Maths

SOLVED EXAMPLES

If α and β are the roots of $ax^2 + bx + c = 0$, find the value of $(a\alpha + b)^{-2} + (a\beta + b)^{-2}$. **Ex.** 1

Sol. We know that
$$\alpha + \beta = -\frac{b}{a}$$
 & $\alpha\beta = \frac{c}{a}$
 $(a\alpha + b)^{-2} + (a\beta + b)^{-2} = \frac{1}{(a\alpha + b)^2} + \frac{1}{(a\beta + b)^2}$
 $= \frac{a^2\beta^2 + b^2 + 2ab\beta + a^2\alpha^2 + b^2 + 2ab\alpha}{(a\beta + b)^2} = \frac{a^2(\alpha^2 + \beta^2) + 2ab(\alpha)}{(\alpha^2 + \beta^2) + 2ab(\alpha)}$

$$=\frac{a^{2}\beta^{2}+b^{2}+2ab\beta+a^{2}\alpha^{2}+b^{2}+2ab\alpha}{(a^{2}\alpha\beta+ba\beta+ba\alpha+b^{2})^{2}}=\frac{a^{2}(\alpha^{2}+\beta^{2})+2ab(\alpha+\beta)+2b^{2}}{(a^{2}\alpha\beta+ab(\alpha+\beta)+b^{2})^{2}}$$

 $(\alpha^2 + \beta^2 \text{ can always be written as } (\alpha + \beta)^2 - 2\alpha\beta)$

$$=\frac{a^{2}\left[(\alpha+\beta)^{2}-2\alpha\beta\right]+2ab(\alpha+\beta)+2b^{2}}{(a^{2}\alpha\beta+ab(\alpha+\beta)+b^{2})^{2}}=\frac{a^{2}\left[\frac{b^{2}-2ac}{a^{2}}\right]+2ab\left(-\frac{b}{a}\right)+2b^{2}}{\left(a^{2}\frac{c}{a}+ab\left(-\frac{b}{a}\right)+b^{2}\right)^{2}}=\frac{b^{2}-2ac}{a^{2}c^{2}}$$

- If the coefficient of the quadratic equation are rational & the coefficient of x^2 is 1, then find the equation one of **Ex.2** whose roots is $\tan \frac{\pi}{8}$.
- We know that $\tan\frac{\pi}{8} = \sqrt{2} 1$ Sol. Irrational roots always occur in conjugational pairs. Hence if one root is $(-1 + \sqrt{2})$, the other root will be $(-1 - \sqrt{2})$. Equation is $(x-(-1+\sqrt{2}))(x-(-1-\sqrt{2}))=0$ $x^2+2x-1=0$
- If equation $\frac{x^2 bx}{ax c} = \frac{k 1}{k + 1}$ has roots equal in magnitude & opposite in sign, then find the value of k **Ex.3** Sol. Let the roots are $\alpha \& -\alpha$.

given equation is $(x^2-bx)(k+1) = (k-1)(ax-c)$ {Considering, $x \neq c/a \& k \neq -1$ } $x^{2}(k+1) - bx(k+1) = ax(k-1) - c(k-1)$ $x^{2}(k+1) - bx(k+1) - ax(k-1) + c(k-1) = 0$ ⇒ \Rightarrow

Now sum of roots = 0
$$(\because \alpha - \alpha = 0)$$

$$\therefore \qquad b(k+1) + a(k-1) = 0 \qquad \Rightarrow \qquad k = \frac{a-b}{a+b}$$

The coefficient of x in the quadratic equation $x^2 + px + q = 0$ was taken as 17 in place of 13, its roots were found to **Ex.4** be -2 and -15. Find the roots of the original equation.

Sol. Here
$$q = (-2) \times (-15) = 30$$
, correct value of $p = 13$. Hence original equation is
 $x^2 + 13x + 30 = 0$ as $(x + 10) (x + 3) = 0$
 \therefore roots are $-10, -3$

Quadratic Equation

Maths

- Find all the integral values of a for which the quadratic equation (x a)(x 10) + 1 = 0 has integral roots. **Ex.5**
- Here the equation is $x^2 (a + 10)x + 10a + 1 = 0$. Since integral roots will always be rational it means D should be a Sol. perfect square.
 - From (i) $D = a^2 20a + 96$.
 - $D = (a 10)^2 4$ $4 = (a - 10)^2 - D$ ⇒ \Rightarrow
 - If D is a perfect square it means we want difference of two perfect square as 4 which is possible only when $(a-10)^2 = 4$ and D = 0.
 - $(a-10) = \pm 2$ ⇒ a = 12.8 \Rightarrow

If the equation $(\lambda^2 - 5\lambda + 6)x^2 + (\lambda^2 - 3\lambda + 2)x + (\lambda^2 - 4) = 0$ has more than two roots, then find the value of λ ? **Ex.** 6

Sol. As the equation has more than two roots so it becomes an identity. Hence

> $\lambda^2 - 5\lambda + 6 = 0$ $\lambda = 2, 3$ $\lambda^2 - 3\lambda + 2 = 0$ $\lambda = 1, 2$ and ⇒ $\lambda^2 - 4 = 0 \implies$ $\lambda = 2, -2$ and $\lambda = 2$ So

- 12020.2 The equations $5x^2 + 12x + 13 = 0$ and $ax^2 + bx + c = 0$ (a,b,c $\in \mathbb{R}$) have a common root, where a, b, c are the sides of **Ex.** 7 the \triangle ABC. Then find \angle C.
- As we can see discriminant of the equation $5x^2 + 12x + 13 = 0$ is negative so roots of the equation are imaginary. We Sol. know that imaginary roots always occurs in pair. So this equation can not have single common roots with any other equation having real coefficients. So both roots are common of the given equations.

Hence
$$\frac{a}{5} = \frac{b}{12} = \frac{c}{13} = \lambda$$
 (let)
then $a = 5\lambda, b = 12\lambda, c = 13\lambda$
Now $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{25\lambda^2 + 144\lambda^2 - 169\lambda^2}{2(5\lambda)(12\lambda)} = 0$
 $\therefore \qquad \angle C = 90^\circ$

- If the roots of the equation (x a) (x b) k = 0 be c and d, then prove that the roots of the equation **Ex. 8** (x-c)(x-d)+k=0, are a and b.
- By given condition Sol.

or

$$(x-a)(x-b)-k \equiv (x-c)(x-d)$$

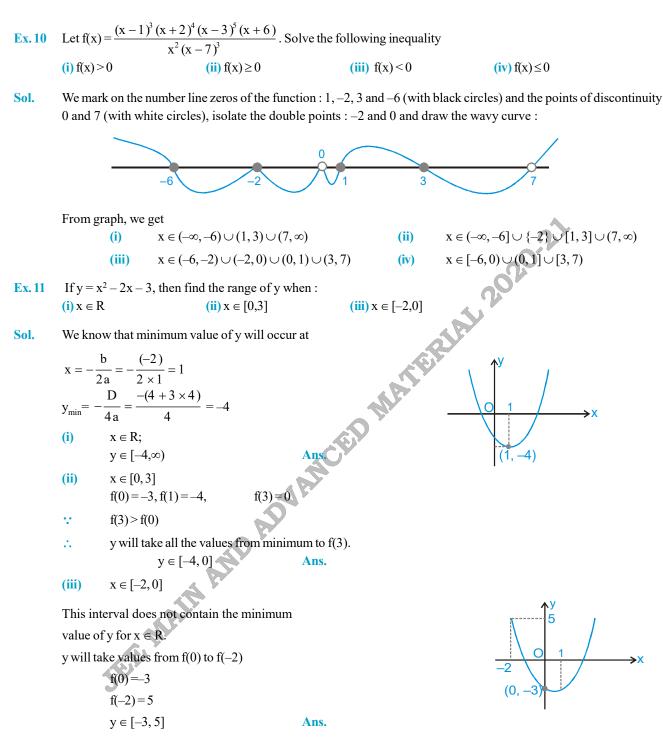
 $(x-c)(x-d)+k \equiv (x-a)(x-b)$

Above shows that the roots of (x - c) (x - d) + k = 0 are a and b.

Show that the expression $x^2 + 2(a + b + c)x + 3(bc + ca + ab)$ will be a perfect square if a = b = c. **Ex.** 9

Sol. Given quadratic expression will be a perfect square if the discriminant of its corresponding equation is zero.

i.e.
$$4(a+b+c)^2-4.3(bc+ca+ab)=0$$


or
$$(a+b+c)^2 - 3(bc+ca+ab) = 0$$

 $\frac{1}{2} \, \left((a-b)^2 + (b-c)^2 + (c-a)^2 \right) = 0$ or

which is possible only when a = b = c.

Quadratic Equation

Maths

Ex. 12 If $ax^2 + bx + 10 = 0$ does not have real & distinct roots, find the minimum value of 5a-b.

Sol. Either
$$f(x) \ge 0 \forall x \in R$$
 or $f(x) \le 0 \forall x \in R$
 \therefore $f(0) = 10 > 0 \Rightarrow f(x) \ge 0 \forall x \in R$
 \Rightarrow $f(-5) = 25a - 5b + 10 \ge 0$
 \Rightarrow $5a - b \ge -2$ Ans.

(Quadratic Equation

Maths

Find the maximum and minimum values of $f(x) = x^2 - 5x + 6$. Ex. 13 minimum of f(x) = $-\frac{D}{4a}$ at x = $-\frac{b}{2a} = -\left(\frac{25-24}{4}\right)$ at x = $\frac{5}{2} = -\frac{1}{4}$ Sol. maximum of $f(x) \rightarrow 0$ Hence range is $\left|-\frac{1}{4},\infty\right|$. Ex. 14 Find the values of the parameter 'a' for which the roots of the quadratic equation $x^2 + 2(a - 1)x + a + 5 = 0$ are real and distinct **(ii)** equal (iii) opposite in sign **(i)** equal in magnitude but opposite in sign positive **(iv) (v)** (vi) negative greater than 3 (viii) smaller than 3 (vii) $f_{\tau}(a+5) = 4(a+1)(a-4)$ $(a+1)(a-4) > 0 \implies a \in (-\infty, -1) \cup (4, \infty).$ $(a+1)(a-4) = 0 \implies a = -1, 4.$ eans that 0 lies between the roots of the existing f(0) < 0 and D > 0 i.e. $a \in \ell$ a+5 < 0**(ix)** such that both the roots lie in the interval (1, 3)Sol. Let $f(x) = x^2 + 2(a-1)x + a + 5 = Ax^2 + Bx + C$ (say) A = 1, B = 2(a - 1), C = a + 5.⇒ Also $D = B^2 - 4AC = 4(a-1)^2 - 4(a+5) = 4(a+1)(a-4)$ **(i)** D > 0⇒ D = 0**(ii)** ⇒ This means that 0 lies between the roots of the given equation. (iii) ⇒ ⇒ This means that the sum of the roots is zero **(iv)** -2(a-1)=0 and D>0 i.e. $a \in -(-\infty, -1) \cup (4, \infty) \Rightarrow$ ⇒ a = 1 which does not belong to $(-\infty, -1) \cup (4, \infty)$ ⇒ $a \in \phi$. This implies that both the roots are greater than zero **(v)** $\Rightarrow \qquad \begin{array}{l} B \\ A > 0, \frac{C}{A} > 0, D \ge 0. \qquad \Rightarrow \qquad -(a-1) > 0, a+5 > 0, a \in (-\infty, -1] \cup [4, \infty) \\ \Rightarrow \qquad a < 1, -5 < a, a \in (-\infty, -1] \cup [4, \infty) \qquad \Rightarrow \qquad a \in (-5, -1]. \end{array}$ This implies that both the roots are less than zero (vi) $\Rightarrow \qquad -\frac{B}{\Delta} < 0, \ \frac{C}{\Delta} > 0, \ D \ge 0. \qquad \Rightarrow \qquad -(a-1) < 0, \ a+5 > 0, \ a \in (-\infty, -1] \cup [4, \infty)$ $\Rightarrow \qquad a > 1, a > -5, a \in (-\infty, -1] \cup [4, \infty) \qquad \Rightarrow \qquad a \in [4, \infty).$ (vii) In this case $-\frac{B}{2a} > 3$, A.f(3) > 0 and D ≥ 0. -(a-1) > 3, 7a+8 > 0 and $a \in (-\infty, -1] \cup [4, \infty)$ ⇒ a < -2, a > -8/7 and $a \in (-\infty, -1] \cup [4, \infty)$ ⇒

(Quadratic Equation

Maths

Since no value of 'a' can satisfy these conditions simultaneously, there can be no value of a for which both the roots will be greater than 3.

(viii) In this case

$$-\frac{B}{2a} < 3, A.f(3) > 0 \text{ and } D \ge 0.$$

$$\Rightarrow a > -2, a > -8/7 \text{ and } a \in (-\infty, -1] \cup [4, \infty) \qquad \Rightarrow a \in (-8/7, -1] \cup [4, \infty)$$

(ix) In this case

 $1 < -\frac{B}{2A} < 3, A.f(1) > 0, A.f(3) > 0, D \ge 0.$ $\Rightarrow \qquad 1 < -1(a-1) < 3, 3a+4 > 0, 7a+8 > 0, a \in (-\infty, -1] \cup [4, \infty)$ $\Rightarrow \qquad -2 < a < 0, a > -4/3, a > -8/7, a \in (-\infty, -1] \cup [4, \infty) \qquad \Rightarrow \qquad a \in \left(-\frac{8}{7}, -1\right]$

Ex. 15 If α is a root of the equation $ax^2 + bx + c = 0$ and β is a root of the equation $-ax^2 + bx + c = 0$, then prove that there will be a root of the equation $\frac{a}{2}x^2 + bx + c = 0$ lying between α and β .

Sol. Let
$$f(x) = \frac{a}{2} x^2 + bx + c$$

 $f(\alpha) = \frac{a}{2} \alpha^2 + b\alpha + c = a\alpha^2 + b\alpha + c - \frac{a}{2} \alpha^2 \implies -\frac{a}{2} \alpha^2$ (As α is a root of $ax^2 + bx + c = 0$)
And $f(\beta) = \frac{a}{2} \beta^2 + b\beta + c = -a\beta^2 + b\beta + c + \frac{3a}{2} \beta^2 \implies -\frac{3a}{2} \beta^2$ (As β is a root of $-ax^2 + bx + c = 0$)
Now $f(\alpha) \cdot f(\beta) = \frac{-3}{4} a^2 \alpha^2 \beta^2 < 0$
 $\Rightarrow f(x) = 0$ has one real root between α and β .
Ex. 16 Solve for x: (a) $||x - 1| + 2| \le 4$. (b) $\frac{x - 4}{x + 2} \le \left| \frac{x - 2}{x - 1} \right|$
Sol. (a) $||x - 1| + 2| \le 4$ $\Rightarrow -4 \le |x - 1| + 2 \le 4$
 $-6 \le |x - 1| \le 2$
 $||x - 1| \le 2$ $\Rightarrow -2 \le x - 1 \le 2$
 $||x - 1| \le 2$ $\Rightarrow x \in (-2, 4] - [1]$ (i)
(Note: {1}) is not in domain of RHS)
 $asc 2: \frac{x - 4}{x + 2} = 0 \Rightarrow x \in (-\infty, -2) \cup (4, \infty)$ (ii)
Given inequation becomes
 $\frac{x - 2}{x - 1} \ge \frac{x - 4}{x + 2}$ or $\frac{x - 2}{x - 1} \le -\frac{x - 4}{x + 2}$
on solving we get on solving we get
 $x \in (-2, 4/5) \cup (1, \infty)$ $x \in (-2, \infty) - (1]$ (taking union of (i) (iii))

Ex.17 Solve for x : (a) $\log_{0.5}(x^2 - 5x + 6) \ge -1$ **(b)** $\log_{1/3}(\log_4(x^2-5)) > 0$ (a) $\log_{0.5}(x^2-5x+6) \ge -1$ \Rightarrow 0 < x² - 5x + 6 ≤ (0.5)⁻¹ Sol. $0 < x^2 - 5x + 6 < 2$

 $\begin{cases} x^2 - 5x + 6 > 0 \\ x^2 - 5x + 6 \le 2 \implies x \in [1, 2) \cup (3, 4] \end{cases}$

Hence, solution set of original inequation : $x \in [1,2) \cup (3,4]$

 $\log_{1/3}(\log_4(x^2-5)) > 0 \implies 0 < \log_4(x^2-5) < 1$ **(b)**

 $\begin{cases} 0 < \log_4 (x^2 - 5) \implies x^2 - 5 > 1 \\ \log_4 (x^2 - 5) < 1 \implies 0 < x^2 - 5 < 4 \end{cases} \implies 1 < (x^2 - 5) < 4$

$$\Rightarrow \qquad 6 < x^2 < 9 \quad \Rightarrow \quad x \in \left(-3, -\sqrt{6}\right) \cup \left(\sqrt{6}, 3\right)$$

Hence, solution set of original inequation : $x \in (-3, -\sqrt{6}) \cup (\sqrt{6}, 3)$

- 120202 If a, b, $c \in R$ and equations $ax^2 + bx + c = 0$ and $x^2 + 2x + 9 = 0$ have a common root, show that **Ex. 18** a:b:c=1:2:9.
- Sol. Given equations are : $x^2 + 2x + 9 = 0$ and $ax^2 + bx + c = 0$

Clearly roots of equation (i) are imaginary since equation (i) and (ii) have a common root, therefore common root must be imaginary and hence both roots will be common. Therefore equations (i) and (ii) are identical

(ii)

$$\therefore \qquad \frac{a}{1} = \frac{b}{2} = \frac{c}{9}$$
Solve
$$\frac{x^2 + 6x - 7}{x^2 + 1} \le 2$$

$$\Rightarrow \qquad x^2 + 6x - 7 \le 2x^2 + 2$$

$$\Rightarrow \qquad x^2 - 6x + 9 \ge 0$$

$$\Rightarrow \qquad x \in \mathbb{R}$$

Ex. 19

Sol.

$$\rightarrow$$

⇒

Ex.20 A polynomial in x of degree greater than three, leaves remainders 2, 1 and -1 when divided, respectively, by (x - 1), (x+2) and (x+1). What will be the remainder when it is divided by (x-1)(x+2)(x+1).

Sol. Let required polynomial be $f(x) = p(x) (x - 1) (x + 2) (x + 1) + a_0 x^2 + a_1 x + a_2$ By remainder theorem, f(1) = 2, f(-2) = 1, f(-1) = -1.

$$a_0 + a_1 + a_2 = 2$$

 $4a_0 - 2a_1 + a_2 = 1$
 $a_0 - a_1 + a_2 = -1$

Solving we get, $a_0 = \frac{7}{6}$, $a_1 = \frac{3}{2}$, $a_2 = \frac{2}{3}$

Remainder when f(x) is divided by (x - 1) (x + 2) (x + 1)

will be
$$\frac{7}{6}x^2 + \frac{3}{2}x + \frac{2}{3}$$

Quadratic Equation

Maths

Ex. 21 If $(y^2 - 5y + 3)(x^2 + x + 1) < 2x$ for all $x \in \mathbb{R}$, then find the interval in which y lies. $(y^2 - 5y + 3) (x^2 + x + 1) < 2x, \forall x \in R$ Sol.

$$\Rightarrow \qquad y^2 - 5y + 3 < \frac{2x}{x^2 + x + 1}$$

Let

$$\frac{2x}{x^2 + x + 1} = P$$
$$\implies px^2 + (p - 2) x + p = 0$$

Since x is real, $(p - 2)^2 - 4p^2 \ge 0$ (1)

$$\Rightarrow$$
 $-2 \le p \le \frac{2}{3}$

The minimum value of $2x/(x^2 + x + 1)$ is -2. So, (2) $y^2-5y+3<-2\qquad\qquad \Rightarrow\qquad y^2-5y+5<0$ $\Rightarrow \qquad y \in \left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)$

Ex.22 If $2x^3 + 3x^2 + 5x + 6 = 0$ has roots α , β , γ then find $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.

Using relation between roots and coefficients, we get Sol.

$$\alpha + \beta + \gamma = = -\frac{3}{2},$$
 $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{5}{2},$ $\alpha\beta\gamma = -\frac{6}{2} = -3.$

Let $x^2 - (m-3)x + m = 0$ ($m \in R$) be a quadratic equation, then find the values of 'm' for which Ex. 23

- both the roots are greater than 2. **(a)**
- both roots are positive. **(b)**
- one root is positive and other is negative. **(c)**
- **(d)** One root is greater than 2 and other smaller than 1
- **(e)** Roots are equal in magnitude and opposite in sign.

⇒

⇒

⇒

both roots lie in the interval (1, 2)**(f)**

Sol.

(a)

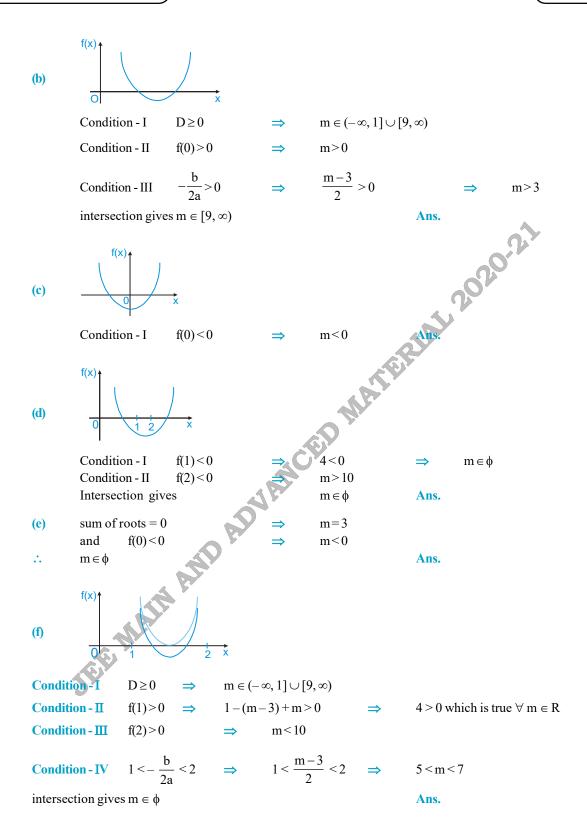
Condition - I:

Condition - II : f(2) > 0⇒

Condition - III: $-\frac{b}{2a} > 2$

 $D \ge 0$

 $(m-3)^2 - 4m \ge 0$ ⇒ $(m-1)(m-9) \ge 0$ $m \in (-\infty, 1] \cup [9, \infty)$ 4 - (m - 3)2 + m > 0 $\Rightarrow \qquad \frac{m-3}{2} > 2$ \Rightarrow m>7


.....**(i)** m < 10.....**(ii)****(iii)**

 $m^2 - 10m + 9 \ge 0$

1212020-21

Intersection of (i), (ii) and (iii) gives $m \in [9, 10)$

Maths

Quadratic Equation

Ex. 24

Solve the inequation : $\log_{2x+3} x^2 < \log_{2x+3} (2x+3)$ This inequation is equivalent to the collection of the systems Sol.

$$\begin{bmatrix} 2x+3>1\\ 02x+3<0 \end{bmatrix} \begin{bmatrix} x>-1\\ (x-3)(x+1)<0 & x \neq 0\\ 0 \\ x\neq 0 \\ 0 \\ 0 \\ x\neq 0 \\ 0 \\ 0 \\ x\neq 0 \\ 0 \\ x=-1 \\ x<-1 \\ x<-1 \\ 0 \\ x>3 \\ x\neq 0 \\ 0 \\ x=-1 \\ x<-1 \\ x<-1 \\ 0 \\ x>3 \\ x<-1 \\ x<-1 \\ 0 \\ x>3 \\ x<-1 \\ x<-1 \\ 0 \\ x>3 \\ x<-1 \\ x<-1 \\ x<-1 \\ x<-1 \\ 0 \\ x>3 \\ x<-1 \\ x<-1$$

Hence, solution of the original inequation is $x \in \left(-\frac{3}{2}, -1\right) \cup (-1, 0) \cup (0, 3)$

Ex.25 Solve for x :
$$(1.25)^{1-x} < (0.64)^{2(1+\sqrt{x})}$$

Ex.25 Solve for x:
$$(1.25)^{1-x} < (0.64)^{2(1+\sqrt{x})}$$

Sol. We have $\left(\frac{5}{4}\right)^{1-x} < \left(\frac{16}{25}\right)^{2(1+\sqrt{x})}$ or $\left(\frac{4}{5}\right)^{x-1} < \left(\frac{4}{5}\right)^{4(1+\sqrt{x})}$
Since the base $0 < \frac{4}{5} < 1$, the inequality is equivalent to the inequality $x = 1 > 4 (1 + \sqrt{x})$
 $\Rightarrow \qquad \frac{x-5}{4} > \sqrt{x}$
Now, R.H.S. is positive

$$\frac{x-5}{4} > \sqrt{x}$$

$$\Rightarrow \quad \frac{x-5}{4} > 0 \qquad \Rightarrow \qquad x > 5 \qquad \dots (i)$$

we have $\frac{x-5}{4} > \sqrt{x}$ both sides are positive, so squaring both sides

$$\Rightarrow \qquad \frac{(x-5)^2}{16} > x \qquad \text{or} \qquad \frac{(x-5)^2}{16} - x > 0$$

or
$$x^2 - 26x + 25 > 0 \qquad \text{or} \qquad (x-25)(x-1) > 0$$

$$\Rightarrow \qquad x \in (-\infty, 1) \cup (25, \infty) \qquad \dots \dots (ii)$$

intersection (i) & (ii) gives $x \in (25, \infty)$

Find the range of rational expression $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ if x is real. $y = \frac{x^2 - x + 1}{x^2 + x + 1} \implies (y-1)x^2 + (y+1)x + y - 1 = 0 \qquad \dots (i)$ Ex. 26

Case-I $if y \neq 1$, then equation (i) is quadratic in x

and

$$\begin{array}{ccc}
x \text{ is real} \\
\therefore & D \ge 0 \\
\Rightarrow & (y+1)^2 - 4(y-1)^2 \ge 0 \\
\therefore & y \in \left[\frac{1}{3}, 3\right] - \{1\}\end{array}$$

$$\Rightarrow & (y-3)(3y-1) \le 0$$

Case-II if y = 1, then equation becomes

x = 0 which is possible as x is real. $2x = 0 \implies$ Range $\left[\frac{1}{3}, 3\right]$...

Maths

Find the values of a for which the expression $\frac{ax^2 + 3x - 4}{3x - 4x^2 + a}$ assumes all real values for real values of x. Ex. 27 Let $y = \frac{ax^2 + 3x - 4}{3x - 4x^2 + a}$ Sol. $x^{2}(a+4y)+3(1-y)x-(4+ay)=0$ If $x \in R, D \ge 0$ ⇒ $9(1-y)^2 + 4(a+4y)(4+ay) \ge 0$ $(9+16a)y^2 + (4a^2+46)y + (9+16a) \ge 0$ ⇒ for all $y \in R$, $(9+16a) > 0 \& D \le 0$ $(4a^2+46)^2-4(9+16a)(9+16a) \le 0 \implies$ $4(a^2 - 8a + 7)(a^2 + 8a + 16) \le 0$ ⇒ $a^2 - 8a + 7 \le 0$ $1 \le a \le 7$ ⇒ ⇒ iRIAL 2020-21 $9 + 16a > 0 \& 1 \le a \le 7$ Taking intersection, $a \in [1, 7]$ checking the boundary values of a Now. For a = 1 $y = \frac{x^2 + 3x - 4}{3x - 4x^2 + 1} = -\frac{(x - 1)(x + 4)}{(x - 1)(4x + 1)}$ $x \neq 1 \implies y \neq -1$ $x \neq -1 \Rightarrow y \neq -1$ a = 1 is not possible. ⇒ If a = 7 $y = \frac{7x^2 + 3x - 4}{3x - 4x^2 + 7} = \frac{(7x - 4)(x + 1)}{(7 - 4x)(x + 1)}$ So y will assume all real values for some real values of x. So $a \in (1,7)$

Ex.28 If α , β are the roots of $x^2 + px + q = 0$, and γ , δ are the roots of $x^2 + rx + s = 0$, evaluate $(\alpha - \gamma) (\alpha - \delta) (\beta - \gamma) (\beta - \delta)$ in terms of p, q, r and s. Deduce the condition that the equations have a common root.

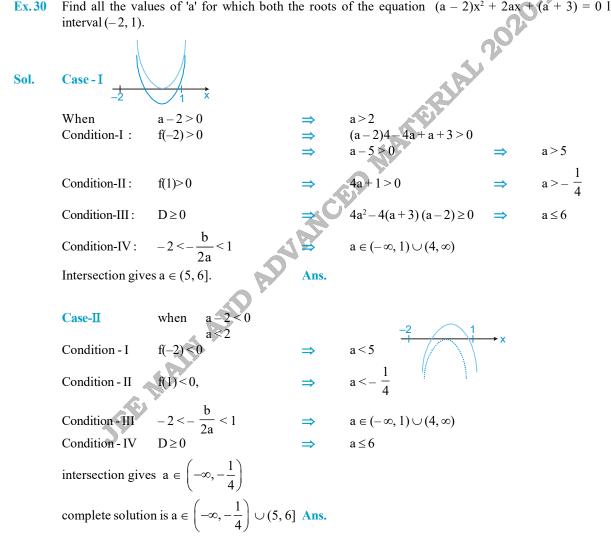
(Quadratic Equation

Maths

Ex.29 Solve
$$\left| \frac{x^2 - 3x - 1}{x^2 + x + 1} \right| < 3.$$

 $\frac{|x^2 - 3x - 1|}{x^2 + x + 1} < 3.$ Sol.

$$\therefore \quad (x^2 + x + 1) > 0, \forall x \in \mathbb{R}$$


- cross multiplication is valid ...
- $|x^2-3x-1| < 3(x^2+x+1)$

$$\Rightarrow$$
 $(x^2 - 3x - 1)^2 - \{3(x^2 + x + 1)\}^2 < 0$

$$\Rightarrow$$
 $(4x^2+2)(-2x^2-6x-4)<0$

$$\Rightarrow \qquad (2x^2+1)(x+2)(x+1) > 0 \qquad \Rightarrow \qquad x \in (-\infty, -2) \cup (-1, \infty)$$

Find all the values of 'a' for which both the roots of the equation $(a - 2)x^2 + 2ax + (a - 2)x^2 + (a$ (+3) = 0 lies in the Ex. 30 interval (-2, 1).

Quadratic Equation

JEE MAIN & ADVANCED Maths Excercise-1 Questions with only one option correct The roots of the quadratic equation $(a + b - 2c) x^2 - (2a - b - c) x + (a - 2b + c) = 0$ are -1. (A) a + b + c & a - b + c**(B)** 1/2 & a - 2b + c(C) a - 2b + c & 1/(a + b - 2c)(D) none of these If one root of the quadratic equation $px^2 + qx + r = 0$ ($p \neq 0$) is a surd $\frac{\sqrt{a}}{\sqrt{a} + \sqrt{a-b}}$, where p, q, r; a, b are 2. all rationals then the other root is -(A) $\frac{\sqrt{b}}{\sqrt{a}-\sqrt{a-b}}$ (B) $a + \frac{\sqrt{a(a-b)}}{b}$ (C) $\frac{a+\sqrt{a(a-b)}}{b}$ (D) $\frac{\sqrt{a}-\sqrt{a-b}}{\sqrt{b}}$ $ax^{2} + bx + c = 0$ has real and distinct roots α and $\beta(\beta > \alpha)$. Further a > 0, b < 0 and c < 0, then -3. (A) $0 < \beta < |\alpha|$ (B) $0 < |\alpha| < \beta$ (C) $\alpha + \beta < 0$ (D) $|\alpha| + |\beta| = \left|\frac{b}{a}\right|$ Number of values of 'p' for which the equation $(p^2 - 3p + 2) x^2 - (p^2 - 5p + 4) x + p - p^2 = 0$ possess more than two roots, is: (A) 0 (D) 1 4. **(C)**2 (D) none **(B)** 1 **(A)**0 The roots of the equation $(b - c) x^2 + (c - a) x + (a - b) = 0$ are 5. (C) $\frac{b-c}{c}$, 1 **(B)** $\frac{a-b}{b-c}$, 1 (**D**) $\frac{c-a}{a-b}$, 1 (A) $\frac{c-a}{b-c}$, 1 6. Let p, $q \in \{1, 2, 3, 4\}$. Then number of equation of the form $px^2 + qx + 1 = 0$, having real roots, is **(B)** 9 **(A)** 15 **(D)** 8 If x, y are rational number such that $x + y + (x - 2y)\sqrt{2} = 2x - y + (x - y - 1)\sqrt{6}$, then 7. (A) x and y connot be determined **(B)** x = 2, y = 1(D) none of these (C) x = 5, y = 1For the equation $3x^2 + px + 3 = 0$, p > 0 if one of the roots is square of the other, then p is equal to: (A) 1/3 (D) 2/38. If $\alpha \neq \beta$, $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$, then the equation whose roots are $\alpha/\beta \& \beta/\alpha$, is 9. (A) $x^2 + 5x - 3 = 0$ (B) $3x^2 + 12x + 3 = 0$ (C) $3x^2 - 19x + 3 = 0$ (D) none of these If one solution of the equation $x^3 - 2x^2 + ax + 10 = 0$ is the additive inverse of another, then which one of the following 10. inequalities is true ? (A) $-40 \le a \le -30$ **(B)**-30 < a < -20 $(C) - 20 \le a \le -10$ (D)-10 < a < 0The quadratic equation $x^2 - 1088x + 295680 = 0$ has two positive integral roots whose greatest common divisor is 16. 11. The least common multiple of the two roots is (A) 18240 **(B)** 18480 (C) 18960 **(D)** 19240 The number of positive integral solutions of the inequation $\frac{x^2(3x-4)^3 (x-2)^4}{(x-5)^5 (2x-7)^6} \le 0$ is -12. (A) 2 **(B)** 0 **(C)** 3 If the roots of the quadratic equation $x^2 + 6x + b = 0$ are real and distinct and they differ by atmost 4 then the least 13.

(Quadratic Equation

JE	E MAIN & ADVANCED)		Maths
	value of b is - (A) 5	(B) 6	(C) 7	(D) 8
4 .	For every $x \in R$, the poly	momial $x^8 - x^5 + x^2 - x + 1$	is:	
	(A) positive		(B) never positive	
	(C) positive as well as n	egative	(D) negative	
15.	If the roots of the equation	$\sin x^2 - 2ax + a^2 + a - 3 = 0$	are real & less than 3 then -	
	(A) a<2	(B) $2 \le a \le 3$	(C) 3 < a ≤ 4	(D) a > 4
6.	The number of integral va	lues of m, for which the roo	$tots of x^2 - 2mx + m^2 - 1 = 0$ with $tots of x^2 - 2mx + m^2 - 1 = 0$ with $tots of x^2 - 2mx + m^2 - 1 = 0$	ill lie between – 2 and 4 is -
	(A) 2	(B) 0	(C) 3	(D) 1
17.	Number of real solutions	of the equation $x^4 + 8x^2 +$	$16 = 4x^2 - 12x + 9$ is equal to	to -
	(A) 1	(B) 2	(C) 3	0 4
18.	If α , β are the roots of $(\alpha - \gamma) \cdot (\alpha - \delta)$ is equal		$p x + q = 0$ and γ , δ are	the roots of $x^2 + px - r = 0$, then
	(A) q + r	(B) q-r	(C) $-(q+r)$	(D) $-(p+q+r)$
19.	If $a(b-c) x^2 + b(c-a) x^2$	a + c (a - b) = 0 has equal 1	root, then a, b, c are in	
	(A) A.P.	(B) G.P.	(С) Н.Р.	(D) none of these
20.	If the roots of the quantum $x \in R$, the expression at	-	$\mathbf{t} + \mathbf{c} = 0$ are imaginary t	hen for all values of a, b, c and
	(A) positive		(B) non-negative	
	(C) negative	04	(D) may be positive, z	ero or negative
21.	If $x = 2 + 2^{2/3} + 2^{1/3}$, then the	he value of $x^3 - 6x^2 + 6x$ is		
	(A) 3	(B) 2	(C) 1	(D) -2
22.	If a, b, c are integers an	$d b^2 = 4(ac + 5d^2), d \in N$, then roots of the equatior	$ax^2 + bx + c = 0$ are
	(A) Irrational		(B) Rational & differen	nt
	(C) Complex conjugate		(D) Rational & equal	
23.	Let a, b and c be re $ax^2 + bx + c = 0$ has	eal numbers such tha	4a + 2b + c = 0 and	d ab > 0 . Then the equation
	(A) real roots	(B) imaginary roots	(C) exactly one root	(D) none of these
24.	If $\log_{1/3} \frac{3x-1}{x+2}$ is less	than unity then x must	lie in the interval -	
	(A) $(-\infty, -2) \cup (5/8, \infty)$		(B) (-2, 5/8)	
	(C) $(-\infty, -2) \cup (1/3, 5/8)$		(D) (-2, 1/3)	

If α , β , γ , δ are roots of $x^4 - 100x^3 + 2x^2 + 4x + 10 = 0$, then $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ is equal to -25.

(A)
$$\frac{2}{5}$$
 (B) $\frac{1}{10}$ (C) 4 (D) $-\frac{2}{5}$

If the roots of the equation, $x^3 + Px^2 + Qx - 19 = 0$ are each one more than the roots of the equation, 26. $x^3 - Ax^2 + Bx - C = 0$, where A, B, C, P & Q are constants then the value of A + B + C =

27. The expression
$$\frac{x^2 + 2x + 1}{x^2 + 2x + 7}$$
 lies in the interval; $(x \in \mathbb{R})$ -

(A)
$$[0,-1]$$
 (B) $(-\infty,0] \cup [1,\infty)$ (C) $[0,1)$

(D) none of these

(D)(0,6)

(D) 3

Maths

If exactly one root of the quadratic equation $x^2 - (a + 1)x + 2a = 0$ lies in the interval (0,3) then the set of 28. values 'a' is given by

$$(\mathbf{A})(-\infty,0)\cup(6,\infty) \qquad (\mathbf{B})(-\infty,0]\cup$$

$$\cup$$
 (6, ∞) (C) (- ∞ , 0] \cup [6, ∞)

Consider the equation $x^2 + 2x - n = 0$, where $n \in N$ and $n \in [5, 100]$. Total number of different values of 'n' so 29. that the given equation has integral roots, is

(A)4

If the A.M. of the roots of a quadratic equation is $\frac{8}{5}$ and A.M. of their reciprocals is $\frac{8}{7}$, then the quadratic 30. equation is -

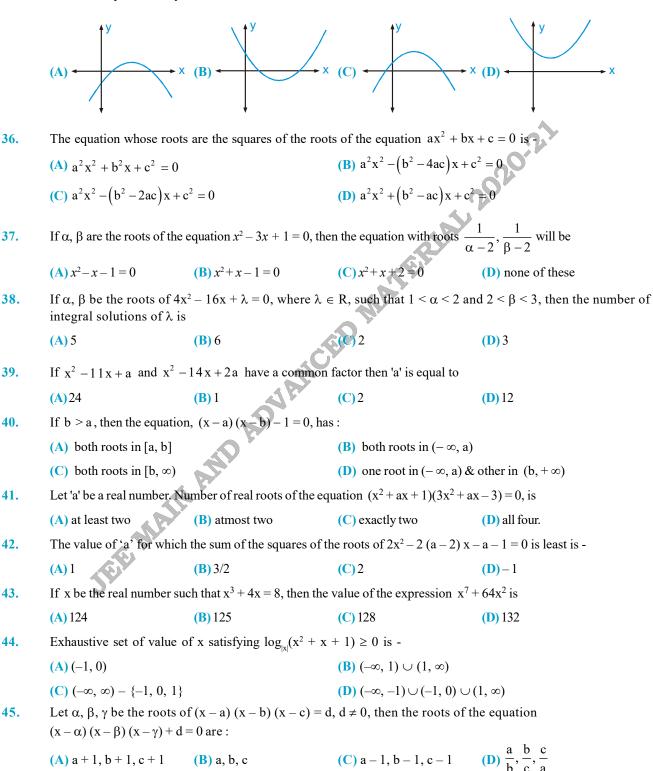
(A)
$$5x^2-8x+7=0$$
 (B) $5x^2-16x+7=0$ (C) $7x^2-16x+5=0$ (D) $7x^2+16x+5=0$

If sin $\alpha \& \cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$ then -31.

(B) 6

- (A) $a^2 b^2 + 2ac = 0$ (B) $a^2 + b^2 + 2ac = 0$ (C) $a^2 b^2 2ac = 0$ (D) $a^2 + b^2 2ac = 0$ If the roots of $(a^2 + b^2)x^2 2b(a + c)x + (b^2 + c^2) = 0$ are equal then a, b, c are in 32.

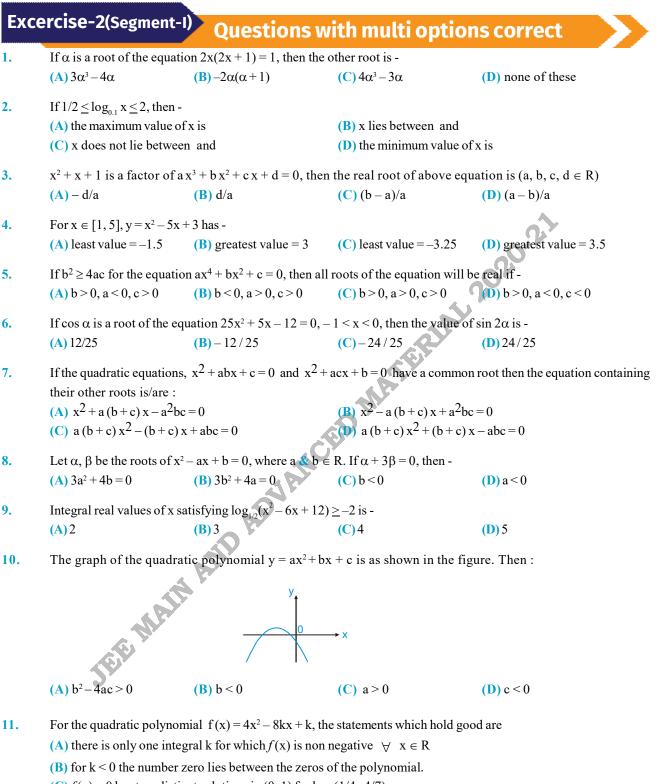
(A) A.P. **(B)** G.P. (C) H.P. (D) none of these


If a, b, p, q are non-zero real numbers, then two equations $2a^2 x^2 - 2ab x + b^2 = 0$ and 33. $p^2 x^2 + 2 pq x + q^2 = 0$ have: (B) one common root if $2a^2 + b^2 = p^2 + q^2$ (A) no common root

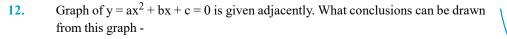
- (C) two common roots if 3pq = 2ab(D) two common roots if 3qb = 2 ap
- For the equation, $3x^2 + px + 3 = 0$, p > 0 if one of the roots is square of the other, then p is equal to: 34.

(C) 3 **(D)** 2/3 (A) 1/3 **(B)** 1

Quadratic Equation


- Graph of the function $f(x) = Ax^2 BX + C$, where 35.
 - $A = (\sec\theta \cos\theta) (\csc\theta \sin\theta)(\tan\theta + \cot\theta),$
 - $\mathbf{B} = (\sin\theta + \csc\theta)^2 + (\cos\theta + \sec\theta)^2 (\tan^2\theta + \cot^2\theta) \&$
 - C = 12, is represented by

Quadratic Equation


(B) a, b, c

Maths

- (C) f(x) = 0 has two distinct solutions in (0, 1) for $k \in (1/4, 4/7)$
- **(D)** Minimum value of $y \forall k \in R$ is k(1+12k)

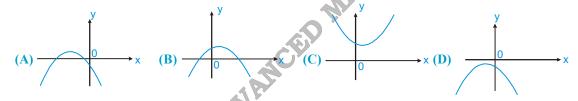
14.

(B) b < 0(A) a > 0(D) $b^2 - 4ac > 0$

possible ordered pair(s) of (a, b) is/are

(C) c < 0

The adjoining figure shows the graph of $y = ax^2 + bx + c$. Then -13. **(B)** b > 0(A) a > 0(**D**) $b^2 < 4ac$ (C) c > 0

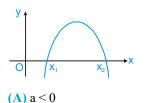

Let $f(x) = x^2 + ax + b$. If the maximum and the minimum values of f(x) are 3 and 2 respectively for $0 \le x \le 2$, then the

Maths

Vertex

Vertex

- (C)(-5/2,3)-5/2,2) (A)(-2,3)**(B)** (-3/2, 2)If p & q are distinct reals, then 2 { (x - p) (x - q) + (p - x) (p - q) + (q - x) (q - p) } = (p - q)^2 + (x - p)^2 + (x - q)^2 + (x - q) 15. is satisfied by -(B) exactly one value of x (C) exactly two values of x (D) infinite values of x (\mathbf{A}) no value of x
- For which of the following graphs of the quadratic expression $y = a x^2 + b x + c$, the product a b c is negative ? 16.


For every $x \in R$, the polynomial x^8 17. \mathbf{x}^2 -x + 1 is -(A) positive (B) never positive (C) positive as well as negative (D) negative

0 then x belongs to interval -18. If log

(A)
$$(\frac{5}{2}, 6+\sqrt{6})$$
 (B) $(\frac{5}{2}, 6-\sqrt{6})$ (C) $(6, 6+\sqrt{6})$ (D) $(10, \infty)$

- If one of the root of the equation $4x^2 15x + 4p = 0$ is the square of the other then the value of p is 19. (A) 125/64 **(B)**-27/8(C)-125/8 **(D)** 27/8
- The adjoining figure shows the graph of $y = ax^2 + bx + c$. Then 20.

(B) $b^2 < 4ac$

(C) c > 0

(D) a and b are of opposite sign

Quadratic Equation

- **21.** The correct statement is / are -
 - (A) If $x_1 \& x_2$ are roots of the equation $2x^2 6x b = 0$ (b > 0), then $\frac{x_1}{x_2} + \frac{x_2}{x_1} < -2$ (B) Equation $ax^2 + bx + c = 0$ has real roots if a < 0, c > 0 and $b \in \mathbb{R}$
 - (C) If $P(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + bx + c$, where $ac \neq 0$ and $a, b, c \in \mathbb{R}$, then P(x).Q(x) has at least two real roots.
 - (D) If both the roots of the equation $(3a + 1)x^2 (2a + 3b)x + 3 = 0$ are infinite then $a = 0 \& b \in \mathbb{R}$
- 22. Equation $2x^2 2(2a+1)x + a(a+1) = 0$ has one root less than 'a' and other root greater than 'a', if (A) 0 < a < 1 (B) -1 < a < 0 (C) a > 0 (D) a < -1
- 23. If $x^2 + Px + 1$ is a factor of the expression $ax^3 + bx + c$ then -(A) $a^2 + c^2 = -ab$ (B) $a^2 - c^2 = -ab$ (C) $a^2 - c^2 = ab$ (D) none of these
- 24. For the equation $|x|^2 + |x| 6 = 0$, the correct statement(s) is (are): (A) sum of roots is 0 (C) there are 4 roots (D) there are only 2 roots
- 25. If a, b are non-zero real numbers and α , β the roots of $x^2 + ax + b = 0$, then (A) α^2 , β^2 are the roots of $x^2 - (2b - a^2)x + a^2 = 0$
 - (B) $\frac{1}{\alpha}, \frac{1}{\beta}$ are the roots of $bx^2 + ax + 1 = 0$
 - (C) $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are the roots of $bx^2 + (2b a^2)x + b = 0$
 - (D) $(\alpha 1), (\beta 1)$ are the roots of the equation $x^2 + x (a + 2) + 1 + a + b = 0$

Excercise-2(Segment-II)

Assertion and Reason Type

- These questions contains, Statement-I (assertion) and Statement-II (reason).
- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement-I: If equation $ax^2 + bx + c = 0$; (a, b, $c \in R$) and $2x^2 + 3x + 4 = 0$ have a common root, then a : b : c = 2 : 3 : 4. Statement-II: If p + iq is one root of a quadratic equation with real coefficients then p - iq will be the other root; $p, q \in R, i = \sqrt{-1}$
- 2. Let α , β be the roots of $f(x) = 3x^2 4x + 5 = 0$. Statement-I: The equation whose roots are 2α , 2β is given by $3x^2 + 8x - 20 = 0$. Statement-II: To obtain, from the equation f(x) = 0, having roots α and β , the equation having roots 2α , 2β

one needs to change x to
$$\frac{x}{2}$$
 in $f(x) = 0$.

- 3. Consider a cubic function $f(x) = ax^3 + bx + c$ where $a, b, c \in \mathbb{R}$.
- **Statement-I:** f(x) can not have 3 non negative real roots.

Statement-II: Sum of roots is equal to zero.

4. Statement-I: Let $(a_1, a_2, a_3, a_4, a_5)$ denote a re-arrangement of (1, -4, 6, 7, -10). Then the equation

Quadratic Equation

Maths

 $a_1x^4 + a_2x^3 + a_3x^2 + a_4x + a_5 = 0$ has at least two real roots.

Statement-II : If $ax^2 + bx + c = 0$ and a + b + c = 0, (i.e. in a polynomial the sum of coefficients is zero) then x = 1 is root of $ax^2 + bx + c = 0$.

5. Let a, b, c, p, q be real numbers. Suppose α , β are the roots of the equation $x^2 + 2px + q = 0$ and α , are the roots of the equation $ax^2 + 2bx + c = 0$, where $\beta^2 \notin \{-1, 0, 1\}$ Statement-I: $(p^2 - q)(b^2 - ac) \ge 0$ Statement-II: $b \ne pa$ or $c \ne qa$

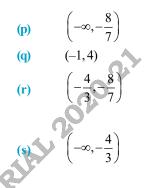
- 6. Statement-I: If a > b > c and $a^3 + b^3 + c^3 = 3abc$ then the quadratic equation $ax^2 + bx + c = 0$ has roots of opposite sign. Statement-II: If roots of a quadratic equation $ax^2 + bx + c = 0$ are of opposite sign then product of roots < 0 and $| \text{ sum of roots } | \ge 0$
- 7. Statement-I: If roots of the equation $x^2 bx + c = 0$ are two consecutive integers, then $b^2 4c = 1$. Statement-II: If a, b, c are odd integer then the roots of the equation 4 abc $x^2 + (b^2 - 4ac)x - b = 0$ are real and distinct.
- 8. Statement-I: The nearest point from x axis on the curve $f(x) = x^2 6x + 11$ is (3, 2) Statement-II: If a > 0 and D < 0, then $ax^2 + bx + c > 0 \forall x \in \mathbb{R}$.
- 9. Statement-I: If f(x) is a quadratic expression such that f(1) + f(2) = 0. If -1 is a root of f(x) = 0 then the other root is $\frac{8}{5}$ Statement-II: If $f(x) = ax^2 + bx + c$ then sum of roots $= \frac{b}{a}$ - and product of roots $= \frac{c}{a}$
- 10. Consider two quadratic functions $f(x) = ax^2 + ax + (a+b)$ and $g(x) = ax^2 + 3ax + 3a + b$, where a and b are non-zero real numbers having same sign.

Statement-I: Graphs of both y = f(x) and y = g(x) either completely lie above x-axis or lie completely below x-axis $x \in \mathbb{R}$ **Statement-II**: If discriminant of f(x), D < 0, then y = f(x) is of same sign $x \in \mathbb{R}$ and f(x + 1) will also be of same sign as that of $f(x)x \in \mathbb{R}$.

11. Statement-I: If a + b + c > 0 and a < 0 < b < c, then the roots of the equation a(x-b)(x-c) + b(x-c)(x-a) + c(x-a)(x-b) = 0 are of both negative.

Statement-II: If both roots are negative, then sum of roots < 0 and product of roots > 0

Excercise-3(Segment-I)


Matrix Matching Type Questions

Following question contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with **one or more** statement(s) in **Column-II**.

1. Consider the equation $x^2 + 2(a-1)x + a + 5 = 0$, where 'a' is a parameter. Match of the real values of 'a' so that the given equation has Column-II

(A)	imaginary roots
(A)	inaginary roots

- (B) one root smaller than 3 and other root greater than 3
- (C) exactly one root in the interval (1, 3) & 1 and 3 are not the root of the equation

Maths

(D) one root smaller than 1 and other root greater than 3

2. It is given that α , β ($\beta \ge \alpha$) are the roots of the equation $f(x) = ax^2 + bx + c$. Also af(t) > 0. Match the condition given in column-I with their corresponding conclusions given in column-II.

	Column-I	Colui	nn-II
(A)	$a > 0$ and $b^2 > 4ac$	(p)	$t \neq \alpha$
(B)	$a > 0$ and $b^2 = 4ac$	(q)	no solution
(C)	$a < 0$ and $b^2 > 4ac$	(r)	$\alpha < t < \beta$
(D)	a > 0 and b ² > 4ac a > 0 and b ² = 4ac a < 0 and b ² > 4ac a < 0 and b ² = 4ac Column - I	(s)	$t < \alpha \text{ or } t > \beta$
	Column–I	Colu	nn – II
(A)	If the roots of $x^2 - bx + c = 0$ are two	(p)	1
	consecutive integers, then value of $b^2 - 4c$		
(B)	If $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$		
	$(a \neq 0)$ have a common root, then value of $a + b$	(q)	7
(C)	If a, b are roots of $x^2 - x + 3 = 0$ then value of $a^4 + b^4$	(r)	17
(D)	If a , b, c are the roots of $x^3 - 7x^2 + 16x - 12 = 0$	(s)	- 1
	then value of $a^2 + b^2 + c^2$		
Let f($f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6}$		
	Column I	Colui	nn II
(A)	If $-1 < x < 1$, then $f(x)$ satisfies	(p)	$0 < f(\mathbf{x}) < 1$
(B)	If $1 \le x \le 2$, the $f(x)$ satisfies	(q)	$f(\mathbf{x}) < 0$
(C)	If $3 < x < 5$, then $f(x)$ satisfies	(r)	$f(\mathbf{x}) > 0$
(D)	If $x > 5$, then $f(x)$ satisfies	(s)	$f(\mathbf{x}) < 1$

Quadratic Equation

3.

4.

5.	Colu	nn – I	Col	umn – II
	(A)	If α , $\alpha + 4$ are two roots of $x^2 - 8x + k = 0$, then possible value of k is	(p)	2
	(B)	Number of real roots of equation $x^2 - 5 x + 6 = 0$	(q)	3
		are 'n', then value of $\frac{n}{2}$ is		
	(C)	If $3-i$ is a root of $x^2 + ax + b = 0$ ($a, b \in \mathbb{R}$),	(r)	12
	(D)	then b is If both roots of $x^2 - 2kx + k^2 + k - 5 = 0$	(s)	10
	(D)	are less than 5, then 'k' may be equal to	(3)	10
6.	Colur	nn-T	Câl	umn-II
	(A)	Given x, $y \in R$, $x^2 + y^2 > 0$. If the maximum and minimum value	(p)	1210
		of the expression $E = \frac{x^2 + y^2}{x^2 + xy + 4y^2}$ are M and m, and A denotes the	S	
	(B)	average value of M and m, then the value of (2007)A, equals Given the cubic equation $x^3 - 2kx^2 - 4kx + k^2 = 0$. If one root of the equation is less than 1, other root is in the interval (1, 4) and the	(q)	1338
		3^{rd} root is greater than 4, then the value of k lies in the interval	(r)	2007
		$(a + \sqrt{b}, b(a + \sqrt{b}))$ where $a, b \in N$. The value of $(a + b)^3 + (ab + 2)^2$ equals		
	(C)	If roots of the equation are a, b and those of $x^2 - 10ax - 11b = 0$ are c, d, then the value of $a + b + c + d$, is (where a, b, c and d are distinct numbers)	(\$)	2009
7.	Let f	$(x) = x^2 - 2px + p^2 - 1$, then	C.I	П
	(A)	Column-I both the roots of $f(x) = 0$ are less than 4, if $p \in$		$\begin{array}{c} \text{umn-II.} \\ (1,\infty) \end{array}$
	(A) (B)	both the roots of $f(\mathbf{x}) = 0$ are greater than -2 if $\mathbf{p} \in$		$(-1,\infty)$ $(-\infty,3)$
		exactly one root of $f(\mathbf{x}) = 0$ lie in (-2, 4), if $\mathbf{p} \in$	(q) (r)	
	(C) (D)	1 lies between the roots of $f(x) = 0$, if $p \in$	(I) (S)	(0, 2) $(-3, -1) \cup (3, 5)$
8.		Column-I	Col	umn-II
		$\left(x+\frac{1}{2}\right)^{6} - \left(x^{6}+\frac{1}{6}\right) - 2$		
	(A)	The minimum value of $\frac{\left(x+\frac{1}{x}\right)^6 - \left(x^6 + \frac{1}{x^6}\right) - 2}{\left(x+\frac{1}{x}\right)^3 + x^3 + \frac{1}{x^3}}$ for x > 0, is	(p)	2
	(B)	The integral values of the parameters c for which the inequality	(q)	4
		$1 + \log_2\left(2x^2 + 2x + \frac{7}{2}\right) \ge \log_2(cx^2 + c)$ has at least one solution, is		
		2	(r)	6
	(C)	Let P (x) = $x^2 + bx + c$, where b and c are integer. If P (x) is a factor of both $x^4 + 6x^2 + 25$ and $3x^4 + 4x^2 + 28x + 5$, then the value of P(1) equals	(\$)	8

Quadratic Equation

Maths

9. **Column-I Column-II** α , β are the roots of the equation K $(x^2 - x) + x + 5 = 0$. **(A) (p)** 146 If $K_1 \& K_2$ are the two values of K for which the roots α , β are connected by the relation $(\alpha/\beta) + (\beta/\alpha) = 4/5$. The value of $(K_1/K_2) + (K_2/K_1)$ equals. 254 **(q)** If the range of the function $f(x) = \frac{x^2 + ax + b}{x^2 + 2x + 3}$ is [-5, 4], $a, b \in \mathbb{N}$, **(B)** 277 (r) then the value of $(a^2 + b^2)$, is Suppose a cubic polynomial $f(x) = x^3 + px^2 + qx + 72$ is divisible by **(C)** 298 **(s)** both $x^2 + ax + b$ and $x^2 + bx + a$ (where a, b, p, q are constants and $a \neq b$). The sum of the squares of the roots of the cubic polynomial, is Excercise-3(Segment-II) Comprehension Type Questions **Comprehension #1** In the given figure $\triangle OBC$ is an isosceles right triangle $= x^{2} + bx + c$ in which AC is a median, then answer the following questions : Roots of y = 0 are 1. (C) {1, 1/2} **(B)** {4, 2} **(D)** {8,4} **(A)** {2, 1} The equation whose roots are $(\alpha + \beta) \& (\alpha - \beta)$, where α , $\beta (\alpha > \beta)$ are roots obtained in previous question, is 2. **(B)** $x^2 - 8x + 12 = 0$ (A) $x^2 - 4x + 3 = 0$ (C) $4x^2 - 8x + 3 = 0$ (D) $x^2 - 16x + 48 = 0$ Minimum value of the quadratic expression corresponding to the quadratic equation obtained in 3.

Q. No. 2 occurs at x =**(A)** 8 **(C)**4 **(D)**2

Comprehension #2

If α , β , γ be the roots of the equation $ax^3 + bx^2 + cx + d = 0$. To obtain the equation whose roots are $f(\alpha)$, $f(\beta)$, $f(\gamma)$, where f is a function, we put $y = f(\alpha)$ and simplify it to obtain $\alpha = g(y)$ (some function of y).

Now, α is a root of the equation $ax^3 + bx^2 + cx + d = 0$, then we obtain the desired equation which is $a{g(y)}^3 + b{g(y)}^2 + c{g(y)} + d = 0$

For example, if α , β , γ are the roots of $ax^3 + bx^2 + cx + d = 0$. To find equation whose roots are

$$\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma} \text{ we put } y = \frac{1}{\alpha} \implies \alpha = \frac{1}{y}$$

As α is a root of $ax^3 + bx^2 + cx + d = 0$
we get $\frac{a}{y^3} + \frac{b}{y^2} + \frac{c}{y} + d = 0 \implies dy^3 + cy^2 + by + a = 0$

Quadratic Equation

108

Maths

Maths

This is desired equation.

On the Basis of Above Information, Answer the Following Questions

If α , β are the roots of the equation $ax^2 + bx + c = 0$, then the roots of the equation 1. $a(2x+1)^2 + b(2x+1)(x-1) + c(x-1)^2 = 0$ are-

$2\alpha+1$ $2\beta+1$	$2\alpha - 1 2\beta - 1$	$\alpha + 1 \beta + 1$	$2\alpha+3$ $2\beta+3$
(A) $\frac{2\alpha+1}{\alpha-1}, \frac{2\beta+1}{\beta-1}$	(B) $\frac{1}{\alpha+1}$, $\frac{1}{\beta+1}$	(C) $\frac{\alpha+1}{\alpha-2}$, $\frac{\beta+1}{\beta-2}$	(D) $\overline{\alpha - 1}$, $\overline{\beta - 1}$

- 2. If α , β are the roots of the equation $2x^2 + 4x - 5 = 0$, the equation whose roots are the reciprocals of $2\alpha - 3$ and $2\beta - 3$ is -**(B)** $11x^2 + 10x + 1 = 0$ **(C)** $x^2 + 10x + 11 = 0$ (A) $x^2 + 10x - 11 = 0$ (D) $11x^2 - 10x + 1 = 0$
- If α , β are the roots of the equation $px^2 qx + r = 0$, then the equation whose roots are $\alpha^2 + \frac{r}{p}$ and $\beta^2 + \frac{r}{p}$ is-3.

(C) $p^3x^2 - pq^2x + q^2r = 0$ (D) $px^2 + qx - r = 0$

(A)
$$p^3x^2 + pq^2x + r = 0$$
 (B) $px^2 - qx + r = 0$

If α , β , γ are the roots of the equation $x^3 - x - 1 = 0$, then the value of $\Pi \left(\frac{1+\alpha}{1-\alpha}\right)$ (A) -7 (B) -5 (C) -3 (C) -3 (D) $\Pi \left(\frac{1+\alpha}{1-\alpha}\right)$ is equal to -4.

(D)-1

Excercise-4

Maths

Subjective Type Questions

- 1. If α , β are the roots of the equation $x^2 2x + 3 = 0$ obtain the equation whose roots are $\alpha^3 3\alpha^2 + 5\alpha 2$, $\beta^3 \beta^2 + \beta + 5$.
- 2. If one root of the equation $ax^2 + bx + c = 0$ be the square of the other, prove that $b^3 + a^2c + ac^2 = 3abc$.
- 3. Find the product of the real roots of the equation, $x^2 + 18x + 30 = 2\sqrt{x^2 + 18x + 45}$
- 4. Let a, b be arbitrary real numbers. Find the smallest natural number 'b' for which the equation $x^2 + 2(a+b)x + (a-b+8) = 0$ has unequal real roots for all $a \in \mathbb{R}$.
- 5. Solve the inequality : $\log_3 \frac{|x^2 4x| + 3}{|x^2 + |x 5|} \ge 0$
- 6. Find the range of values of a, such that $f(x) = \frac{ax^2 + 2(a+1)x + 9a + 4}{x^2 8x + 32}$ is always negative.
- 7. Suppose a, b, $c \in I$ such that greatest common divisor of $x^2 + ax + b$ and $x^2 + bx + c$ is (x + 1) and the least common multiple of $x^2 + ax + b$ and $x^2 + bx + c$ is $(x^3 4x^2 + x + 6)$. Find the value of (a + b + c).
- 8. For what value of 'a', the equation $(a^2 a 2)x^2 + (a^2 4)x + (a^2 3a + 2) = 0$, will have more than two solutions Does there exist a real value of 'x' for which the above equation will be an identity in 'a'?
- 9. The equation $x^2 ax + b = 0$ & $x^3 px^2 + qx = 0$, where $b \neq 0$, $q \neq 0$, have one common root & the second equation has two equal roots. Prove that 2(q + b) = ap.
- 10. The equation $x^n + px^2 + qx + r = 0$, where $n \ge 5$ & $r \ne 0$ has roots $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$.

Denoting $\sum_{i=1}^{n} \alpha_i^k by S_k$.

- (a) Calculate S_2 & deduce that the roots cannot all be real.
- (b) Prove that $S_n + pS_2 + qS_1 + nr = 0$ & hence find the value of S_n .
- 11. The length of a rectangle is 2 metre more than its width. If the length is increased by 6 metre and the width is decreased by 2 metre, the area becomes 119 square metre. Find the dimensions of the original rectangle.
- 12. Find the product of uncommon real roots of the two polynomials $P(x) = x^4 + 2x^3 8x^2 6x + 15$ and $Q(x) = x^3 + 4x^2 x 10$.
- 13. Find all values of a for which both roots of the equation $x^2 6ax + 2 2a + 9a^2 = 0$ are greater than 3.
- 14. If α , β are the roots of $ax^2 + bx + c = 0$ ($a \neq 0$) and $\alpha + \delta$, $\beta + \delta$ are the roots of,

 $Ax^2 + Bx + C = 0$ (A $\neq 0$) for some constant δ , then prove that $\frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2}$.

15. If the roots of the equation $\frac{1}{(x+p)} + \frac{1}{(x+q)} = \frac{1}{r}$ are equal in magnitude but opposite in sign, show that

Quadratic Equation

p+q=2 r & that the product of the roots is equal to $(-1/2)(p^2+q^2)$.

- **16.** Find all values of a for which the inequality $(a + 4) x^2 2ax + 2a 6 < 0$ is satisfied for all $x \in \mathbb{R}$.
- 17. Two roots of a biquadratic $x^4 18x^3 + kx^2 + 200x 1984 = 0$ have their product equal to (-32). Find the value of k.
- 18. Let the quadratic equation $x^2 + 3x k = 0$ has roots a, b and $x^2 + 3x 10 = 0$ has roots c, d such that modulus of difference of the roots of the first equation is equal to twice the modulus of the difference of the roots of the second equation. If the value of 'k' can be expressed as rational number in the lowest form as m/n then find the value of (m + n).
- 19. If the quadratic equation $ax^2 + bx + c = 0$ has real roots, of opposite sign in the interval (-2, 2) then prove that

$$1 + \frac{c}{4a} - \left|\frac{b}{2a}\right| > 0$$

- 20. If a < b < c < d then prove that the roots of the equation ; (x a)(x c) + 2(x b)(x d) = 0 are real & distinct.
- 21. If $x^2 + px + q = 0$ and $x^2 + qx + p = 0$, $(p \neq q)$ have a common root, show that 1 + p + q = 0; show that their other roots are the roots of the equation $x^2 + x + pq = 0$.
- 22. If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the nth power of the other, then show that $(ac^n)^{1/(n+1)} + (a^nc)^{1/(n+1)} + b = 0$.
- 23. When $y^2 + my + 2$ is divided by (y 1) then the quotient is f (y) and the remainder is R₁. When $y^2 + my + 2$ is divided by (y + 1) then quotient is g (y) and the remainder is R₂. If R₁ = R₂ then find the value of *m*.
- 24. If α , β and γ are roots of $2x^3 + x^2 7 = 0$, then find the value of $\sum \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)$.
- 25. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the value of

$$\left(\alpha - \frac{1}{\beta\gamma}\right) \left(\beta - \frac{1}{\gamma\alpha}\right) \left(\gamma - \frac{1}{\alpha\beta}\right).$$

Maths

Excercise-5(Segment-I)

Previous Year Questions (AIEEE)

1.	If the roots of the aquet		β and the roots of the equa		$= 0 \operatorname{are} (\alpha^2 + \beta^2)$
1.		$x^2 - 3x + 10 - 0$ are α ,	, p and the roots of the equa	$1011 x^2 + px + q$	$-0 \operatorname{are} (\alpha^2 + \beta^2)$
	and $\frac{\alpha\beta}{2}$, then-				[AIEEE-2002]
	(1) $p = 1$ and $q = 56$ (3) $p = -1$ and $q = 56$		(2) $p = 1$ and $q = -56$ (4) $p = -1$ and $q = -56$		
2.	If α and β be the roots of	the equation $(x-a)(x-b)$	$=$ c and c \neq 0, then roots of the	e equation $(x - \alpha)$	
	(1) a and c	(2) b and c	(3) a and b	(4) a + b and b	[AIEEE-2002] p+c
3.	If $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - \beta$	3 then the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$	$\frac{\beta}{\alpha}$ (where $\alpha \neq \beta$) is-	2	[AIEEE-2002]
	(1) 19/3	(2) 25/3	(3)-19/3	(4) none of th	ese
4.	The value of a for which the other is (1) - 2/3	one roots of the quadratic (2) 1/3	equation $(a^2 - 5a + 3) x^2 + (3) (3) - 1/3$	3a-1) $x+2=0$ i (4) $2/3$	s twice as large as [AIEEE-2003]
5,	If the sum of the roots	of the quadratic equation	$ax^2 + bx + c = 0$ is equal	to the sum of th	ne square of their
	reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$	and $\frac{c}{b}$ are in	AL FIL		[AIEEE-2003]
	(1) geometric progression(3) arithmetic-geometric		(2) harmonic progression(4) arithmetic progression		
6.	The number of real solu (1)4	tions of the equation $x^2 - 3$ (2) 1	x + 2 = 0, is- (3) 3	(4) 2	[AIEEE-2003]
7.	The real number x when (1) 1	added to its inverse gives t (2)-1	the minimum value of the sut $(3)-2$	m at x equal to- $(4) 2$	[AIEEE-2003]
8.	Let two numbers have an equation-		etric mean 4. Then these nur		[AIEEE-2004]
	(1) $x^2 + 18x - 16 = 0$	(2) $x^2 - 18x + 16 = 0$	$(3) x^2 + 18x + 16 = 0$	(4) $x^2 - 18x - $	16=0
9.	If (1 – p) is a root of qua (1) 0, – 1	dratic equation $x^2 + px + ($ (2) - 1, 1	(1-p) = 0 then its roots are (3) 0, 1	(4) -1,2	[AIEEE-2004]
10.		on $x^2 + px + 12 = 0$ is 4, wh	nile the equation $x^2 + px + q$	= 0 has equal roo	
	of 'q' is- (1) 3	(2) 12	(3) 49/4	(4) 4	[AIEEE-2004]
11.	If value of a for which the value is-	he sum of the squares of the	e roots of the equation $x^2 - 6$	(a-2)x - a - 1 = 0	0 assume the least [AIEEE-2005]
	(1) 2	(2) 3	(3) 0	(4) 1	
12.	If the roots of the equati (1) 1	on $x^2 - bx + c = 0$ be two c (2) 2	onsecutive integers, then b ² (3) 3	- 4c equals- (4)-2	[AIEEE-2005]
13.	If both the roots of the q	uadratic equation $x^2 - 2kx$	$k^2 + k^2 + k - 5 = 0$ are less that	n 5, then k lies ir	
	(1)[4,5]	(2) (-∞, 4)	(3) (6, ∞)	(4) (5,6)	[AIEEE-2005]

0	dratic Equation	<u>`</u>			
27.	The sum of all real valu (1)-4	tes of x satisfying the equa (2) 6	tion $(x^2 - 5x + 5)^{x^2 + 4x - 60}$ (3) 5	= 1 is (4) 3	[JEE Main 2016]
	(1) 3	(2)-3	(3) 6	(4)-6	[JEE Main 2015]
26.	Let α and β be the roots	of equation $x^2 - 6x - 2 = 0$	If $a_n = \alpha^n - \beta^n$, for $n \ge 1$, the	n the value of $\frac{a}{b}$	$\frac{10 - 2a_8}{2a_9}$ is equal to :
	(1) $(-1, 0) \cup (0, 1)$	(2) (1, 2)	(3) (-2, -1)	(4) (−∞, −2	
25.		on $-3(x - [x]^2 + 2(x - [x])^2)$ e greatest integer $\leq x$) has	$() + a^2 = 0$ s no integral solution, ther	n all possible v	JEE Main 2014 alues of a lie in the
24.	The equation $e^{sinx} - e^{-1}$ (1) exactly four real root (3) no real roots.	ots.	(2) infinite number of r(4) exactly one real roo		[AIEEE-2012
23.	term and ended up in recorrect roots of equation $(1)-4, -3$	bots (4, 3). Rahul made a 1 m are: (2) 6, 1	equation. Sachin made a m nistake in writing down coe (3) 4, 3		get roots (3, 2). The [AIEEE-2011]
	then the value of p(2) i (1) 18	s: (2) 3	(3) 9	(4) 6	[AIEEE-2011
21. 22.	(1)-2	of the equation $x^2 - x + 1$ (2) -1 $x^2 + bx + c$ $g(x) = a x^2 + b$	$= 0, \text{ then } \alpha^{2009} + \beta^{2009} =$ (3) 1 $x + c_1 \text{ and } p(x) = f(x) - g(x). \text{ If }$	(4) 2	[AIEEE-2010] x = -1 and $p(-2) = 2$
21	(1) Greater than –4ab	(2) Less than –4ab	(3) Greater than 4ab	(4) Less the	
20.	If the roots of the eq $3b^2x^2 + 6bcx + 2c^2$ is :-	uation $bx^2 + cx + a = 0$	be imaginary, then for al	l real values o	of x, the expression [AIEEE-2009
19.	second equations are in (1) 1	(2) 4	(3) 3	(4) 2	[AIEEE-2008
18.	of a is (1) $(-3, \infty)$	(2) (3,∞)	$1 x^{2} + ax + 1 = 0$ is less than (3) (- ∞ , -3)	(4) (-3, -2)	[AIEEE-2007] ∪(2,3)
10	(1) 1	(2) $\frac{17}{7}$	(3) $\frac{1}{4}$	(4)41	-
17.	If x is real, then maximu	im value of $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ if	1		[AIEEE-2006]
	(1) 0	(2) 1 $3r^2 + 9r + 17$	(3) 2	(4) 3	
16.	If the roots of the quadra	tic equation $x^2 + px + q = 0$	are tan 30° and tan 15°, resp	ectively then the	e value of $2 + q - p$ is [AIEEE-2006]
15.	All the values of m for lie in the interval- (1) $-1 < m < 3$	-	$uation x^2 - 2mx + m^2 - 1 = 0$ (3) -2 < m < 0	0 are greater that $(4) m > 3$	an –2 but less than 4 [AIEEE-2006]
	(1) equal to α (3) smaller than α	$a_{1}^{n-2} + \ldots + a_{1}^{n-2} = 0$ has a pos	(2) greater than or equal(4) greater than α		[AIEEE-2005]
			$0, a_1 \neq 0, n \ge 2, \text{ has a positive}$		

Maths

Excercise-5(Segment-II) Previous Year Questions (JEE Main/Advanced)

- 1. Let a, b, c be real numbers with $a \neq 0$ and let α , β be the roots of the equation $ax^2 + bx + c = 0$. Express the roots of $a^3x^2 + abcx + c^3 = 0$ in terms of α , β .
- 2. The set of all real numbers x for which $x^2 |x+2| + x > 0$, is (A) $(-\infty, -2) \cup (2, \infty)$ (B) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ (C) $(-\infty, -1) \cup (1, \infty)$ (D) $(\sqrt{2}, \infty)$ [JEE 2002]
- 3. If $x^2 + (a-b)x + (1-a-b) = 0$ where $a, b \in \mathbb{R}$ then find the values of 'a' for which equation has unequal real roots for all values of 'b'. [JEE 2003]
- 4. (a) If one root of the equation $x^2 + px + q = 0$ is the square of the other, then (A) $p^3 + q^2 - q(3p+1) = 0$ (B) $p^3 + q^2 + q(1+3p) = 0$ (C) $p^3 + q^2 + q(3p-1) = 0$ (D) $p^3 + q^2 + q(1-3p) = 0$ [JEE 2004]

(C) a > 5

- (b) If $x^2 + 2ax + 10 3a > 0$ for all $x \in R$, then (A) -5 < a < 2 (B) a < -5
- 5. Find the range of values of t for which $2 \sin t = \frac{1 2x + 5x^2}{3x^2 2x 1}$, $t \in$
- 6. (a) Let a, b, c be the sides of a triangle. No two of them are equal and $\lambda \in \mathbb{R}$. If the roots of the equation $x^2 + 2(a+b+c)x + 3\lambda(ab+bc+ca) = 0$ are real, then

(A)
$$\lambda < \frac{4}{3}$$
 (B) $\lambda > \frac{5}{3}$ (C) $\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$ (D) $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$

[**JEE 2006**]

[**JEE 2005**]

(D) 2 < a < 5

Maths

[**JEE 2001**]

- (b) If roots of the equation $x^2 10cx 11d = 0$ are a, b and those of $x^2 10ax 11b = 0$ are c, d, then find the value of a + b + c + d. (a, b, c and d are distinct numbers)
- 7. (a) Let α , β be the roots of the equation $x^2 px + r = 0$ and $\alpha/2$, 2β be the roots of the equation $x^2 qx + r = 0$. Then the value of 'r' is [JEE 2006]

A)
$$\frac{2}{9}(p-q)(2q-p)$$
 (B) $\frac{2}{9}(q-p)(2p-q)$ **(C**) $\frac{2}{9}(q-2p)(2q-p)$ **(D**) $\frac{2}{9}(2p-q)(2q-p)$

Match the Column

(b) Let
$$f(\mathbf{x}) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6}$$

Match the expressions / statements in Column I with expressions / statements in Column II.

	Column I		Column II	
(A)	If $-1 < x < 1$, then $f(x)$ satisfies	(p)	$0 < f(\mathbf{x}) < 1$	
(B)	If $1 \le x \le 2$, the $f(x)$ satisfies	(q)	$f(\mathbf{x}) < 0$	
(C)	If $3 < x < 5$, then $f(x)$ satisfies	(r)	$f(\mathbf{x}) > 0$	
(D)	If $x > 5$, then $f(x)$ satisfies	(s)	$f(\mathbf{x}) < 1$	[JEE 2007]

Quadratic Equation

Maths

Assertion & Reason

Let a, b, c, p, q be real numbers. Suppose α , β are the roots of the equation $x^2 + 2px + q = 0$ and α , $1/\beta$ are the roots 8. of the equation $ax^2 + 2bx + c = 0$, where $\beta^2 \notin \{-1, 0, 1\}$ **Statement-I**: $(p^2 - q)(b^2 - ac) \ge 0$ and **Statement-II** : $b \neq pa$ $c \neq qa$ or (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement 1 (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement 1 (C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is True [**JEE 2008**] The smallest value of k, for which both the roots of the equation, $x^2 - 8kx + 16(k^2 - k + 1) = 0$ are real, distinct and 9. have values at least 4, is [**JEE 2009**] Let p and q be real numbers such that $p \neq 0$, $p^3 \neq q$ and $p^3 \neq -q$. If α and β are nonzero complex numbers satisfying 10. $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is [**JEE 2010**] (A) $(p^3 + q)x^2 - (p^3 + 2q)x + (p^3 + q) = 0$ **(B)** $(p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0$ (C) $(p^3-q)x^2 - (5p^3-2q)x + (p^3-q) = 0$ (D) $(p^3-q)x^2 - (5p^3+2q)x + (p^3-q) = 0$ Let α and β be the roots of $x^2 - 6x - 2 = 0$, with $\alpha > \beta$. If $a_n = \alpha^n - \beta^n$ for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{2a_0}$ is 11. NIANCE(C)3 [**JEE 2011**] **(A)** 1 **(B)**2 **(D)**4 A value of b for which the equations 12. $x^2 + bx - 1 = 0$ $x^{2} + x + b = 0$, have one root in common is -[**JEE 2011**] (C) $i\sqrt{5}$ $(\mathbf{A}) - \sqrt{2}$ $\mathbf{D}\sqrt{2}$ **(B)** $-i\sqrt{2}$ The quadratic equation p(x) = 0 with real coefficients has purely imaginary roots. Then the equation 13. p(p(x)) = 0 has [JEE Ad. 2014] (A) only purely imaginary roots (B) all real roots (C) two real and two purely imaginary roots (D) neither real nor purely imaginary roots Let $a \in R$ and let $f : R \to R$ be given by $f(x) = x^5 - 5x + a$ Then, 14. [JEE Ad. 2014] (A) f(x) has three real roots of a > 4(B) f(x) has only one real root if a > 4(C) f(x) has three real roots if a < -4(D) f(x) has three real roots if -4 < a < 415. Let S be the set of all non-zero real numbers a such that the quadratic equation $ax^2 - x + a = 0$ has two distinct real roots x₁ and x₂ satisfying the inequality $|x_1 - x_2| < 1$. [JEE Ad. 2015] Which of the following intervals is(are) a subset(s) of S? (A) $\left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$ (B) $\left(-\frac{1}{\sqrt{5}}, 0\right)$ (C) $\left(0, \frac{1}{\sqrt{5}}\right)$ (D) $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

(Quadratic Equation

JE	CE MAIN & ADVANCEL			Maths
		Dracti	ce Test	
		TTACCI	LETESL	
	S	SECTION - I : STRAIC	GHT OBJECTIVE TYP	E
•	If $(1 + k) \tan^2 x - 4 \tan (A) k^2 < 5, k \neq -1$	x - 1 + k = 0 has real roots (B) $k^2 \le 5$	$\tan x_1 \text{ and } \tan x_2, \text{ where } \tan x_2, whe$	$x_1 \neq \tan x_2$, then (D) none of these
	discriminants are equal. (A) α will be A.M. of the	If $f(x) = g(x)$ has a root $x = c$ e roots of $f(x) = 0$ and $g(x) =$		
	α , β are roots of the eq	uation $\lambda (x^2 - x) + x + 5 = 0$). If λ_1 and λ_2 are the two val	ues of λ for which the roots α ,
	are connected by the r	elation $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 4$, then the formula $\frac{\alpha}{\beta} = \frac{1}{\alpha} + \frac{\beta}{\alpha} = \frac{1}{\alpha} + \frac{1}$	the value of $\frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_1}$ is	2025
	(A) 150	(B) 254	(C) 180	(D) 1022
1.	If the roots of the expression $3b^2x^2 + 6bc$ (A) greater than 4ab	equation $bx^2 + cx + a = bx^2 + 2c^2$ is (B) less than 4ab	= 0 be imaginary, then : (C) greater than -4ab	for all real values of x, th (D) less than -4ab
i.	$f(x) = x^{2} + bx + c$, whe value of $f(x)$ is (A) 2	there b, $c \in R$, if $f(x)$ is a factor (B) 3	r of both $x^4 + 6x^2 + 25$ and 3 (C) 2.5	$4x^4 + 4x^2 + 28x + 5$ then the lease (D) 4
	If α , β are the roots of the second sec	the equation $ax^2 + bx + c = 0$,	then the equation $ax^2 - bx (x$	$(-1) + c (x - 1)^2 = 0$ has roots
	(A) $\frac{\alpha}{1-\alpha}, \frac{\beta}{1-\beta}$	(B) $\alpha - 1, \beta - 1$	(C) $\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$	(D) $\frac{1-\alpha}{\alpha}, \frac{1-\beta}{\beta}$
•		$(x^2 + px + 3q)(-x^2 - q)(-x^2 - q)$	$+rx + q)(-x^2 + sx - 2q) = 0$	has
	(A) 6 real roots	N ^V	(B) at least two real root	
	(C) 2 real and 4 imagin	hary roots	(D) 4 real and 2 imaginar	'y roots
•	1 2		of the roots of the equations	$ax^2 + bx + c = 0$, then quadrat
	equation whose roots (A) $abx^2 + (b^2 + ac)x +$	1 2	(B) $2ab x^2 + (b^2 + 4ac) x -$	+2bc=0
	(C) $2abx^2 + (b^2 + ac) x$		(D) none of these	
•	If $x_1 > x_2 > x_3$ and x_1 ,	x_{2}, x_{3} are roots of $\frac{x-a}{b}$	$+\frac{x-b}{a}=\frac{b}{x-a}+\frac{a}{x-b}$; (a, b)	> 0) and $x_1 - x_2 - x_3 = c$, th
	a, c, b are in.			
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None
0.	S_2 : If α, β be the roots S_3 : If sin θ and cos relation $a^2 = b^2 + b^2$	s of $x^2 + x + 1 = 0$. Then the s θ are the roots of the of 2ac	e tan 22° and tan23° then p - equation whose roots are α^{22} equation $ax^2 - bx + c = 0$	-
	\mathbf{S}_4 : Range of $\frac{1}{1+x^2}$ i	s (0, 1]		
		`		

Quadratic Equation

	(A) FTTT	(B) TFTF	(C) TTFT	(D) TTTF
	SECT	TON - II : MULTIPLE	CORRECT ANSWER	R TYPE
11.	If $a, b \in R$ and $ax^2 + b$ (A) Minimum possible	$x + 6 = 0$, $a \neq 0$ does not have value of $3a + b$ is -2	e two distinct real roots, the (B) Minimum possible v	
	(C) Minimum possible	value of $6a + b$ is -1	(D) Minimum possible v	value of $6a + b$ is 1
12.	Let Δ^2 be the disc:	timinant and α , β be the	ne roots of the equati	on $ax^2 + bx + c = 0$. Then,
		can be the roots of the equa		
	(A) $x^2 + 2b x + b^2 = 0$		(B) $x^2 - 2bx + b^2 = 0$	
	(C) $x^2 + 2bx - 3b^2 + 16$		(D) $x^2 - 2bx - 3b^2 + 16a$	
13.	If the quadratic equa equal, then	ation (ab $-bc$) $x^2 + (bc - bc)$	ca) $x + ca - ab = 0$, a	b, $c \in \mathbf{R}$, has both the roots
	(A) both roots are equ	al to 0	(B) both roots are equa	
	(C) a, c, b are in harm	onic progresssion	(D) $ab^2 c^2$, $b^2 a^2 c$, $a^2 c^2$	b are in arithmetic progression
14.	$\frac{\pi^{\rm e}}{{\rm x}-{\rm e}}+\frac{{\rm e}^{\pi}}{{\rm x}-\pi}+\frac{\pi^{\pi}+{\rm e}^{\rm e}}{{\rm x}-\pi-{\rm e}^{\rm e}}$	e ⁻⁼⁰ has	TERIN	
	(A) one real root in (e, a	t) and other in $(\pi - e, e)$	(B) one real root in (e, π)) and other in $(\pi, \pi + e)$
	(C) two real roots in $(\pi$	$-e, \pi + e)$	(D) No real roots	
15.	If the roots of the equat	ion $x^3 + bx^2 + cx - 1 = 0$ form	an increasing G.P., then	
	(A) $b + c = 0$		6,	
	(B) $b \in (-\infty, -3)$	A Pr		
	(C) one of the roots is			
	(D) one root is smaller	than 1 and one root is more the	nan 1.	
	SE	CTION III - ASSEDT	ION AND DEACON T	WDF
	SE	CTION - III : ASSERT	ION AND REASON I	ITL
16.	and the second	tion $(x-p)(x-r) + \lambda (x-q)$		
		ation $ax^2 + bx + c = 0$, a, b, c		
		, Statement-II is True; Statem	-	
		Statement-II is True; Statem	ent-II is NOT a correct exp	lanation for Statement-I
	(C) Statement-I is True	Statement-II is False		

- (D) Statement Lie Felse Statement His True
- (D) Statement-I is False, Statement-II is True
- Statement-I: If roots of the equation x² bx + c = 0 are two consecutive integers, then b² 4c = 1.
 Statement-II: If a, b, c are odd integer then the roots of the equation 4 abc x² + (b² 4ac) x b = 0 are real and distinct.
 (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
 - (C) Statement-I is True, Statement-II is False

(D) Statement-I is False, Statement-II is True

- 18. Statement-I : If one roots is $\sqrt{5} \sqrt{2}$ then the equation of lowest degree with rational coefficient is $x^4 - 14x^2 + 9 = 0$.
 - Statement-II: For a polynomial equation with rational co-efficient irrational roots occurs in pairs
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True
- 19. Statement-I: The quadratic equation $(a b) x^2 + (b c) x + (c a) = 0$ have one root x = 1Statement-II: If sum of the co-efficients in a quadratic equation vanishes then its one root is x = 1
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True
- 20. Statement-I: The number of values of 'a' for which $(a^2 3a + 2) x^2 + (a^2 5a + 6) x + a^2 4 = 0$ is an identity in x, is 2. Statement-II: If a = b = c = 0, then equation $ax^2 + bx + c = 0$ is an identity in x.
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True

21. Match the Column

Colun	Column – I		
(A)	Number of real solution of $ x + 1 = e^x$ is	(p)	2
(B)	The number of non-negative real roots of	(q)	3
	$2^{x} - x - 1 = 0$ equal to		
(C)	If p and q be the roots of the quadratic equation	(r)	6
	$x^2 - (\alpha - 2) x - \alpha - 1 = 0$, then minimum		
	value of $p^2 + q^2$ is equal to		
(D)	If α and β are the roots of $2x^2 + 7x + c = 0$	(s)	4
	-		
	and $ \alpha^2 - \beta^2 = \frac{1}{2}$, then c is equal to	(t)	5

Maths

22.	Match the Column					
		Column - I		Column	і-П	
	(A)	The equation $x^3 - 6x^2 + 9x + \lambda = 0$ have exactly		(p)	-3	
		one root in (1, 3) then $[\lambda + 1]$ is				
		(where [.] denotes the greatest integer function)				
	(B)	If $-3 < \frac{x^2 - \lambda x - 2}{x^2 + x + 1} < 2$ for all $x \in \mathbb{R}$, then $[\lambda]$ is		(q)	- 2	
		can be where [.] denotes the greatest integer function				
	(C)	If $x^2 + \lambda x + 1 = 0$ and $(b - c)x^2 + (c - a)x + (a - b) = 0$		(r)	-1	
		have both the roots common, then $[\lambda - 1]$ is		0		
		(where [.] denotes the greatest integer function)		A.	, ,	
	(D)	If N be the number of solutions of the	9	(5)	3	
		equation $ x^2 - x - 6 = x + 2$, then the				
		value of $-N$ is.	INSTON TYPE	(t)	0	
		SECTION - V : COMPREHE	INSION TYPE			
23.	Read the	ne following comprehension carefully and answer the	questions.			
	Let f(x	$(x) = x^2 + b_1 x + c_1, g(x) = x^2 + b_2 x + c_2.$ Real roots	of $f(x) = 0$ be α , β	and re	al roots of $g(x) = 0$ be	
	$\alpha + \delta$,	$\beta + \delta$. Least value of $f(x)$ be $-\frac{1}{4}$. Least value of $g(x)$	a) occurs at $x = \frac{7}{2}$			
1.		east value of $g(x)$ is				
	(A) -1	$(B) - \frac{1}{2}$ (C)	$\frac{1}{4}$	(D) $-\frac{1}{3}$	3	
2.	The va	lue of b ₂ is				
	(A) 6	(B) -7 (C) 8		(D) 0		

3. The roots of g(x) = 0 are (A) 3, 4 (B) -3, 4 (C) 3, -4 (D) -3, -4

24. Read the following comprehension carefully and answer the questions. If roots of the equation $x^4 - 12x^3 + bx^2 + cx + 81 = 0$ are positive, then

1.	Value of b is			
	(A) -54	(B) 54	(C) 27	(D) -27
2.	Value of c is			
	(A) 108	(B) – 108	(C) 54	(D) – 54
3.	Root of equation 2bx +	-c = 0 is		
	(A) $-\frac{1}{2}$	(B) $\frac{1}{2}$	(C) 1	(D) – 1
Qu	adratic Equation	\supset		

25. Read the following comprehension carefully and answer the questions. In the given figure vertices of $\triangle ABC$ lie on $y = f(x) = ax^2 + bx + c$. The $\triangle ABC$ is right angled isosceles triangle whose hypotaneous $AC = 4\sqrt{2}$ units, then

1. y = f(x) is given by

3.

(A)
$$y = \frac{x^2}{2\sqrt{2}} - 2\sqrt{2}$$
 (B) $y = \frac{x^2}{2} - 2$ (C) $y = x^2 - 8$ (D) $y = x^2 - 2\sqrt{2}$

- 2. Minimum value of y = f(x) is
 - (A) $2\sqrt{2}$ (B) $-2\sqrt{2}$ (C) 2 (D) -2Number of integral value of k for which $\frac{k}{2}$ lies between the roots of f(x) = 0, is (A) 9 (B) 10 (C) 11 (D) 12

SECTION - VI : INTEGER TYPE

- 26. Find all 'm' for which $f(x) \equiv x^2 (m-3)x + m > 0$ for all values of 'x' in [1, 2].
- 27. If α , β are roots of the equation $x^2 34x + 1 = 0$, evaluate $\sqrt[4]{\alpha} \sqrt[4]{\beta}$, where $\sqrt[4]{.}$ denotes the principal value.
- 28. Find the absolute value of the difference of the real roots of the equation $x^2 - 2^{2010} x + |x - 2^{2009}| + 2(2^{4017} - 1) = 0$
- **29.** Find the values of 'a' for which the equation

$$(x^{2} + x + 2)^{2} - (a - 3)(x^{2} + x + 2)(x^{2} + x + 1) + (a - 4)(x^{2} + x + 1)^{2} = 0$$
 has at least one real root.

30. Find the number of real roots of
$$\left(x + \frac{1}{x}\right)^3 + \left(x + \frac{1}{x}\right) = 0$$

120

Maths

JEE MAIN & ADVA	INCED						(Math	IS
		Ar	ISW	er Ke	ey				
		I	EXERCI	SE - 1					
D 2. C 3. B A 15. A 16. C C 28. B 29. C D D 41. A 42. B	4. B 5. 17. A 18. 30. B 31. 43. C 44.	C 19. C A 32. B	20. A	8. C 9. 21. B 22. 34. C. 35.	A 23. A	4 24. A	25. D		
		EXER	CISE - 2	: Segment	-I		2		
BC 2. ABD 11. ABC	3. AD 12. ABCD	4. BC 13. BC	5. BD 14. A	6. CD 15. D		BD 8 ABCD 1	AC 7. A	9. AH 18. BE	
20. CD 20. AD		22. ACD	23. C	24. AB					
			Segmer	nt-II	BRIA				
A 2. D 3. D	4. A 5.	В 6. А	7. B	8. B 9.	A 10.	A 11. I)		
		EXER	CISE - 3	: Segment	-I				
$A \rightarrow q$, $B \rightarrow prs, C$	$C \to r, D \to s,$			U		$A \to p$	$b, B \rightarrow s,$	$C \rightarrow q, D$	\rightarrow r
$A \rightarrow prs, B \rightarrow qs, C$									
$A \rightarrow q, B \rightarrow p, C \rightarrow s$	$s, D \rightarrow r,$	8. $A \rightarrow r$,	B → pqı	rs, $C \rightarrow q$,	ç	$A \to c$	$q, B \to q,$	$C \rightarrow p$,	
omprehension # 1 :	1. A 2. A	3. D	Segmer Compre	nt-II hension # 2 :	1. C	2. B	3. C	4. D	
	EXE	RCISE - 4	: Subje	ective type	questions	5			
E.F.				: Segment		r		_	
4 2. 2 9.	3 3. 1 10.	1 3		4 5. 4 12.	2 1	6. 13.	1 2	7. 14.	1 3
5. 1 16 .	4 17.	4	18.	4 19 .		20.	1	21.	3
2. 1 23.	2 24.	3	25. Sagmar	1 26.	1	27.	4		
$\gamma = \alpha^2 \beta$ and $\delta = \alpha \beta^2$ or γ	$\gamma = \alpha \beta^2$ and $\delta =$	α ² β 2. Ι	Segme 3 3. a		$(a) \rightarrow D;$	b) $\rightarrow A$			
$\left[-\frac{\pi}{2}, -\frac{\pi}{10}\right] \cup \left[\frac{3\pi}{10}\right]$							$\mathbf{C} \rightarrow \mathbf{q}, \mathbf{s};$; $\mathbf{D} \rightarrow \mathbf{p}, \mathbf{r}$;, s
$\begin{bmatrix} 2 & 10 \end{bmatrix} \bigcirc \begin{bmatrix} 10 \end{bmatrix}$	4								
$\begin{bmatrix} 2 & 10 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \end{bmatrix}$ B 9. 2 10. B	²] 11. C 12.		14.	B,D 15.	D				

Maths

MOCK TEST

1. A 2. A 3. D **4.** C 5. D 6. C 7. B 8. B 9. C 11. AC12. AC13. BCD14. BC15. ABCD16. D17. B20. D21. $A \rightarrow q, B \rightarrow p, C \rightarrow t, D \rightarrow r$ 22. $A \rightarrow pqrt, B \rightarrow rt, C \rightarrow p, D \rightarrow p$ 10. C 18. A 19. A 23. 1 C 2 B 3 A **24** 1 B 2 C **25** 1 A 2 B 3 C **26** −∞, 10 **27** ± 2 **28.** 2 **29.** $5 < a \le \frac{19}{3}$ JOR MAIN AND ADVANCOD MANDRALA 200002 **30.** 0

Quadratic Equation