e. in the ground state the electrons first occupy the lowest energy

VII - O	CLASS 51
	maximum in case of correct filling of orbitals as per this rule.
(vii)	The term maximum multiplicity means that the total spin of unpaired e^{-is}
1	through electron exchange or resonance.
(VI)	subshell have parallel spins. This keep them farther apart and lowers the energy
l ka	different orbitals.
(v)	They can minimise the repulsive force between them serves by occupying
(IV) 	I ne reason benind this rule is related to repulsion between identical charged electron present in the same orbital
 	orbitals of the same subshell respectively.
 (iii)	parallel spin". This implies that electron pairing begins with fourth, sixth and eighth electron in <i>p</i> , <i>d</i> and <i>t</i>
į	until all the available orbitals of a given subshell contain one electron each with
(ii)	According to this rule "Electron filling will not take place in orbitals of same energy
<u>(</u> 1)	shell.
(3) H ι	Ind's Rule of maximum multiplicity
	Correct
(V)	If an orbital has two electrons they must be of opposite spin.
 	electron.
Ì	with spins opposite to each other. It means that an orbital can have 0, 1, or 2
(iv)	According to this principle an orbital can accomodate at the most two electrons
	(e) One orbital cannot have more than two electrons
	(c) Number of sub-shells in a main energy shell is equal to the value of <i>n</i> . (d) Number of orbitals in a main energy shell is equal to p^2
	(b) The maximum capacity of a subshell is equal to $2(2l+1)$ electron.
	(a) The maximum capacity of a main energy shell is equal to 2n ² electron.
1	follows :
(III)	Since this principle excludes certain possible combinations of quantum numbers for any two electrons in an atom, it was given the name exclusion principle. Its results are as
 	quantum number must be different.
(ii)	In an atom any two electrons may have three quantum numbers identical but fourth
<u>(</u>)	the four quantum numbers <i>n</i> . <i>l</i> . <i>m</i> and <i>s</i> .
(2)	Pauli's exclusion principle
 	1s < 2s < 2p < 3s < 3p < 4s < 4p < 5s < 4d < 5p < 6s < 6f < 5d
	Thus, order of filling up of orbitals is as follows:
	has lower energy and such an orbital will be filled up first .
(b)	When two orbitals have same value of $(n+l)$ the orbital having lower value of "n"
la)	filled up first
(IV)	According to this rule
 , ,	the help of $(n+l)$ rule or Bohr Bury rule.
(iii)	In fact the energy of an orbital is determined by the quantum number <i>n</i> and / with
1 1	orbitals available".

	TEACHING TASK - II							
į								
1 11.	Rutherford's <i>a</i> -particle scattering experiment proved that atom has							
	(a) Electrons (b) Neutron (c) Nucleus (d) Orbitals							
2.	Experimental evidence for the existence of the atomic nucleus comes from							
	(a) Millikan's oil drop experiment (b) Atomic emission spectroscopy							
	(c)The magnetic bending of cathode rays (d)Alpha scattering by a thin metal foil							
ß.	The size of nucleus is measured in							
 _	(a) amu (b)Angstrom (c)Fermi (d)cm							
4. 	Rutherford's scatting experiment is related to the size of the							
Ļ	(a) Nucleus (b) Atom (c) Electron (d) Neutron							
p.	(a) Kernel (b) Core (c) Empty space (d) None							
6	Existence of positively charged nucleus was established by							
р. I	(a) Positive ray analysis (b) a-ray scattering experiments							
1	(c) X-ray analysis (d) all							
, 7.	Which of the following statements does not form part of Bohr's model of the							
ĺ	hydrogen atom							
!	(a) Energy of the electrons in the orbit is quantized							
	(b) The electron in the orbit nearest the nucleus has the lowest energy							
1	(c) Electrons revolve in different orbits around the nucleus							
1	(d) The position and velocity of the electrons in the orbit cannot be determined simulta-							
6	Rebr's model con evoluin							
ρ.	(a) The spectrum of bydrogen atom only							
	(b) Spectrum of atom or ion containing one electron only							
1	(c)The spectrum of hydrogen molecule (d)The solar spectrum							
β.	Zeeman effect refers to the							
Ì	(a) Splitting up of the lines in an emission spectrum in a magnetic field							
Ì	(b) Splitting up of the lines in an emission spectrum in the presence of an							
	eternal electrostatic field							
	(c) Emission of electrons from metals when light falls upon them							
I ИО	(d) Random scattering of light by colloidal particles							
110. I	(a)Pyramidal (b)Spherical (c)Tetrahedral (d)Dyrb hell shaped							
, 1/1	The number of orbitals in d sub-shell is							
i .	(a)1 (b)3 (c)5 (d)7							
42	Which of the following represents the electronic configuration of an element with							
· <i>–</i> ·	atomic number 17							
1	(a) $_{1s^2,2s^22p^6,3s^13p^6}$ (b) $_{1s^2,2s^22p^6,3s^23p^4,4s^1}$ (c) $_{1s^2,2s^22p^6,3s^23p^5}$ (d) $_{1s^2,2s^22p^6,3s^13p^4,4s^2}$							
13.	Correct configuration of Fe ⁺³ [26] is							
	(a) $_{1s^2,2s^22p^6,3s^23p^63d^5}$ (b) $_{1s^2,2s^22p^6,3s^23p^63d^3,4s^2}$							
<u> </u>								

	(c) $_{1s^2,2s^22p^6,3s^23p^63d^6,4s^2}$ (d) $_{1s^2,3s^23p^63d^6,4s^2}$	2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ⁵ ,4s ¹	
14.	The number of electrons in the valence sl	nell of calcium is	
	(a)6 (b)8	(c)2	(d)4
15.	The number of unpaired electrons in $1s^2$,	$2s^2$, $2p^4$ is	
l ko	(a)4 (b)2 \Box	(c)0	(d)1
	Electronic configuration of Sc ⁽²¹⁾ is	(1)	_
	(a) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$	(b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$	$3d^2$
	(C) $_{1s^22s^22p^63s^23p^64s^03d^3}$	(d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$	$3d^2$
<u>17</u> .	The atomic orbitals are progressively fille	d in order of increasin	ig energy. This principle is
1	called is		
	(a)Hund's rule	(b)Aufbau principle	
L _R	The electronic configuration of calcium ic	(U)De-Divglie rule	
^{10.}	(2) + 2 + 2 + 2 + 6 + 2 + 2 + 6 + 2	$(b)_{1,2} = \frac{2}{2} = \frac{6}{2} = \frac{6}{2} = \frac{2}{2} = \frac{6}{2} = $	1
1	(a) $1s^2, 2s^2, 2p^2, 3s^2, 3p^2, 4s^2$	(D) $1s^2, 2s^2 2p^\circ, 3s^2 3p^\circ, 4s$	-
1	(C) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^2$	$(d)_{1s^2,2s^22p^6,3s^23p^63d^4}$	5
<mark>19</mark> .	The electronic configuration of an elemen	nt is 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3	3d ⁵ 4s ¹ . This represents its
	(a)Excited state (b)Ground state	(c)Cationic form	(d)Anionic form
	LEVE		
1 11	Who modified Bohr's theory by introducir	a elliptical orbits for e	electron nath
	a)Hund (b)Thomson	(c)Rutherford	(d)Sommerfeld
2.	As electron moves away from the nucleus	s, its potential energy	
	(a)Increases (b)Decreases	(c)Remains constan	t (d)None
ß.	The value of the energy for the first excite	d state of hydrogen a	tom will be
l L	a)– 13.6 eV (b)– 3.40 eV	(c)– 1.51 <i>eV</i>	(d)– 0.85 <i>eV</i>
4 .	Dual nature of particle is given by	/	
İ	(a) Bohr theory	(b) I homson model	tion
Ļ	(c)Heisenberg principle	(d)De–Broglie equa	lion
p.	(a) s-orbital (b) p-orbital	(c) <i>d</i> -orbital	(d) <i>f</i> -orbital
6	Which of the following orbitals will be dur	h-hell shaped	
р. I	(a)1s (b)2s	(c)2p	(d)3d
7.	Which of the following orbitals does not n	nake sense	(u)ou _{xy}
Ĭ	(a)7s (b)5p	(c)2 <i>d</i>	(d)4 <i>f</i>
U.	Multi answer type questions		
8.	To Which of the following is bohr;s theory	applicable	
1	1.He ⁺ 2.Li ⁺²	3.Tritium	4.Be ⁺³
9.	Bohr's theory is not applicable to		
i	1.Helium 2.Li ⁺²	3.He ⁺²	4.H-atom
 10 .	Bohr could not explain the		
ļ	1) Zeeman effect 2) Sta	rk effect	
	3) Wave nature of electron		
1	4) Spectra of atoms having more than one	e electron	
1			

ļII.	Assertion and reasoning type quest	ions							
1) Both (A) and (R) are true and (R) is the correct explanation of(A)									
1	2) Both (A) and (R) are ture and (R) is not the correct explanation of (A)								
3) (A) is true but (R) is false 4) (A) is false but (R) is true									
¦11.	A: In an atom, the velocity of electrons in the higher orbits keeps on decreasing								
1	R: Velocity of electron is inversely proortional to the radius of the orbit.								
12.	A: Each principal level of quantum number n contains a total of n sub levels								
İ	uantum number I contains								
	a total of 2I +1 orbitals								
13.	A:Bohr's orbits are called stationary orbits.								
	R:Electrons remain stationary in these	orbits for some time.							
<u>1</u> 4.	A: Bohr theory is not applicable to ionis	ed hydrogen atom							
1	R: H ⁺ is devoid of electron								
IV.	Matching type								
	Column I	Column II	i						
15.	a) Bohr model of atom	1) Electrons are pre	esent in extra nuclear						
İ	,	region	İ						
	b) According to Sommerfeld model L =	2) (kh/2 π)							
	c) Azimuthal quantum number	3) k							
	d) Principal quantum number 4) n								
	, , , ,	5)/	1						
V .	Comprehension type								
1	Bohr's theory could not explain the wave	nature of electron esta	blished later by de Broglie.It						
Ì	could not explain the Zeeman and sta	ark effects.Bohr's the	ory correlates velocity of						
İ	light,electronic mass,plancks constant a	and electronic charge.	i i						
116.	Splitting of spectral lines in a strong electron	ctric field is known as:	I						
	a) Zeeman effect b)Stark effect	c) Fine spectrum	d) All of these						
<u>h</u> 7	Who established the wave nature of ele	ctron?	· · · · · · · · · · · · · · · · · · ·						
	a)Bohr b)de-Broglie	c)Sommerfeld	d) Thomson						
1 18.	Bohr's theory correlates the	,	, 						
1	a)Velocity of light b)Electronic mass	c)Plancks constant	d)All of these						
Ì	LEV	/EL-III	, , , , , , , , , , , , , , , , , , , ,						
'n.	When an electron jumps from 'L' level to	<i>'M</i> ' level, there occurs	δ						
İ	(a)Emission of energy	(b)Emission of X-rays							
	(c)Absorption of energy	(d) Emission of g-rays							
Þ.	p_x orbital can accommodate		I						
	(a) 4 electrons	(b) 6 electrons							
	(c) 2 electrons with parallel spins	(d) 2 electrons with opposite spins							
3.	Which of the following have the same n	umber of unpaired ele	ctrons in 'd' orbitals						
1	(a) Cr (b) Mn^{-1} (c) Fe^{3+} (d) Co^{3+}								
4.	The number of d electrons in Fe ²⁺ (atom	ic number of $Fe = 26$)	is not quite equal to that of						
Ì	the	,							
i	(a) <i>p</i> -electrons in <i>Ne</i> (At. No. = 10)	(b) s-electrons in M	<i>lg</i> (At. No. = 12)						
I	(c) d -electrons in Fe (d) p	-electrons in Cl ⁻ (At. N	lo. of <i>Cl</i> = 17)						
			ļ						

CHE	MISTRY		Atomic Structure					
5.	The atomic number of an element	having the valency shel	lelectronic					
1	configuration 4s ² 4p ⁶ is							
	(a) 35 (b) 36	(c) 37	(d) 38					
i			İ					
		R'S TASK - II						
	◆ ₽-┨ ◆ <u>BEGINNE</u>	RS (Level - I) • ₽	•					
і И	The element used by Rutherford ir	his famous scattering	experiment was					
	(a) Gold (b) Tin	(c) Silver	(d) Lead					
b.	The volume of the nucleus is		(4) 2044					
Ē.	(a) 10^{-4} times smaller than the volu	ime of an atom						
	$(b)10^{-8}$ times smaller than the volu	me of an atom						
	(c) 10^{12} times smaller than the volu	ime of an atom						
1	(d) Two-third the volume of the nuc	leus	 					
β.	Nucleus of an atom is							
İ	(a) Neutral (b) Negatively charg	ed (c) Positively char	ged (d) None of them					
4.	The positive charge of an atom is	4	50N					
ļ	(a) Spread all over the atom	(b) Distributed a	around the nucleus					
	(c) Concentrated at the nucleus	(d) All of these						
b.	Discovery of the nucleus of an ato	m was due to the exper	iment carried out by					
l k	(a) Bonr (b) Mosley	(C) Rutherford	(a) i nomson					
ю. 	$(a)10^{-12}$ (b) 10^{-8} m	(c)10 ⁻¹⁵ m	(d)10 ⁻¹⁰ m					
7	Which one of the following is cons	idered as the main nos	tulate of Bohr's model of					
ľ.	atom							
ļ	(a) Protons are present in the nucl	eus						
1	(b) Electrons are revolving around the nucleus							
1	(c) Centrifugal force produced due to the revolving electrons balances the force of attrac-							
1	tion between the electron and the protons							
i	(d) Angular momentum of electron	is an integral multiple c	$h = \frac{h}{2}$					
ľ	The postulate of Debr theory that a	Je etrone iumen from one	2π					
р.	then flow is according to	ections jump from one	orbit to the other, rather					
	(a)The quantisation concept	(b)The wave na	iture of electron					
1	(c)The probability expression for e	lectron (d)Heisenberg	uncertainty principle					
β.	The first use of quantum theory to	explain the structure of	atom was made by					
1	(a) Heisenberg (b) Bohr	(c)Planck	(d) Einstein					
10.	The shape of 2p orbital is							
	(a) Spherical (b) Ellipsoida	l (c)Dumb-bell	(d) Pyramidal					
µ1.	I he shape of p-orbital is							
	(a) Elliptical	(b) Spherical						
l ko	(C) DUMD-Dell	a) Complex geometric						
יוע. 	vvnicn one is the electronic configuration (a)							
İ	(a) 15^2 , 25^2 $2p^2$, 35^2 $3p^2$ 30^2	(D) 15 ⁻ , 25 ⁻ 2 p° , 35 ⁻ 3 p° ,	JU [*] ,45 ⁻					
	c_{j} 15 ⁻ , 25 ⁻ 2 μ ⁻ , 35 ⁻ 3 μ ⁻ , 45 ⁻ 4 μ ^o	u) 15-,25-2p°,35-3p°3						
<u>13</u>	I ne electronic configuration of cop	oper (₂₉ Cu) is	=					
V II -	ULADD		50					

Atomic Structure

	(a) $_{1s^2,2s^22p^6,3s^23p^63d^9,4s^2}$	(b) $_{1s^2,2s^22p^6,3s^23p^63d^{10},4s^1}$							
i	(c) $_{1s^2,2s^22p^6,3s^23p^6,4s^24p^6}$	(d) $_{1s^2,2s^22p^6,3s^23p^63d^{10}}$							
h4.	The configuration 1s ² 2s ² 2p ⁵ 3s ¹ sh	ows							
1	(a)Ground state of fluorine atom	(b)Excited state of fluorine atom							
i	(c)Excited state of neon atom	(d)Excited state of ion O_2^-							
 15 .	Which of the following configuration	on is correct for iron							
	(a) $_{1s^2,2s^22p^6,3s^23p^63d^5}$	$(b)_{1s^22s^22p^63s^23p^64s^23d^5}$							
1	(c) $1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^2 3d^7$	(d) $_{1s^2,2s^22p^6,3s^23p^6,4s^23d^6}$							
İ	◆ ∎-∎ → <u>ACHIE</u>	VERS(Level - II) ◆ I⊢I ◆							
) .	Multi answer type questions								
h.	Consider the following statement								
	i) A hallow sphere coated inside with platinum black with an aperture in the wall is perefect								
1	black body.								
i	iii) \mathcal{A}_{max} in black body shifts towards	ody is not continuous							
	a) i.ii & iii b) ii. iii								
<u>þ</u> .	According to Ruther ford's model								
1	i) The size of the nuecleus is very	arge in comparision of the size of the atom.							
İ	ii) Electrons revolve around the nu	cleus like planets revolve round the sun							
	iii) It fails to explain the atomic spe	ctrum or line spectrum							
 	a) I,II & III b) II, III	C)I, III d) I, II							
111.	1 Both A & R are true and R is the	correct explanation of A							
i	2 Both A & R are true and R is not the correct explanation of A								
	3. A is true, R is false. 4. A is	false, R is true.							
3.	A: The energy of quantum of radia	ation is given by E=hV.							
1	R: Quantum in the energy equation signifies the principal quantum number								
4 .	A: The kinetic energy of the photo electron ejected increases with increase in intensity of								
	P: Increase in intensity of incident	of light increases the rate of emission							
і Б	A: Threshold frequency is a chara	cteristic for a metal							
	R: Threshold frequency is a maxim	hum frequency required for the ejection of electron from							
İ	the metal surface								
6	A: The kinetic energy of the photo	electron ejected increases with increase in intensity of							
1	incident light.								
	R: Increase in intensity of incident light increases the rate of emission.								
ι ν .		List II							
μ.	A) Velocity of light	1) Energy particle							
1	B) Plank's constant	2) Energy packet							
i	C) Wave number	3) 3 x 10 ⁸ m/sec							
	D) Photon	4) 6.625 x 10 ⁻³⁴ J -sec							
		5) cm ⁻¹							

CHEN	AISTRY		Atomic Structure					
8.	List - I	List -II						
1	A) a-ray scattering experiment	1) mosely						
	B) Quantum theory	2) Planck						
1	C) Theory of photo electric effect	deBroglie						
1	D) a-particle equal to	4) He ⁺²						
1		5) Rutherford						
	<₽₽₽ <u>EXPLORERS (</u>	Level - III) 🔹 📲 🕷						
и И.	An atom has 2 electrons in K shell, 8 elec	ctrons in <i>L</i> shell and 6	electrons in <i>M</i> shell. The					
	number of s-electrons present in that ele	ment is	I					
	(a)6 (b)5	(c)7	(d)10					
<u>þ</u> .	The maximum number of electrons that of	can be accommodated	d in 'f' sub shell is					
	(a)2 (b)8	(c)32	(d)14					
þ.	Which of the following orbital is not possi	ble						
1	(a)3f (b)4f	(c)5 <i>f</i>	(d)6 <i>f</i>					
4.	Quantum numbers of an atom can be de	fined on the basis of	1					
1	(a) Hund's rule (b) Au	fbau's principle						
i	(c) Pauli's exclusion principle (d) He	eisenberg's uncertaint	y principle					
б.	The azimuthal quantum number is related	d to						
Ì	(a)Size (b)Shape	(c)Orientation	(d)Spin					
6.	In a potassium atom, electronic energy le	evels are in the following	ng order					
	(a)4s > 3d (b)4s > 4p	(c)4s < 3d	(d)4s < 3p					
		0						
	RESEARCHI	<u>ERS (Level - IV)</u> →	1#1+					
ч И.	The frequency of yellow light having wave	elength 600 nm is						
1	(a) 5.0×10^{14} Hz (b) 2.5×10^{7} Hz	(c) $5.0 \times 10^7 Hz$	(d) 2.5×10^{14} Hz					
2 .	The nucleus of an atom can be assumed	to be spherical. The r	adius of the nucleus of					
	mass number A is given by $1.25 \times 10^{-13} \times 4^{1/3}$ cm. Radius of atom is one Å. If the mass							
	number is 64, then the fraction of the ato	mic volume that is occ	cupied by the nucleus is $ $					
1	(a) $_{1.0 \times 10^{-3}}$ (b) $_{5.0 \times 10^{-5}}$	(c) $_{2.5 \times 10^{-2}}$	$(d)_{1.25 \times 10^{-13}}$					
β.	In a Bohr's model of atom when an elect	ron jumps from n = 1 to	n = 3, how much energy					
İ	will be emitted or absorbed	2						
	(a) $2.15 \times 10^{-11} ergs$ (b) $0.1911 \times 10^{-10} ergs$	(C) 2.389 $\times 10^{-12} ergs$	$(d)_{0.239 \times 10^{-10} ergs}$					
4	An ion has 18 electrons in the outermost	shell it is						
Г.	$(a)Cu^{+}$ $(b)Th^{4+}$ $(c)Ce^{-1}$	+ (d)K+	l					
ļ								
1								
1			1					
i								
i								
			l					
	TLASS		<u> </u>					
р н - с			30					

Atomic Structure

 					P	KE	ſ						
, ф. т.	ЕЛСНИ	AC TAS	к.		-								
	L-I		<u>''''</u> .										ļ
і <mark>1</mark> -В 	2-A B	3-B 15-A	4-А 16-В	5-B 17-C	6-A 18-B	7-D 19-B	8-A 20-C	9-C	10-B	11-D	12-C	13-C	14-
LEVE LEVE	i L-II 1-D B i L-III :1 i L-IV :	2-A 14-A I-B 1-C	3-C 15-A 2-A 2-D	4-D 16-C,I 3-A 3-C	5-A 3,A 4-C 4-C	6-A 17-B,0 5-B 5-D	7-C C,A,D 6-A	8-D 18-B 7-A	9-A 19-A 8-B	10-A 20-A 9-A	11-D	12-D	 13-
<u>ΦΦ</u> <u>L</u> LEVE	EARNE L-I : 1- A	B 13-B	<u>эк</u> : 2-D 14-В	3-D 15-C	4-D 16-B	5-B 17-A	6-C 18-D	7-B 19-C	8-D 20-B	9-C	10-A	11-C	 12-
LEVE 	12-AE D	-A 3C 22-A	2-D 13-D 23-B	3-C 14-D	4-A 15-D	5-A 16-C	6-C 17-D	7-C 18-A	8-В 19-ВА	.DС 9-В	10-C 20-CE	11-AB BAD	21-
LEVE	L-III :1 L-IV :1	-C -A	2-C 2-D	3-B 3-C	4-C 4-B	5-C 5-C	6-B	7-D	8-A	9-C			
<u>ΦΦ</u> <u>τ</u>	EACHIN	NG TAS	<u>K</u> :					9					1
LEVE	L-I :1-0 C	C 13-A	2-D 14-C	3-C 15-B	4-A 16-A	5-A 17-B	6-B 18-C	7-D 19-B	8-B	9-A	10-B	11-C	12-¦
LEVE	L-III :1- 11-A L-III :1-(D 12-B C	2-A 13-C 2-D	3-B 14-A 3-AB0	4-D 15-BA C	5-B ED 4-B	6-С 16-В 5-В	7-C 17-B	8-AB0 18-D	D	9-A	10-AB	CD
<u>ΦΦ</u> <u>L</u> LEVE	EARNE L-1 :1- A	<mark>:R'STAS</mark> А 13-В	<u>зк</u> : 2-С 14-С	3-C 15-D	4-C	5-C	6-C	7-D	8-A	9-B	10-C	11-C	i 12-
LEVE LEVE LEVE	L-II :1- L-III :1 L-IV :1	C -A -A	2-B 2-D 2-D	3-A 3-A 3-B	4-D 4-C 4-A	5-A 5-B	6-B 6-C	7-CDE	ΞA	8-EBE	3D		