# PERIODIC CLASSIFICATION

### LEARNING OBJECTIVES :

- Mendeleef classification of elements
- Long form of periodic table
- classification of elements in to blocks and types
- periodic properties
- diagonal relation ship

#### **REAL LIFE APPLICATIONS :**

 $\Phi$  Periodic table has several real time applications as each element has its own identity & each element form various bonds with various elements.

#### For example :

Iridium is used to develop cancer treatment, hypodermic needles, helicopter spark plugs and fountain pen nibs brings the element alive with meaning.

 $\Phi$  Periodic trends have several applications which includes production of Polymer Electrolytes in the manufacture of Lithium-Ion Batteries, Similarly In medicinal field, it is used to prevent various deficiency diseases.

#### For Example :

you can prevent iodine deficiency by using iodised salt (most off-the-shelf table salt is iodised). This is done by substituting some of the chlorine you would normally eat in table salt with iodine.

 $\Phi$  Lithium salts are used to treat bipolar disorder by substituting lithium for sodium in the central nervous system.

### §§ Fundamentals

At present around 110 elements are known. Among these 90 are natural, and the remaining are man made elements. Elements coming after 92 atomic number are known as "Trans Uranic Elements" or "Synthetic Elements" and they are "Radioactive".

### **<u>§§</u>** Mendeleeff's Classification of Elements :

**Periodic Law :** The physical and chemical properties of the elements are periodic functions of their atomic weights.

Mendeleeff's periodic table is also known as short form of periodic table.

Mendeleeff observed that elements with similar properties have

- i) Almost have same atomic weight.
  - Eg: Fe(56), Rb(59), Ni(59)
- ii) Atomic weights increasing constantly

Eg: K(39), Rb(85), Cs(133)

Elements are arranged in 11 horizontal rows known as series which are grouped into 7 periods. The first three periods are short periods and remaining are long periods. Each long period has 2 rows of elements or 2 series of elements. Vertical columns are called groups and there are nine groups (0 to 8<sup>th</sup>). Leaving 0 and VIII, each group is subdivided into subgroups known as A and B group. Group VIII of the Mendeleeff table consists of three triads known as transition triads and they are

i) Iron, Cobalt and Nickel

ii) Ruthenium, Rhodium and Palladium

iii) Osmium, Iridium and Platinium

Zero group elements were later introduced by Ramsay and Rayleign.

Mendeleeff has a fore sight to leave some gaps in the periodic table for 3-elements. And these

#### PERIODIC CLASSIFICATION AND PROPERTIES

elements are discovered latter and included in the table. Those three elements are

1) eka boron presently known as Scandium

2) eka silicon presently known as Germanium

3) eka aluminium presently known as Gallium

Mendeleeff corrected the atomic weights of Beryllium, Indium and Osmium by using corrected valency of elements

Atomic Wt. = Equivalent Wt. xvalency.

#### **<u>¶</u>** Demerits:

i) some elements with higher atomic weight were placed before low atomic weight elements inorder to maintain similar chemical nature of elements and are called inverted pairs or anomalous pairs. Anomalous pairs of Mendeleeff's periodic table are

a) Ar-K b) Co-Ni c) Te-I and d) Th-Pa

ii) Position of hydrogen was not made clear

**iii) Position of isotopes:** Isotopes at the atomsof same element having different atomic masses. Therefore, according to mendeleev's classification these should be placed at different places depending upon their atomic masses.

iv) Some similar elements are separated , in the periodic table.

EX: Cu, Hg, Ba ,Pb .

On the other hand some dissimilar elements have been placed together in the same group like a Halogens

### Atomic Number:

i) Moseley discovered the atomic numbers from X-ray spectra of elements by bombarding the elements with cathode rays and the elements emitted respective X-rays of characteristic frequency.

ii) Atomic number 'Z' can be related to frequency of the X-rays emitted by using  $\sqrt{V} = a(Z - b)$  where a, b are constants for an element

iii) A plot of  $\sqrt{V}$  against Z gives a straight line.

iv) Atomic number has provided a better basis for the periodic arrangement of the elements. <u>Modern periodic law :</u> Physical and chemical properties of the elements are periodic

functions of their atomic numbers and electronic configuration.

### <u>§§</u> Long Form of Periodic Table :

1. Neils Bohr constructed the long form of periodic table.

2. Modern periodic table or the long form of periodic table is based on the electronic configurations of the elements.

3. There are 18 groups and 7 periods in the periodic table.

### <u>§§</u> <u>PERIODS : (Horizontal Rows)</u>

1.In periods elements are arranged in the increasing order of their atomic numbers. The electron by which an element differes from its previous element is called **"differentiating electron"**.

2.In each period the differentiating electron enters the "s" orbital in the first element and "p" orbital in the last element.

3. In periods elements are arranged according to the "(n+l)" values order (Aufbau-Rule).

4.Long form of the periodic table is a *Graphical Representation* of the Aufbau-Rule.

5. Generally every period starts with an Alkali Metal and ends with Noble gas.

### <u>§§</u> <u>REMEMBER :</u>

**1.3rd** orbit contains **3s**, **3p** and **3d**. But according to *(n+l)* values order (energy order) **3d** comes after **4s**, hence accordingly elements with **3d configuration** are placed after **4s** only. i.e., **in 4th period.** (**3d** series - 1st transition period - **Sc(Z=21)** to **Zn (Z=30)**).

2.Elements with 4d configuration [from Y(Z=39) to Cd(Z=48)] placed in 5th period (2nd Transition series).

3. Elements with 5d configuration from La(Z=57) and Hf (Z=72) to Hg (Z=80) are placed in 6th period. (3rd transition series).

4. Fourteen 4f series elements belongs to 6th period III B group. Ce (Z=58) to Lu (Z=71).

5.Fourteen 5f series elements belongs to 7th period & III B group. Th (Z=90) to Lr (Z=103). 6d-series is incomplete series.

6.If 7th period is also completed, then the final element of this period would be with an atomic number 118.

### §§ GROUPS : (VERTICAL COLUMNS) :

Long form of the periodic table comprises of 18-vertical columns which are divided into main groups and subgroups as - IA to VIIA, O groups and IIIB, IVB, VB, VIB, VIIB, VIII, IB and IIB groups.

VIII groups includes three vertical columns of Fe, Co, Ni. Total 9 elements are present in this group.

We adopt the 1-18 numbering scheme recomended by IUPAC in 1988.

Main group division is based on the number of electrons present in outer most orbit like H, Li, Na, K, Rb, Cs and Fr have 1 electron in their outer most orbit, so they are placed in IA group.

Be, Mg, Ca, Sr, Ba and Ra have 2 electrons in their outer most orbit, so they are placed in IIA group. <u>§§</u> <u>IUPAC NOMENCLATURE FOR SUPER HEAVY ELEMENTS</u>

#### <u>SS</u> <u>IUPAC NOMENCLATURE FOR SUPER REAVITELEMENTS</u> The elements after Fermium are called super beavy elements and at pre

The elements after Fermium are called super heavy elements and at present these are called trans Fermium elements.

1. The names are derived by using root word's fo the three digits in the atomic number of the element and adding the suffix - ium.

- 2. In certain cases the names are shortended for examples
- a) bi + ium is shortended to bium
- b) tri + ium is shortended to trium

3. The IUPAC name of an element with atomic number 101 is unnilunium.

# **<u>§§</u>** CLASSIFICATION OF ELEMENTS ON THE BASIS OF THEIR ELECTRONIC

### CONFIGURATION

Elements are classified in to four blocks on the basis of differentiating electron enters in to which subshell of the main shell.

a) s-Block Elements b) p-Block Elements

c) d-Block Elements d) f-Block Elements

### **<u>¶</u>** S - BLOCK ELEMENTS :

1.Differentiating electrons enter into s-subshell.

2.S-sublevel can accomadate 2-electrons, hence S-block elements are arranged in two groups, IA, IIA.

3.General electronic configuration is **ns**<sup>1-2</sup>.

4.H, Li, Na, K, Rb, Cs, Fr elements (alkali metals) have 1 electron in their outer shell with "**ns**<sup>1</sup>" general outer shell configuration, they belongs to IA.

5.Be, Mg, Ca, Sr, Ba and Ra (Alkaline Earth elements) have 2-electrons in their outer shell, with "**ns**<sup>2</sup>" general outer shell configuration, they belongs to IIA.

6.Most of these are active metals.

7.Most of these compounds are ionic.

| Number    | 0   | 1  | 2  | 3   | 4    | 5    | 6   | 7    | 8   | 9   |
|-----------|-----|----|----|-----|------|------|-----|------|-----|-----|
| Root word | nil | un | bi | tri | quad | pent | hex | sept | oct | enn |

tior

8. These are powerful reducing agents.

### **<u>¶</u>** p - BLOCK ELEMENTS :

1. Differentiating electrons enter into p-subshell.

2. The general outer shell configuration of P-block elements.  $ns^{1-2}np^{1-6}$ 

3.p-block elements are arranged in 6-groups they are from IIIA to VII A and O-group.

a) B, Al, Ga, In and *Tl* - Boron family - IIIA group, these elements have 3-electrons in outer shell, with "**ns**<sup>2</sup>**np**<sup>1</sup>" general outer shell configuration.

b) C, Si, Ge, Sn and Pb - Carbon Family - IVA group, these elements have 4-electrons in outershell, with "**ns**<sup>2</sup>**np**<sup>2</sup>" general outer shell configuration.

c) N, P, As, Sb and Bi - Nitrogen Family - VA group (Pnicogens). These elements have 5-electrons in outer shell, with "**ns**²**np**³" general outer shell configuration.

d) O, S, Se, Te, and Po- VIA group(Chalcogens), these elements have 6-electrons in outershell, with "**ns**²**np**⁴", general outer shell configuration.

e) F, Cl, Br, I and At- (Halogens) - VIIA group, these elements have 7-electrons in outer shell, with "ns<sup>2</sup>np<sup>5</sup>", general outer shell configuration.

f) He, Ne, Ar, Kr, Xe and Rn - Inert gases - O–group, Except He **(1s<sup>2</sup>)**, remaining inert gases have 8-electrons in outer shell with "**ns<sup>2</sup>np**<sup>6</sup>" general outer shell configuration.

g) p-block contains metals, non-metals and metalloids.

e) Most of the p-block element compounds are covalent.

f) Most of these are oxidising agents

### REMEMBER:

i) Infact Helium belongs to s-block, but keeping its chemical inertness, Helium is placed along with other inert gases in O-group.

ii) Hence He is a p-block element with out p-electrons.

iii) The first p-block element is Boron [(He) 2S<sup>2</sup> 2P<sup>1</sup>]

iv) The only group with all gaseous elements is "O-group".

### d-BLOCK ELEMENTS:

1.If differentiating electrons enter the'd' subshell of (n-1) shell (i.e, d-orbitals of penultimate shell), the elements of this class are called "d-block elements".

2. The general electronic configuration of d-block elements is  $(n-1)d^{1-10} ns^{1 or 2}$  (n = outer shell).

3.d-Block elements are placed between s-block and p-block and they are also called transition elements.

4.d-Block elements are further classified into following transition series on the basis of which **(n-1)d** is being filled.

- a) 1st Transition series 3d series electronic configuration. 3d<sup>1-10</sup> 4s<sup>1-2</sup> [Sc (Z=21) to Zn (Z=30)]
- b) 2nd Transition series 4d series electronic configuration. 4d<sup>1-10</sup> 5s<sup>1-2</sup> [Y(Z=39) to Cd (Z=48)].
- c) 3rd Transition series 5d series electronic configuration. 5d<sup>1-10</sup> 6s<sup>1-2</sup>. [La (Z=57), Hf (Z=72)

### to Hg (Z=80)]

d) 4th Transition series - 6d - series - is an incomlpete series.

- e) Most of these are less active metals.
- f) Most of these compounds are ionic and co-ordinate covalent.

### REMEMBER :

After completion of 6s, the differentiating electron suppose to enter into 4f, but in the case of Lanthanum the differentiating electron is entering into 5d, instead of 4f (La - 6s<sup>2</sup> 4f<sup>0</sup> 5d<sup>1</sup>). Therefore "La" belongs to d-block.

Similarly in case of Actinium, the differentiating electron is entering into 6d, instead of 5f (Ac-7s<sup>2</sup> 5f<sup>0</sup> 6d<sup>1</sup>). Therefore Ac also belongs to d-block.

### **¶ f-BLOCK ELEMENTS**:

1.If differentiating electrons enter into f-subshell of Anti penultimate i.e., (n-2) shell, the ele-

ments of this class are called **f-block** elements.

#### 2. The general electronic configuration (n-2)f<sup>1-14</sup> (n-1)d <sup>0 or 1</sup> ns<sup>2</sup> (n = outer shell).

3. These f-block elements are placed at the bottom of the periodic table in two rows, they are 4f series and 5f series. The properties of 4f-series elements are similar to Lanthanum they are known as Lanthanides (or) Lanthanons or rare earths.

a) 4f-series - Lanthanide series - configuration 4f<sup>1-14</sup> 5d<sup>0-1</sup> 6s<sup>2</sup> from Ce(58) to Lu (71)

b)) 4f- series elements belongs to 6th period and IIIB Group.

c) 5f - series elements - Actinide series - configuration 5f<sup>1-14</sup> 6d<sup>0-1</sup> 7s<sup>2</sup> from Th (90) to Lr (103).

d) 5f - series elements belongs to 7th period and III B group.

e) Most of these elements are radioactive.

### **<u>88</u>** CLASSIFICATION BASED ON CHEMICAL PROPERTIES.

All the elements are divided into four types on the basis of their chemical properties and electronic configuration.

### TYPE - I : INERT GAS ELEMENTS:

1.He, Ne, Ar, Kr, Xe and Rn belongs to "0" group in the periodic table are called **Inert Gas Elements**.

2.Except He ( $1s^2$ ), all the other elements have  $ns^2np^6$  outer electronic configuration.

3.All are chemically inert due to the presence of stable ns<sup>2</sup>np<sup>6</sup> (octet) configuration in their outer most shell.

4.He is inactive due to its completely filled 'K' shell. (1s<sup>2</sup>)

5. It is known that heavier elements (Kr, Xe) forms compounds under special controlled conditions with Oxygen, Fluorine,  $XeOF_2$ , and  $XeOF_4$ . So they are now called **Noble gases**.

6.All are monoatomic gases.

7. They are also known as Rare gases (or) Aerogens.

### TYPE -II : REPRESENTATIVE ELEMENTS OR NORMAL ELEMENTS

1. These are the elements whose outer shells are not completely filled.

2.Excluding "0" group, remaining s and p block elements (IA, IIA, IIIA, IVA, VA, VIA, VIA) are called representative elements.

3. Most of these elements are abundent and active.

4. Their general outer electronic configuration os ns<sup>1-2</sup> np<sup>1-5</sup>.

5.Metals, nonmetals and metalloids are present in representative elements.

6.Atoms of these elements enter chemical combination by losing, gaining or sharing of electrons to attain stable nearest inert gas configuration.

7.In case of representative elements electrons of outer ns and np will take part in bonding.

### TYPE-III : TRANSITION ELEMENTS:

1. These are the elements whose outer most and penultimate shells are incompletely filled.

2. Elements which have incompletely filled or partly filled d-orbitals either in elementary state or in any possible oxidation state are called as transition elements.

3. Their properties are intermediate to s - and p - block elements.

4. The general electronic configuration is (n-1)d<sup>1-10</sup> ns<sup>1-2</sup>.

5.II B group elements Zn  $(3d^{10} 4s^2)$ , Cd  $(4d^{10} 5s^2)$  Hg  $(5d^{10} 6s^2)$  are not transition elements (due to the absence of partly filled d-orbitals both in atomic and in ionic states) (Zn, Cd, Hg - are referred as Non-typical Transition Elements) or volatile metals.

6.In the case of Transition elements both (n-1)d and ns electrons participate in bonding.

### 7. The characteristic properties of transition elements are

- a. They are hard and heavy metals b. Variable Oxidation states
- c. Formation of coloured ions due to d-d- transition
- d. Formation of metal complexes
- e. Paramagnetism

f. Catalytic activity.

- g. High M.P., B.P and
- h. Good conductors of heat and electricity
- g. High M.P., B.P and densities.
- i. Alloy formation.

|                    | These characteristic propertie                   | s are due to                               |                                                |                           |  |  |  |
|--------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------------|---------------------------|--|--|--|
|                    | a. Small size b. Hig                             | n nuclear charg                            | e c. Unparied e                                | lectrons in d-orbitals.   |  |  |  |
| Note               | e : Ni used as a catalyst in Hydr                | ogenation of oil                           | ls.                                            |                           |  |  |  |
| 1                  | Fe used as a catalyst in Haber's process         |                                            |                                                |                           |  |  |  |
| 1                  | Mo used as a promoter in Ha                      | aber's process.                            |                                                |                           |  |  |  |
| <u> TYP</u>        | <u>E-IV :</u> INNER TRANSITION E                 | LEMENTS                                    |                                                |                           |  |  |  |
| 1                  | 1.These elements have three                      | outermost shell                            | s incomplete i.e., n, (n                       | 1-1) and (n-2)            |  |  |  |
| 1                  | 2.The f-block elements are ca                    | led inner transi                           | tion elements.                                 |                           |  |  |  |
| 1                  | 3.General configuration (n-2)                    | <sup>1-14</sup> (n-1)d <sup>0 or 1</sup> n | <b>S</b> <sup>2</sup> .                        |                           |  |  |  |
| 1                  | 4. Since the last two shells have                | e similar configu                          | uration these elements                         | have similar physical and |  |  |  |
| 1                  | chemical properties (eg - thes                   | e elements sho                             | ws common oxidation                            | state of +3).             |  |  |  |
| 1                  | 5. I here are two series of inne                 |                                            | nents.                                         |                           |  |  |  |
| 1                  | 6.41-series - Lanthanide series                  | $5 - 41^{1-14}$ 50 $00^{11}$               | 0S <sup>2</sup> .                              |                           |  |  |  |
| i                  | 7.51 - Series - Actinide series -                | 51 - 14 60 01 78                           |                                                |                           |  |  |  |
| i                  | 8. In periodic table, lanthanide                 | s are present b                            | etween <sub>57</sub> La & <sub>72</sub> Hf and |                           |  |  |  |
| i                  | 9. Actinides are present petwe                   | en <sub>89</sub> AC & <sub>104</sub> RI.   | all Actinidae are redited                      | activo                    |  |  |  |
| i                  | IU.Lanthanides are rare earth                    | s, and all most a                          | an Acumues are radioa                          | ictive.                   |  |  |  |
| i                  |                                                  |                                            |                                                |                           |  |  |  |
| Ì                  |                                                  | TEACHING                                   | TASK                                           | n                         |  |  |  |
|                    |                                                  | TEACHING                                   | TASK                                           |                           |  |  |  |
|                    |                                                  |                                            |                                                |                           |  |  |  |
| Sing               | lle answer type:                                 | · • •                                      | INV.                                           |                           |  |  |  |
| 1.                 | Which of the following electron                  | nic configuration                          | ns in the outermost sh                         | ell is characteristic of  |  |  |  |
|                    | alkali metals?<br>$(1) (n + 1) = 2n^2 n^2 n^2$   | 1) = 2 = 6 = 110 = = 1                     | (2) (1 + 1) = 2(1 + 1) = 6 = -1                | <b>4)</b> = -2 = 6-11     |  |  |  |
|                    | 1) $(n-1)s^2p^2$ , $ns^2p^2 = 2$ ) $(n-1)s^2p^2$ | i)s²p°,a'°,ns'                             | 3) (n-1)s²(n-1)p°,ns                           | 4) ns² p°a'               |  |  |  |
| <b> ∠</b> .        | Laninanum belongs to bi                          |                                            | 2) d block                                     | 1) f block                |  |  |  |
|                    | I) S-DIOCK 2) P-D                                | OCK                                        | 5) CONTRACTION                                 | 4) I-DIOCK                |  |  |  |
| <b>.</b>           | proportion?                                      | nic numbers gr                             | ven below will have si                         |                           |  |  |  |
| !                  | 1) 13 22 2) 3 1                                  | 1                                          | 3) 1 21                                        | 1) 2 1                    |  |  |  |
| 4                  | Which pair of atomic numbers                     | represent elen                             | op 4, 24<br>nent which are both s-             | hlock elements            |  |  |  |
|                    | 1) 7 15 2) 6 1                                   | 2                                          | 3) 9 17                                        | 4) 3 12                   |  |  |  |
| 5                  | Flements with atomic number                      | -<br>9 17 35 53 :                          | are collectively known                         | as                        |  |  |  |
| ••                 | 1) chalcogens 2) hale                            | aens                                       | 3) lanthanides                                 | 4) rare gases             |  |  |  |
| 6.                 | First transitional series is pres                | ent in                                     | •)                                             | .)                        |  |  |  |
| 1                  | 1) Third period 2) Fift                          | period                                     | 3) Fourth period                               | 4) Sixth period           |  |  |  |
| 7.                 | In iron atom (z=26), the differe                 | ntiating electror                          | n enterssublevel                               | , ,                       |  |  |  |
| 1                  | 1) 4d 2) 3d                                      | Ũ                                          | 3) 4p                                          | 4) 5p                     |  |  |  |
| 8.                 | The atomic numbers of Lantha                     | anides are from                            | , .                                            | , <u>.</u>                |  |  |  |
| 1                  | 1) 58 to 71 2) 90 t                              | o 103                                      | 3) 21 to 30                                    | 4) 39 to 48               |  |  |  |
| 9.                 | The first lanthanide is                          |                                            |                                                |                           |  |  |  |
| ļ                  | 1) La 2) Ce                                      |                                            | 3) Th                                          | 4) Lu                     |  |  |  |
| 10.                | The 4f level is successively fill                | ed up in                                   |                                                |                           |  |  |  |
| i                  | 1) Alkali metals 2) Lan                          | thanides                                   | 3) actinides                                   | 4) Halogens               |  |  |  |
| <mark> </mark> 11. | Lanthanides are group of elem                    | ents in which th                           | ne differentiating electi                      | ron enters into           |  |  |  |
| i                  | 1) s-sub level 2) d-s                            | ub level                                   | <ol><li>p-sub level</li></ol>                  | 4) f-sub level            |  |  |  |
| 1 <b>2</b> .       | Most of the radio active eleme                   | nts are in                                 |                                                |                           |  |  |  |
| i                  | 1) Lanthanides                                   |                                            | 2) Actinides                                   |                           |  |  |  |
| İ.                 | 3) Representative elements                       |                                            | 4) Second transitiona                          | al series                 |  |  |  |
| 13.                | The elements with atomic nun                     | bers 2, 10, 18                             | 3, 36, 54, and 86 are                          | collectively known as     |  |  |  |
| IX-                | CLASS                                            |                                            |                                                | 88                        |  |  |  |

CHEMISTRY

# PERIODIC CLASSIFICATION AND PROPERTIES

|              | 1) Alkaline earth metals                                                       | 2) Ine                               | rt gases                      |                                  |
|--------------|--------------------------------------------------------------------------------|--------------------------------------|-------------------------------|----------------------------------|
|              | 3) Halogens                                                                    | 4) Rai                               | e earths                      |                                  |
| 14.          | Which of the following represer                                                | nts the electro                      | nic configuration of d        | -block elements                  |
| 1            | 1) (n-1)s <sup>2</sup> nd <sup>1-10</sup> 2) (n-1                              | )d <sup>1-10</sup> ns <sup>1-2</sup> | 3) (n-1)s²p⁰, ns¹             | 4) ns²p² d¹                      |
| 15.          | If the valency shell electronic st                                             | tructure for an                      | element is ns2np5, th         | is element will belong to        |
| 1            | the group of                                                                   |                                      |                               |                                  |
| 1            | 1) Alkali metals 2) Inert                                                      | tmetals                              | <ol><li>Noble gases</li></ol> | 4) Halogens                      |
| 16.          | Variable Oxidation states exhibit                                              | ited by                              |                               |                                  |
| 1            | 1. Normal elements                                                             |                                      | 2. Metallic elements          | 3                                |
| <br>         | 3. Transitional elements                                                       |                                      | 4.Non-metallic elem           | nents                            |
| ¦17.         | Which one of the following belo                                                | ongs to represe                      | entative group of elen        | nents in the periodic table      |
|              | 1) Lanthanum 2) Argo                                                           | n<br>, , , , , ,                     | 3) Chromium                   | 4) Aluminium                     |
| 18.          | I he element californium belong                                                | gs to a family o                     | )†<br>                        |                                  |
| i            | 1) actinide series                                                             |                                      | 2) aikali metai famil         | У                                |
| i            | 3) alkaline earth family                                                       |                                      | 4) lanthanide series          |                                  |
|              | 4) their being less electropositiv                                             | e than the ele                       | ments of groups IA ar         | na IIA                           |
| 19.          | A member of Lanthadide                                                         |                                      | 0 NH 11                       |                                  |
|              | 1. Cesium 2. Lant                                                              | hanum                                | 3. Niobium                    | 4. Luticium                      |
| 2 <b>0</b> . | In which of the following period                                               | a maximum n                          | umber of 32 element           | s are present                    |
| أمر          | 1. 4th 2. 6th                                                                  | 04: 11                               | 3. 3rd                        | 4. /th                           |
| 21.          | The position of element with $Z$ :                                             | = 24 in the per                      |                               | - via al                         |
| Ì            | 1) V A group & 4 period                                                        |                                      |                               |                                  |
| 20           | 3) IV A group & 3 period                                                       | le evidetion et                      | 4) III B group & 3 pe         | inod                             |
| <b>ZZ</b> .  | 1) the smaller stemis radius                                                   | e oxidation st                       | ales. It is because of        | rabarga                          |
|              | 3) high screening effect                                                       |                                      | z) the higher flucies         | archarge                         |
|              | 4) the energy difference betwee                                                | on (n 1)d 8 ns                       | subshell is very less         |                                  |
|              | +) the energy difference between                                               | en (n-r)u arns                       |                               |                                  |
|              | <u>Correct Choice Type:</u>                                                    | 70-                                  |                               |                                  |
| ♦            | This section contains multiple choice                                          | questions. Each                      | question has 4 choices (      | (A), (B), (C),(D),out of which   |
| ONE          | or MORE is correct. Choose the corre                                           | ect options                          |                               |                                  |
| 23.          | The atomic numbers of few ele                                                  | ements are giv                       | en below: Which of t          | hem can be considered as         |
| 1            | trans fermium elements?                                                        | 5                                    |                               |                                  |
| 1            | 1) 101 2) 105                                                                  | 3) 93                                | 4) 96                         |                                  |
| 24.          | Which of the following is correct                                              | ct about s-bloc                      | k elements?                   |                                  |
| 1            | 1) The elements in which th                                                    | e electron ent                       | ers the s-subshell of         | their outermost energy           |
| 1            | level are called s-block el                                                    | lements.                             |                               |                                  |
| Ì            | 2) This block is situated at the                                               | he extreme lef                       | t of the periodic table       |                                  |
| i            | 3) This block contains eleme                                                   | ents of groups                       | IA and IIA.                   |                                  |
|              | 4) None of the above.                                                          |                                      |                               |                                  |
| 25.          | Which of the following is correc                                               | ct for d-block e                     | elements?                     |                                  |
|              | 1) I nese elements is situate                                                  | ed at the extre                      | me right side of the p        |                                  |
|              | 2) General electronic coning                                                   |                                      | se elements is ns²,np         |                                  |
|              | <ul> <li>They show variable 0xida</li> <li>This block elements form</li> </ul> |                                      |                               |                                  |
| Roa          | apping Type:                                                                   | railoys.                             |                               |                                  |
| Inced        |                                                                                | 1 6                                  | <b>F</b> 1 · ·                |                                  |
| <b>♦</b>     | This section contains certain number                                           | ber of questions                     | Each question contain         | s Statement – $l(Assertion)$ and |
| Stater       | ment - 2 (Reason). Each question has 4                                         | # choices (A), (B)                   | , (C) and (D) out of whic     | n UNLY UNE is correct Choose     |
| the co       | prrect option.                                                                 |                                      |                               |                                  |

| CHE            | MISTRY                                | PERIODIC CLASSIFICATION AND PROPERTIES                                                                       |
|----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                | 1) Statemer<br>Statemer               | nt-I, Statement-II both are true and Statement-II is the correct explanation of<br>nt-I.                     |
|                | 2) Statemer                           | nt-I, Statement-II both are true but Statement-II is not the correct                                         |
|                | explanation of S                      | Statement-I.                                                                                                 |
|                | 3) Statemer                           | nt-I is true, Statement-II is false.                                                                         |
|                | 4) Statemer                           | nt-I is false, Statement-II is true.                                                                         |
| 26.            | Statement I:                          | Sodium is a strongly electropositive metal.                                                                  |
| ,<br>          | Statement II :                        | Chlorine is a strongly electronegative nonmetal.                                                             |
| 27.            | Statement I:                          | Grouping the elements having the same characteristics is known as                                            |
| ĺ              | classification of                     | f elements.                                                                                                  |
|                | Statement II :                        | The classification of elements help the study of elements and their properties                               |
|                | easier.                               |                                                                                                              |
| 28.            | Statement I :                         | In general, the outer electronic configuration of the elements of group 6                                    |
|                | (or VI B) is (n –                     | - 1)d⁴ns¹.                                                                                                   |
|                | Statement II :                        | 3 and 11 <sup>th</sup> group pair of the elements will have the same chemical properties.                    |
| 29.            | Statement I :                         | Atomic number is the number of protons in the nucleus of an atom.                                            |
| 20             | Statement II :                        | Atomic number is also equal to the number of electrons in a neutral atom.                                    |
| 30.            | Statement I :                         | The number of elements in $2^{th}$ and $3^{th}$ period is equal.                                             |
| Matr           | ix Match Type:                        | The number of elements in 4 <sup></sup> and 5 <sup></sup> period is equal.                                   |
| <br>  ♦        | This section con                      | ntains Matrix-Match Type questions. Each question contains statements given in two                           |
| colum          | ns which have to b                    | e matched. Statements (A, B, C, D) in <b>Column–I</b> have to be matched with statements ( $p$ , $q$ , $r$ , |
| s) in <b>(</b> | Column–II. The an                     | swers to these questions have to be appropriately bubbled as illustrated in the following                    |
| examp          | ole.                                  | at the are $A = A = P + P + C = C = and D = there the connect hubbled 4*4 matrix$                            |
| should         | If the correct mu<br>d he as follows: | liches ure A-p,A-s,B-r,D-r,C-p,C-q und D-s,inten ine correct bubbleu 4 * 4 matrix                            |
| 31             | Column-l                              | Column-II                                                                                                    |
| •              | a) Calcium                            | 1) 127                                                                                                       |
|                | b) Strontium                          | 2) 137                                                                                                       |
|                | c) Barium                             | 3) 87.5                                                                                                      |
|                | d) lodine                             | 4) 40                                                                                                        |
| I              |                                       | 5) 35.5                                                                                                      |
| 32             | Column-l                              | Column-II                                                                                                    |
| <b>°</b>       | Maximum nun                           | nber of Period number                                                                                        |
|                | eliments in th                        | e period                                                                                                     |
|                | a) 1                                  | 1) 1                                                                                                         |
|                | b) 2,3                                | 2) 2                                                                                                         |
|                | c) 4                                  | 3) 3                                                                                                         |
| 1              | d) 5                                  | 4) 4                                                                                                         |
| 1              | ,                                     | 5) 6                                                                                                         |
| 33.            | Column-l                              | Column-II                                                                                                    |
|                | Period numbe                          | er Nature of period                                                                                          |
|                | a) 4                                  | 1) Very long period                                                                                          |
| l              | b) 3                                  | 2) Long period                                                                                               |
|                | c) 2                                  | 3) Short period                                                                                              |
|                | d) 1                                  | 4) Very short period                                                                                         |
| <br>           |                                       | b) incomplete period                                                                                         |
|                |                                       |                                                                                                              |

| 34.         | Column - I                      | Column - II                                                                                                     |
|-------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|
|             | a) Fermium                      | 1) 100                                                                                                          |
|             | b) Lawrencium                   | 2) 101                                                                                                          |
|             | c) Mendelevium                  | 3) 102                                                                                                          |
|             | d) Nobelium                     | 4) 103                                                                                                          |
|             |                                 | 5) 104                                                                                                          |
| Com         | prehension type                 |                                                                                                                 |
| ♦           | This section contains paragrap  | bh. Based upon each paragraph multiple choice questions have to be                                              |
| 1<br>       | answered. Each question has 4   | <i>choices (A)</i> , (B),(C) and (D) out of which <b>ONLY ONE</b> is correct. Choose                            |
|             | the correct option.             | I and the second second time to the Use second second state of the second second second second second second se |
| IA.         | These are the elements wh       | ose outer most and penultimate snells are incompletely filled.                                                  |
| <br>        | Elements which have incom       | pletely filled or partly filled d-orbitals either in elementary state of in i                                   |
| 1           | to s and p block element        |                                                                                                                 |
| 35          | 2n is not transitional metal    | s.<br>Because                                                                                                   |
| 35.         | 1)outer most and penultima      | te shells are incompletely filled                                                                               |
| ĺ           | 2)outer most and penultima      | te shells are completely filled                                                                                 |
|             | 3)penultimate shells are co     | npletely filled                                                                                                 |
|             | 4)outer most shells are con     | pletely filled.                                                                                                 |
| 36.         | The metallic nature of trans    | ition metals are                                                                                                |
|             | 1)intermediate to s - and p     | block elements.                                                                                                 |
|             | 2)more than s block element     | nts. 3)less than p block elements.                                                                              |
|             | 4)more t6han s - and p - bl     | ock elements.                                                                                                   |
| В.          | In the preceding unit we have   | e learnt that an electron in an atom is characterised by a set of four                                          |
|             | quantum numbers, and the        | principal quantum number (n) defines the main energy level known                                                |
|             | as shell. We have also studi    | an atom. The distribution of electrons into different subshells, also referred                                  |
|             | called its electronic configura | ition. An element's location in the Periodic Table reflects the quantum I                                       |
|             | numbers of the last orbital fi  | led. In this section we will observe a direct connection between the                                            |
|             | electronic configurations of    | the elements and the long form of the Periodic Table.                                                           |
| 37.         | The IUPAC symbol of the e       | ements with atomic numbers 104, 105 and 106 respectively is :                                                   |
|             | 1) Db, Rf, Hs 2) Rf, Db,        | Sg 3) Rf, Mt, Ds 4) Mt, Ds, Rg                                                                                  |
| 38.         | The atomic number of the e      | elements Hassnium, Meitnerium and Darmstadtium respectively                                                     |
|             | IS:                             |                                                                                                                 |
|             | 1) 106, 107, 108                | 2) 109, 110, 111                                                                                                |
| 20          | 3) 102, 103, 104                | 4) 108, 109, 110                                                                                                |
| 39.         | 1) Naturally occuring eleme     | nts 2) Naturally occuring metals                                                                                |
|             | 3) Naturally occuring transit   | ion metals 4) Man made elements                                                                                 |
|             | c) Hatarany coouring transm     |                                                                                                                 |
|             |                                 | KEY                                                                                                             |
| 1           |                                 |                                                                                                                 |
| <u>ΦΦ</u> [ | TEACHING TASK :                 |                                                                                                                 |
| ĺ           | 1) 3 2) 3 3                     | ) 2 4) 4 5) 2 6) 3 7) 2 8) 1 9) 2                                                                               |
|             | 10) 3 11) 4 1                   | 2) 2 13) 2 14) 2 15) 4 16) 3 17) 4 18)1 <sup> </sup>                                                            |
|             | 19) 4 20) 2 2                   | 1) 2 22) 4 23) 1,2 24) 1,2,3 25) 3,4 l                                                                          |
| l           | 26)2 27)2 2                     | 8)4 29)2 30)2 31)a-4,b-3,c-2,d-1                                                                                |
|             | 32)a-1,b-2,3,c-4,d-5            | 33)a-4,b-3,c-2,d-1 34)a-1,b-4,c-2,d-3                                                                           |
|             | , . , , ,                       | , , ,                                                                                                           |
|             |                                 |                                                                                                                 |
| <b>TX</b> 7 | CT A CC                         |                                                                                                                 |

|                    |                                                                         | LEARNER'S       | TASK                                                            |                                            |         |
|--------------------|-------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|--------------------------------------------|---------|
|                    | ◆ <b>₽-∦</b> ◆ <u>B</u> E                                               | EGINNERS (      | Level - I)                                                      | * <b>1-1</b> *                             |         |
| Sing               | le answer type:                                                         |                 |                                                                 |                                            |         |
| 1.                 | The basis for the classification of ele                                 | ments in the r  | modern perio                                                    | dic table is                               |         |
| 1                  | 1) Electronic configuration                                             | 2) A            | tomic weight                                                    |                                            |         |
|                    | 3) Atomic volume                                                        | 4) E            | quivalent wie                                                   | ght                                        |         |
| ' <b>∠</b> .       | 1) electronic configuration                                             | , atomic weigr  | nt of Be was o                                                  | corrected based on                         |         |
| Ì                  | 3) atomic number                                                        | 2) v<br>4) b    | oth 2 and 3                                                     |                                            |         |
| 3.                 | Mendeleef corrected the atomic weig                                     | aht of          |                                                                 |                                            |         |
| ļ                  | 1) Be 2) In                                                             | ,<br>3) Os      | 4) all the a                                                    | above                                      |         |
| 4.                 | Anamalous pair in Mendeleef's table                                     | is              |                                                                 |                                            |         |
| 1                  | 1) Li, Na 2) Mg, Al                                                     | 3) Co, Ni       | 4) Be, B                                                        |                                            |         |
| ¦5.                | Eka silicon is now called as                                            |                 |                                                                 |                                            |         |
| Ì                  | 1) Gallium 2) Scandium                                                  | 3) Germani      | um 4)                                                           | Indium                                     |         |
| <b>6</b> .         | The atomic weights of "Be" and "In" w                                   | were corrected  | d by Mendele                                                    | ef using the formula                       |         |
|                    | 1) $\sqrt{v} = a(Z - b)$ 2) mvr = $\frac{1}{2\pi}$                      |                 |                                                                 | V                                          |         |
|                    | 3) Atomic weight = Equivalent weight                                    | t × valency     | 00                                                              |                                            |         |
|                    | 4) Equivalent weight = Atomic weight                                    | t × valency     | n                                                               |                                            |         |
| 11.                | The plot of $\sqrt{V}$ vs Z is<br>1) Straight line 2) exponential surve | 2) by marbal    |                                                                 | with vo along                              |         |
| <br>  8            | Modern periodic table is based on the                                   | e atomic num    | ber of the ele                                                  | ments The experiment                       |         |
|                    | which proved the significance of the                                    | atomic number   | er was                                                          | nents. The experiment                      |         |
| İ                  | 1) Mullikan's oil drop experiment                                       | 2) M            | loselev's wor                                                   | k on X-ray spectra                         |         |
|                    | 3) Bragg's work on X-ray diffraction                                    | <b>7U</b> 4) D  | iscoverv of X                                                   | -ravs by Rontgen                           |         |
| <b>9</b> .         | The atomicity of a noble gas is                                         |                 | ,                                                               |                                            |         |
|                    | 1) 2 2) 1                                                               | 3) 4            |                                                                 | 4) 6                                       |         |
| 10.                | The element with atomic number 19                                       | is              |                                                                 | ,                                          |         |
| 1                  | 1) halogen 2) chalcoger                                                 | n 3) n          | oble gas                                                        | 4) an alkali metal                         |         |
| ¦11.               | A pair of atomic numbers which belo                                     | ng to s - block | are                                                             |                                            |         |
| i                  | 1) 7, 15 2) 6, 12                                                       | 3) 9            | 9, 17                                                           | 4) 3, 12                                   |         |
| <mark> </mark> 12. | The element with electron configurat                                    | tion 1s² 2s² 2p | o <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>10</sup> | 4s <sup>2</sup> 4p <sup>5</sup> belongs to |         |
|                    | 1) 4th period, VA group                                                 | 2) 5th perio    | d, IVA group                                                    |                                            |         |
|                    | 3) 4th period, VIIA group                                               | 4) 7th perio    | d, IVA group                                                    |                                            |         |
| 13.                | I he element with $ns^2 np^4$ as outer element                          | ectron configu  | iration is a                                                    | <b>4</b> ) Is a la man                     |         |
| <br>  4 4          | 1) alkalimetal 2) chalcoger                                             | 1 3) N          | oble gas                                                        | 4) halogen                                 |         |
| 14.<br>            | 1) N 2) O                                                               |                 |                                                                 |                                            |         |
| 15                 | Atoms with three of their outer most                                    | orhits incomn   | letely filled wi                                                | 4) NC<br>th electrons are present          | in      |
|                    | 1) Lanthanides                                                          | 2) R            | epresentative                                                   | e elements                                 |         |
|                    | 3) s - block elements                                                   | 4) tr           | ansitional ele                                                  | ments                                      |         |
| 16.                | The name of the element with atomic                                     | c number 100    | was adopted                                                     | in honour of                               |         |
|                    | 1) Alfred Noble 2) Enric Ferr                                           | mi 3) D         | imitri Mendel                                                   | eef 4) Albert Einstein                     |         |
| 17.                | Inner transition elements exhibit diffe                                 | erent coloured  | compound or                                                     | n account of unfilledO                     | rbitals |
| 1                  | 1) s 2) f                                                               | 3) d            | 4)                                                              | р                                          |         |
| IX -               | CLASS                                                                   |                 |                                                                 |                                            | 92      |

| CH            | MISTRY PERIODIC CLASSIFICATION AND PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.           | The element with atomic number 12 belongs to Group and Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | 1) IA, third 2) IIIA, third 3) IIA, third 4) IIA, second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 19.           | Elements which generally exhibit variable oxidation states and form coloured ions are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 1) Metalloids 2) Transition elements 3) Non-metals 4) Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20.           | Ce-58 is a member of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | 1) s-block 2) p-block 3) d-block 4) f-block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21.           | The outer most orbit of an element "X" is partially filled with electrons in 's' and 'p' subshells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Then that element is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | 1 an Inert das 2 a Representative element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | 2. a Transition element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 3. a fransition element 4. an inner transition element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22.           | (at Nace Care 5. Dr=25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| l             | (at.Nos: Us=55, Bf=35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 1. $Ca^{2+}$ , $Cs^{2+}$ , Br 2. $Na^{+}$ , $Ca^{2+}$ , $Mg^{2+}$ 3. $N^{3+}$ , $F^{-}$ , $Na^{+}$ 4. Be, $Al^{3+}$ , $Cl^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23.           | Which is the atomic number of another element present in the same group as the element with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1             | Z=13 is present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | 1. Z=14 2. Z=32 3. Z=49 4. Z=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>24</b> .   | Which of the following pairs of ions have the same electronic configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <br>          | 1. Cr <sup>+3</sup> , Fe <sup>+3</sup> 2. Fe <sup>+3</sup> , Mn <sup>+2</sup> 3. Fe <sup>+3</sup> , Co <sup>+3</sup> 4. Sc <sup>+3</sup> , Cr <sup>+3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25.           | Among the following outermost configuration of metals, which shows the highest oxidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1             | state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 1. $3d^{\circ} 4s^{2}$ 2. $3d^{\circ} 4s^{1}$ 3. $3d^{\circ} 4s^{2}$ 4. $3d^{\circ} 4s^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 26.           | The physical and chemical properties of elements are the periodic function of their atomic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1             | 1) Mandalast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | 1) Mendeleef 2) Lother Meyer 3) Moseley 4) Bonr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ' <b>2</b> 7. | 2) Lether Mayor 2) Mandalaef 2) Denany (1) Lealwas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 20          | According to Mondoloof's pariodic law the properties of elements are pariodic function of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>20.</b>    | 1) stomic number 2) stomic weight 3) number of electrons 1) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20            | umber of periods in the long form of periodic table is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 29.           | $\frac{1}{6} = \frac{2}{7} = \frac{2}{7} = \frac{2}{7} = \frac{2}{7} = \frac{2}{7} = \frac{1}{7} = \frac{1}$ |
| 20            | In Mendeleef table, the triad of VII group is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 30.           | 1) Pu Ph Pd $2$ Cu Ag Au $3$ N $O$ E $4$ T Ph Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21            | Number of short periods in Mondeleof table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| JI.           | $\begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 22            | The properties of the following elements were predicted by Mendeleeff before their isolation are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 32.           | 1 Co and Ni 2 Land Te 3 So Ca and Ce 4 CL Ar and K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22            | The number of elements know when Mendeleef presented periodic table is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55.           | 1) 50 2) 00 3) 63 4) 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 34            | Mendeleeff's periodic law is based on the second of the elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 34.           | 1 Atomic volumes 2 Atomic weights 3 Atomic radii 4 Atomic numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25            | Which of the following is not an anamalous pair?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 55.           | $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$                                                                                                       |
| 26            | The statement that is false for the long form of the periodic table is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30.           | 1) it reflects the acqueres of filling the electrons in the order of sub-energy levels a n d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | and f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1             | anu i<br>2) it halps to prodict the stable valency states of the elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1             | 2) it reflects trends in physical and chamical properties of the elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1             | 4) it halps to prodict the relative ionicity of the hand between any two elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | $\tau$ it helps to predict the relative formation of the bolid between any two elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 37.<br>                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| I                                                                                                                     | As per the modern pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | riodic law the physica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al and chemical funct                                                                                                                                                                                                                                                              | ion of their                                                                                                                                                                                                                              |  |  |  |  |
| 1                                                                                                                     | 1) atomic number 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | electronic configurat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ion 3) aromic weig                                                                                                                                                                                                                                                                 | ht 4) atomic size                                                                                                                                                                                                                         |  |  |  |  |
| ¦ 38.                                                                                                                 | In a period, elements a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | are arranged in strict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sequence of                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |  |  |  |  |
| 1                                                                                                                     | 1) Decreasing charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s in the nucleus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ol><li>Increasing cha</li></ol>                                                                                                                                                                                                                                                   | rges in the nucleus                                                                                                                                                                                                                       |  |  |  |  |
| 1                                                                                                                     | <ol><li>Constant charges in</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n the nucleus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ol><li>4) Equal charges</li></ol>                                                                                                                                                                                                                                                 | in the nucleus                                                                                                                                                                                                                            |  |  |  |  |
| 39.                                                                                                                   | Which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | is not a representativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ve element                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |  |  |  |  |
| i                                                                                                                     | 1) Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2) Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ol><li>Calcium</li></ol>                                                                                                                                                                                                                                                          | 4) Chromium                                                                                                                                                                                                                               |  |  |  |  |
| <b>40</b> .                                                                                                           | The inert gas present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in the second long pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriod is                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                           |  |  |  |  |
| Ì                                                                                                                     | 1) Kr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2) Xe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3) Ar                                                                                                                                                                                                                                                                              | 4) Rn                                                                                                                                                                                                                                     |  |  |  |  |
| <b>41</b> .                                                                                                           | Mono atomic element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | among the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                       | 1) Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2) Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ol><li>Krypton</li></ol>                                                                                                                                                                                                                                                          | 4) Sulphur                                                                                                                                                                                                                                |  |  |  |  |
| 42.                                                                                                                   | Which one of the follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wing pairs of atomic r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | numbers, represents                                                                                                                                                                                                                                                                | elements belonging to the                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                       | same group?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                       | 1) 11, 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2) 13, 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3) 13, 31                                                                                                                                                                                                                                                                          | 4) 14, 33                                                                                                                                                                                                                                 |  |  |  |  |
| 43.                                                                                                                   | In the long form of per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iodic table all non-me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | etals are placed in                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                       | 1) s - block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2) p - block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3) d - block                                                                                                                                                                                                                                                                       | 4) f - block                                                                                                                                                                                                                              |  |  |  |  |
| 44.                                                                                                                   | All elements of the sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne group will have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |  |  |
| 1                                                                                                                     | 1) same electron conf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | guration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) similar outer el                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |  |  |  |  |
| <br>                                                                                                                  | 3) same ionization pot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ential value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4) different chem                                                                                                                                                                                                                                                                  | ical properties                                                                                                                                                                                                                           |  |  |  |  |
| 145.<br>I                                                                                                             | The atomic number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an element is alway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s equal to                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |  |  |  |  |
| 1                                                                                                                     | 1. Number of protons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In nucleus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. Half of the ator                                                                                                                                                                                                                                                                | nicweight                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                       | 3. Electrical charge of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the nucleus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3. vveignt of the r                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |  |  |  |  |
| 46.                                                                                                                   | Which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | is not the electronic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | configuration of a rep                                                                                                                                                                                                                                                             | oresentative element                                                                                                                                                                                                                      |  |  |  |  |
| Ì                                                                                                                     | 1) ns²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2) ns²np³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3) ns²np'                                                                                                                                                                                                                                                                          | 4) ns²np°                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                       | * <b>1-1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACHIEVERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Level - II) +                                                                                                                                                                                                                                                                     | 【 →                                                                                                                                                                                                                                       |  |  |  |  |
| Des                                                                                                                   | criptive questions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |  |  |
| 47.                                                                                                                   | Predict the name and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | position of the elem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ent in the periodic tak                                                                                                                                                                                                                                                            | ole with electronic                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                       | configuration (n-1)d <sup>8</sup> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s²lfor n=5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |  |  |
| 48.                                                                                                                   | Last electron in Lu (71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) go0es in to 5d, but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | it is studied in f-block                                                                                                                                                                                                                                                           | . Explain.                                                                                                                                                                                                                                |  |  |  |  |
| 49.                                                                                                                   | How elements are class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ssified in to S,P,d,f bl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | How elements are classified in to S P d f blocks Explain                                                                                                                                                                                                                           |                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                       | Explain the classification of elements basing on chemical properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |  |  |
| 50.                                                                                                                   | Explain the classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on of elements basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ig on chemical prope                                                                                                                                                                                                                                                               | rties.                                                                                                                                                                                                                                    |  |  |  |  |
| 50.<br>51.                                                                                                            | Explain the classification Write the charecteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on of elements basin<br>cs of transition eleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng on chemical prope<br>ents.                                                                                                                                                                                                                                                      | rties.                                                                                                                                                                                                                                    |  |  |  |  |
| 50.<br>51.                                                                                                            | Write the charecteristi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion of elements basir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng on chemical prope<br>ents.                                                                                                                                                                                                                                                      | orties.                                                                                                                                                                                                                                   |  |  |  |  |
| 50.<br>  51.<br> <br>  Muli                                                                                           | Explain the classification write the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charecteristic of the charect | ion of elements basir<br>ics of transition eleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng on chemical prope<br>ents.<br>S ( Level - III )                                                                                                                                                                                                                                 | erties.<br>← # # # # +                                                                                                                                                                                                                    |  |  |  |  |
| 50.<br>  51.<br> <br>  <u>Mult</u>                                                                                    | Explain the classification<br>Write the charecteristic<br>answer type :<br>This section contains multi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>on of elements basir</li> <li>ics of transition elements</li> <li>EXPLORERS</li> <li>The choice questions Equation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng on chemical prope<br>ents.<br><u>5 ( Level - III )</u><br>ch auestion has 4 choice                                                                                                                                                                                              | erties.<br>$ \bullet \blacksquare \blacksquare \blacksquare \bullet $<br>es (A), (B), (C), (D), out of which                                                                                                                              |  |  |  |  |
| 50.<br>  51.<br> <br>                                | Explain the classification<br>Write the charecteristic<br>answer type :<br>This section contains multiple<br>or MORE is correct. Choose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>iple choice questions. Ea</i><br><i>ise the correct options</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng on chemical prope<br>ents.<br><u>5 ( Level - III )</u><br>ch question has 4 choice                                                                                                                                                                                              | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                     |  |  |  |  |
| 50.<br>  51.<br> <br>                                          | Explain the classification<br>Write the charecteristic<br>answer type :<br>This section contains multiple<br>or MORE is correct. Choose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>ics of transition elements</li> <li>EXPLORERS</li> <li>ple choice questions. Ease the correct options</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng on chemical prope<br>ents.<br><u>5 ( Level - III )</u><br>ch question has 4 choice                                                                                                                                                                                              | erties.<br>< ■ ■ ■ ►<br>es (A), (B), (C),(D), out of which                                                                                                                                                                                |  |  |  |  |
| 50.<br>  51.<br> <br>  <u>Mul1</u><br> <br><i>∳</i><br> <br>0NE<br>  52.                                              | Explain the classification<br>Write the charecteristic<br>transwer type :<br>This section contains multi-<br>or MORE is correct. Choose<br>Which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>Explores</i><br><i>Explores</i><br><i>Explores</i><br><i>Explores</i><br><i>Explores</i><br><i>Explores</i><br><i>Explores</i><br><i>Explores</i><br><i>Explores</i><br><i>Explores</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng on chemical proper<br>ents.<br><u>5 ( Level - III )</u><br>ch question has 4 choice<br>nts for d-block eleme                                                                                                                                                                    | erties.<br>$ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$                                                                     |  |  |  |  |
| 50.<br>  51.<br> <br>  <u>Mult</u><br> <br><i>o</i> NE<br>  52.                                                       | Explain the classification<br>Write the charecteristic<br>answer type :<br>This section contains multiple<br>or MORE is correct. Choose<br>Which of the following<br>1) 1st Transition serie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>ple choice questions. Ea</i><br><i>is the correct options</i><br>are correct statements<br>is 3d series of elect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng on chemical proper<br>ents.<br><u>5 ( Level - III )</u><br>ch question has 4 choice<br>nts for d-block eleme<br>ctronic configuration                                                                                                                                           | erties.<br>$\bullet$ <b>■ ■</b> $\bullet$<br>es (A), (B), (C),(D), out of which<br>ents?<br>3d <sup>1-10</sup> 4s <sup>1-2</sup>                                                                                                          |  |  |  |  |
| 50.<br>  51.<br> <br> <br> <br><i>Muli</i><br> <br><i>∳</i><br> <br>0NE<br>  52.                                      | Explain the classification<br>Write the charecteristic<br>write the charecteristic<br>answer type :<br>This section contains multi-<br>or MORE is correct. Choose<br>Which of the following<br>1) 1st Transition serie<br>2) 2nd Transition serie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>iple choice questions. Ea</i><br><i>se the correct options</i><br>are correct statements<br>is 3d series of elected<br>es is 4d - series of elected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng on chemical proper<br>ents.<br><u>5 ( Level - III )</u><br>ch question has 4 choice<br>nts for d-block eleme<br>etronic configuration<br>ectronic configuration                                                                                                                 | erties.<br>• • • • • • • • • • • • • • • • • • •                                                                                                                                                                                          |  |  |  |  |
| 50.<br>  51.<br> <br> <br> <br><i>Mul1</i><br> <br><i>•</i><br> <br><i>ONE</i><br> <br>52.<br> <br>                   | Explain the classification<br>Write the charecteristic<br>answer type :<br>This section contains multi-<br>or MORE is correct. Choose<br>Which of the following<br>1) 1st Transition serie<br>2) 2nd Transition serie<br>3) 3rd Transition serie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>iple choice questions. Ea</i><br><i>iple choic</i>   | ng on chemical proper<br>ents.<br><b>5 ( Level - III )</b><br><i>ch question has 4 choice</i><br>nts for d-block element<br>ectronic configuration<br>ectronic configuration                                                                                                       | erties.<br>$\bullet$ <b>III</b> $\bullet$<br>es (A), (B), (C),(D), out of which<br>ents?<br>$3d^{1-10} 4s^{1-2}$<br>$n 4d^{1-10} 5s^{1-2}$<br>$n 5d^{1-10} 6s^{1-2}$ .                                                                    |  |  |  |  |
| 50.<br>  51.<br> <br>  <u>Muli</u><br>                                                                                | Explain the classification<br>Write the charecteristic<br>answer type :<br>This section contains multiple<br>or MORE is correct. Choose<br>Which of the following<br>1) 1st Transition serie<br>2) 2nd Transition serie<br>3) 3rd Transition serie<br>4) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>ics of transition elements</li> <li>EXPLORERS</li> <li>iple choice questions. Ease the correct options</li> <li>are correct statements</li> <li>is 3d series of elected</li> <li>is 4d - series of elected</li> <li>is 5d - series of elected</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng on chemical proper<br>ents.<br><u>5 ( Level - III )</u><br>ch question has 4 choice<br>nts for d-block eleme<br>extronic configuration<br>ectronic configuration<br>ectronic configuration                                                                                      | erties.<br>$\bullet$ <b>I I</b> $\bullet$<br>es (A), (B), (C),(D), out of which<br>ents?<br>$3d^{1-10} 4s^{1-2}$<br>$n 4d^{1-10} 5s^{1-2}$<br>$n 5d^{1-10} 6s^{1-2}$ .                                                                    |  |  |  |  |
| 50.<br>  51.<br> <br> <br> <br><i>Muli</i><br> <br><i>Φ</i><br> <br><i>ONE</i><br> <br>52.<br> <br> <br> <br> <br>53. | Explain the classification<br>Write the charecteristic<br>write the charecteristic<br>answer type :<br>This section contains multi-<br>or MORE is correct. Choose<br>Which of the following<br>1) 1st Transition series<br>2) 2nd Transition series<br>3) 3rd Transition series<br>4) None of these<br>Which oif the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>iple choice questions. Ea</i><br><i>se the correct options</i><br>are correct statements<br>are s is 3d series of elected<br>is is 5d - series of elected<br>s is 5d - series                                                                                                                                                                                                                                                                                                                                                   | ng on chemical proper<br>ents.<br><u>5 ( Level - III )</u><br>ch question has 4 choice<br>nts for d-block eleme<br>extronic configuration<br>ectronic configuration<br>ectronic configuration                                                                                      | Arties. A ■ ■ ■ ► Article as (A), (B), (C), (D), out of which Arts? Bd <sup>1-10</sup> 4s <sup>1-2</sup> Ad <sup>1-10</sup> 5s <sup>1-2</sup> Ad <sup>1-10</sup> 6s <sup>1-2</sup> . The of periodic table?                               |  |  |  |  |
| 50.<br>  51.<br> <br>  <u>Mul1</u><br>                                                                                | Explain the classification<br>Write the charecteristic<br>Write the charecteristic<br>answer type :<br>This section contains multi-<br>or MORE is correct. Choose<br>Which of the following<br>1) 1st Transition series<br>2) 2nd Transition series<br>3) 3rd Transition series<br>4) None of these<br>Which oif the following<br>1) It eliminates the even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>iple choice questions. Ea</i><br><i>iple choic</i>   | ig on chemical proper<br>ents.<br><u>5 ( Level - III )</u><br>ch question has 4 choice<br>nts for d-block eleme<br>extronic configuration<br>ectronic configuration<br>ectronic configuration<br>ectronic configuration<br>ect merits of long form<br>V,V and VI periods of        | wrties.<br>$\bullet$ <b>III</b> $\bullet$<br>$\bullet$<br>$\bullet$ $\bullet$<br>$\bullet$<br>$\bullet$<br>$\bullet$<br>$\bullet$<br>$\bullet$<br>$\bullet$<br>$\bullet$                                                                  |  |  |  |  |
| 50.<br>  51.<br> <br>  <u>Muli</u><br>  <i>∳</i><br>  0NE<br>  52.<br> <br> <br> <br>  53.<br>                        | Explain the classification<br>Write the charecteristic<br>Write the charecteristic<br>answer type :<br>This section contains multi-<br>or MORE is correct. Choose<br>Which of the following<br>1) 1st Transition series<br>2) 2nd Transition series<br>3) 3rd Transition series<br>4) None of these<br>Which oif the following<br>1) It eliminates the event<br>2) This periodic table of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>iple choice questions. Ea</i><br><i>se the correct options</i><br>are correct statements<br>is 3d series of elected<br>is is 3d series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is 5d - series of elected<br>is is is 5d - series of elected<br>is is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng on chemical proper<br>ents.<br><u>S ( Level - III )</u><br>ch question has 4 choice<br>nts for d-block eleme<br>ectronic configuration<br>ectronic configuration<br>ectronic configuration<br>ect merits of long forr<br>V,V and VI periods of<br>pur blocks namely s,p         | wrties.<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                           |  |  |  |  |
| 50.<br>  51.<br> <br>  <u>Muli</u><br>  <i>↓</i><br>  <i>0NE</i><br>  52.<br> <br> <br> <br>  53.<br> <br>            | Explain the classification<br>Write the charecteristic<br>write the charecteristic<br>write the charecteristic<br>answer type :<br>This section contains multi-<br>or MORE is correct. Choose<br>Which of the following<br>1) 1st Transition serie<br>2) 2nd Transition serie<br>3) 3rd Transition serie<br>4) None of these<br>Which oif the following<br>1) It eliminates the even<br>2) This periodic table of<br>3) In this, classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>EXPLORERS</i><br><i>iple choice questions. Ea</i><br><i>iple choice questions. Ea</i>    | ng on chemical proper<br>ents.<br><b>5 ( Level - III )</b><br><i>ch question has 4 choice</i><br>Ints for d-block element<br>ectronic configuration<br>ectronic configuration<br>ect merits of long form<br>V,V and VI periods of<br>pur blocks namely s,p<br>ed on the atomic num | wrties.<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                           |  |  |  |  |
| 50.<br>  51.<br> <br>  <u>Muli</u><br>  <i>↓</i><br>  0NE<br>  52.<br> <br> <br>  53.<br>                             | Explain the classification<br>Write the charecteristic<br>Write the charecteristic<br>answer type :<br>This section contains multi-<br>or MORE is correct. Choose<br>Which of the following<br>1) 1st Transition serie<br>2) 2nd Transition serie<br>3) 3rd Transition serie<br>4) None of these<br>Which oif the following<br>1) It eliminates the even<br>2) This periodic table of<br>3) In this, classification<br>fundamental property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion of elements basin<br>ics of transition elements<br><b>EXPLORERS</b><br><i>iple choice questions. Ea</i><br><i>iple choice questions. Ea<br/><i>iple choice questions. Ea</i><br/><i>iple choic</i></i> | ng on chemical properents.                                                                                                                                                                                                                                                         | wrties.<br><b>* III I *</b><br>$es (A), (B), (C), (D), out of which ents? 3d^{1-10} 4s^{1-2}n 4d^{1-10} 5s^{1-2}n 5d^{1-10} 6s^{1-2}.m of periodic table?f Mendeleeff's periodic table.o,d$ and f-block elements.<br>mber which is a more |  |  |  |  |

54.

#### PERIODIC CLASSIFICATION AND PROPERTIES

4)None of the above.

The statement that is true for the long from of the periodic table is:

It reflects the sequence of filling the electrons in the order of sub - energy levels s, p, d 1) and f.

- 2) It helps to predict the stable valency states of the elements.
- It reflects trends in physical and chemical properties of elements. 3)
- 4) None of the above.

#### Assertion & peason type:

This section contains certain number of questions. Each question contains Statement -1 (Assertion) and Statement -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct Choose the correct option.

- Statement-I, Statement-II both are true and Statement-II is the correct explanation of 1) Statement-I.
- Statement-I, Statement-II both are true but Statement-II is not the correct 2) explanation of Statement-I.
- 3) Statement-I is true, Statement-II is false.
- Statement-I is false, Statement-II is true. 4)

The number of elements in each period is equal to twice the number of 55. Statement I: orbitals available in the energy level that is being filled.

- Statement II : The longest period is the sixth period.
- 56. Statement I : Lanthanide series includes inner transitional elements.
  - Lanthanide series starts with lanthanum and ends with lutetium Statement II :
- 57. f-block elements are hard, high melting metals showing variable oxidation Statement I: states.
- f-block elements form coloured complexes and have high densities. Statement II :
- 58. Statement I: p-block elements form ionic as well as covalent compounds.
- In p-block elements, most of them are non-metals. Statement II :
- In the long form of periodic table, position of hydrogen is not fixed. 59. Satement-I:
- In the long form of periodic table, arrangement of elements is easy to re-Statement-II: member and reproduce.

### Matching type:

This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in **Column–I** have to be matched with statements (p, q, r)s) in **Column–II**. The answers to these questions have to be appropriately bubbled as illustrated in the following example.

If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4\*4 matrix should be as follows:

| 60.  | Column-I                                       | Column-II     |    |
|------|------------------------------------------------|---------------|----|
| i    | a) Shortest period                             | 1) Cs to Rn   |    |
| i    | b) Short period                                | 2) Rb to Xe   |    |
| i    | c) Long period                                 | 3) Li to Ne   |    |
| i    | d) Longest period                              | 4) H to He    |    |
| i    |                                                | 5) H to Ne    |    |
| 61.  | Column-l                                       | Column-II     |    |
| i    | <ul> <li>a) First transition series</li> </ul> | 1) La to Hg   |    |
| i    | b) Second transition series                    | 2) Sc to Zn   |    |
| i    | c) Third transition series                     | 3) Incomplete |    |
| i    | d) Fourth transition series                    | 4) Y to Cd    |    |
| IX - | - CLASS                                        |               | 95 |

| 62.              | Column-I                                              | Column-II                                                             |
|------------------|-------------------------------------------------------|-----------------------------------------------------------------------|
| ļ                | a) First transition series                            | 1) Incomplete series                                                  |
| ļ                | b) Second transition series                           | 2) 5d <sup>1-10</sup> 6s <sup>1-2</sup>                               |
|                  | <ul><li>c) Third transition series</li></ul>          | 3) 4d <sup>1-10</sup> 5s <sup>1-2</sup>                               |
|                  | d) Fourth transition series                           | 4) 3d <sup>1-10</sup> 4s <sup>1-2</sup>                               |
|                  |                                                       | 5) 6d series                                                          |
| 63.              | Column-l                                              | Column-II                                                             |
|                  | a) 24                                                 | 1) p                                                                  |
| 1                | b) 38                                                 | 2) f                                                                  |
| 1                | c) 49                                                 | 3) s                                                                  |
| 1                | d) 59                                                 | 4) d                                                                  |
| <br>             |                                                       | 5) g                                                                  |
| 1 <b>64</b> .    | Column-l                                              | Column-II                                                             |
| 1                | a) Ionization energy $\alpha$                         | 1) On moving left to right in a period                                |
| 1                | b) Units of ionization energy                         | 2) e.V/atom or K.cal/mole                                             |
| 1                | c) Ionization energy decreases                        | 3) On moving down the group                                           |
| 1                | d) lonization energy increases                        | 4) Nuclear charge                                                     |
|                  |                                                       | 5) Stable electronic configuration                                    |
| <sup>1</sup> 65. | Column-l                                              |                                                                       |
| 1                | a) Highest electronegativity value                    | 1) Effective nuclear charge                                           |
| 1                | b) Least electronegative element                      | 2) S - character in hybrid orbital                                    |
| 1                | c) Electronegativity $\alpha$                         | 3) Site of the atom                                                   |
| 1                | 1                                                     |                                                                       |
| 1                | d) Electronegativity $\frac{-\alpha}{\alpha}$         | 4) Cs                                                                 |
| 1                | ~                                                     | 5) F                                                                  |
| Com              | prehension type                                       | 0)1                                                                   |
| <u>00111</u>     | This section contains paragraph Base                  | ed upon each paragraph multiple choice questions have to be           |
|                  | answered Each question has 4 choices                  | s (A) (B) (C) and (D) out of which <b>ONLY ONE</b> is correct. Choose |
| İ                | the correct option                                    |                                                                       |
| İA.              | This classification is based on the t                 | type of atomic orbital to which a differentiating (last) electron     |
|                  | enters. On the bases of electronic                    | configuration, the elements are grouped into four types.              |
|                  | They are:                                             |                                                                       |
|                  | a) Representative elements                            | b) Noble gases                                                        |
|                  | c) Transition elements                                | d) Inner transition elements                                          |
| 66.              | Which of the following is not the el                  | lectronic configuration of a representative element.                  |
|                  | 1) ns <sup>2</sup> 2) ns <sup>2</sup> np <sup>5</sup> | 3) ns <sup>2</sup> np <sup>1</sup> 4) ns <sup>2</sup> np <sup>6</sup> |
| 67.              | Which of the following electronic c                   | configuration corresponds to an inert gas?                            |
|                  | 1) $1s^{1}2s^{2}2p^{5}$ 2) $1s^{2}2s^{2}2p^{5}$       | $p^6$ 3) $1s^22s^1$ 4) $1s^22s^22p^63s^1$                             |
| 68.              | The elements whose atoms have                         | two outermost shells incomplete are called:                           |
|                  | 1) Representative elements                            | 2) Noble gases                                                        |
|                  | <ol><li>Transition elements</li></ol>                 | 4) Inner transition elements                                          |
| <b>B</b> .       | This classification is based on the t                 | type of atomic orbital to which a differentiating (last) electron     |
|                  | enters. On the bases of electronic                    | c configuration, the elements are grouped into four blocks.           |
|                  | i ney are :                                           |                                                                       |
| ļ                | i) S-DIOCK Elements II)                               | p-block elements                                                      |
|                  | M/biob of the following is/are the of                 | I-DIOCK Elements                                                      |
| פס'.             | 1) Highly clostro positive                            | 2) Highly reactive                                                    |
|                  | 3) Soft metals                                        | 2) right reactive $4$ ) All the above                                 |
| <br>  70         | Which of the following is/are the of                  | +j in the above haracteristics of the n - block elements?             |
| 1 IX -           | CLASS                                                 | αιαιασιστοπος οι μιο μ - μισοκ σιστηστικό :<br>96                     |
| 1 1/1 -          |                                                       | 50                                                                    |

## PERIODIC CLASSIFICATION AND PROPERTIES

| I I                 | 1) Highly electro neg                                     | ative                  |                              | 2) No                 | n - meta            | als                           |                     |                     |               |
|---------------------|-----------------------------------------------------------|------------------------|------------------------------|-----------------------|---------------------|-------------------------------|---------------------|---------------------|---------------|
| <br>                | 3) Show veriable oxi                                      | dation state           | S                            | 4) All                | the abo             | ve                            |                     |                     |               |
| ¦71                 | . The elements whose                                      | e atoms hav            | e two outerr                 | nost she              | ells inco           | mplete                        | are call            | ed:                 |               |
| i                   | 1) s-Block elements                                       |                        | 2) p-Bloc                    | ck eleme              | nts                 |                               |                     |                     |               |
|                     | 3) d-Block elements                                       |                        | 4) T-BIOCI                   | k elemer              | าเร                 |                               |                     |                     |               |
|                     | <u>DIS</u><br>The elements with e                         | tomio numb             | ara 20 ta 19                 | holong                | to                  |                               |                     |                     |               |
| ; <b>7</b> 2        | 1) Earth pariod                                           |                        | ers 39 10 40                 |                       | lU<br>h norio       | 4                             |                     | d noria             | 4             |
| 73                  | The general electror                                      |                        | $d_{1}$                      | ne <sup>2</sup> indic | ates the            | u<br>Anartic                  | 4) IIII<br>Ular olo | u periot<br>mont be | longs to      |
| 1                   | 1) \/R                                                    | 2) IV/B                |                              | 3) \/IR               |                     | ii partic                     |                     |                     | iongs to      |
| 74                  | Transition metals are                                     | e often para           | magnetic ov                  | vina to               |                     |                               | 4) IIID             |                     |               |
| '                   | 1) their high m p and                                     | d b n                  | inagricae ev                 | 2) the                | presen              | ce of va                      | cant d-             | orbitals            |               |
|                     | 3) the presence of o                                      | ne or more i           | unpaired d-e                 | electrons             | procent             |                               | iount a             | Sibilaio            |               |
| 75                  | 6. What is wrong abou                                     | t transition r         | netals?                      |                       |                     |                               |                     |                     |               |
|                     | 1. They are diamagr                                       | netic                  |                              | 2.The                 | v are pa            | ramadr                        | netic               |                     |               |
|                     | 3. They form comple                                       | exes                   |                              | 4. The                | y show              | variable                      | e oxidat            | ion state           | 9             |
| 76                  | 5. The electron configu                                   | ration of the          | starting and                 | d ending              | elemen              | ts of fou                     | urth peri           | iod are             |               |
| ļ                   | 1. 4s <sup>1</sup> and 3d <sup>10</sup> 4s <sup>2</sup> 4 | 0 <sup>6</sup>         | -                            | 2. 4s <sup>1</sup>    | and 4s <sup>2</sup> | <sup>2</sup> 3d <sup>10</sup> |                     |                     |               |
|                     | 3. 4s <sup>2</sup> 3d <sup>1</sup> and 4s <sup>2</sup> 4  | <b>D</b> <sup>6</sup>  |                              | 4. 4s <sup>2</sup>    | 3d1 and             | l 4s² 3d                      | 10                  |                     |               |
| ¦77                 | 7. The atomic number                                      | of an elem             | ent 'X' is 34                | . Then i              | t is pres           | sent in                       |                     | F                   | period and    |
| 1                   | in group                                                  |                        |                              | 0.44                  | 12                  |                               |                     |                     |               |
| i                   | 1. 4th period and IVA                                     | group                  |                              | 2.4th                 | period a            |                               | group               |                     |               |
| <br>  <b>7</b> 0    | 3. 4th period and VII                                     | A group                | tive and have                | 4.5m                  | period a            | ind VIA                       | group               | ofplan              | oto oro:      |
| '0                  |                                                           | 2) Nn                  |                              | e been i<br>Du        |                     |                               | names               | or plan             | els ale.      |
| 79                  | Fe Co Ni are place                                        | ∠)np<br>din            |                              |                       | 7 4                 | ) 1.a                         |                     |                     |               |
| 11                  | 1) same period                                            |                        | 2) same                      | aroup                 |                     |                               |                     |                     |               |
|                     | 3) Only same in grou                                      |                        | 4) none                      | 9.04                  |                     |                               |                     |                     |               |
| ļ                   | -,,                                                       |                        |                              |                       |                     |                               |                     |                     |               |
| 1                   |                                                           |                        | KEY                          |                       |                     |                               |                     |                     |               |
| 1                   | P                                                         |                        |                              |                       |                     |                               |                     |                     |               |
| ¦Φ                  | $\Phi$ <u>Learner'stask</u> :                             |                        |                              |                       |                     |                               |                     |                     |               |
| i 🗆                 | BEGINNERS :                                               |                        |                              |                       |                     |                               |                     |                     |               |
| Ì                   | 1) 1 2) 2                                                 | 3) 1                   | 4) 3                         | 5) 3                  | 6) 3                | 7) 1                          | 8) 1                | 9) 2                | 10) 4         |
|                     | 11) 4 12) 3                                               | 13) 2                  | 14) 2                        | 15)1                  | 16) 2               | 17) 2                         | 18)3                | 19) 2               | 20) 4         |
|                     | 21) 2 22) 3                                               | 23) 3                  | 24)2                         | 25) 3                 | 26)3                | 27)3                          | 28) 2               | 29) 1               | 30) 2         |
|                     | 31) 3 32) 3                                               | 33)2                   | 34) 1                        | 35)2                  | 36)2                | 37)2                          | 38)2                | 39)4                | 40)2          |
| ! _                 | 41/3 $42/3$                                               | 43) Z                  | 44) Z                        | 45) 3                 | 40)4                |                               |                     |                     |               |
|                     |                                                           | 00 F                   | 4)4 0 0                      |                       |                     | ·                             | 7\0                 | 50)0                | 50)0          |
| 1                   | 52)1,2,3 $53)1$                                           | ,2,3 0<br>1 61)a '     | 4)1,2,3<br>2 b / c 1 d 1     | ວວ <i>)</i> ∠<br>ເຊ   | 62)a /              | 5 57<br>b3c3                  | /)Z                 | 58 <i>)</i> 2       | 59 <i>)</i> 2 |
| !                   | 63)a-4, b-3, c-2, d                                       | -1 01)a-/<br>-2 64)a-/ | 2,0-4,0-1,0-1<br>4 b-2 c-3 d | I,3<br>I_1            | 02)a-4<br>65) a-4   | 5 h_4 c_                      | 2,u-1,5<br>1 d_3    |                     |               |
|                     |                                                           | 68)3 6                 | 9)1 70)4                     | 71)3                  | 72)2                | 73)1                          | 74)3                | 75)1                | 76)1          |
| <br>                | 0014 0/12                                                 |                        | 0)1 10)1                     | 11)0                  | 12)2                | 10)1                          | 11)0                | 10)1                | 10)1          |
| <br> <br>           | 77)2 78)3                                                 | (9)3                   |                              |                       |                     |                               |                     |                     |               |
| <br> <br> <br>      | 77)2 78)3                                                 | 79)3                   |                              |                       |                     |                               |                     |                     |               |
| <br> <br> <br>      | 77)2 78)3                                                 | 79)3                   |                              |                       |                     |                               |                     |                     |               |
| <br> <br> <br>      | 77)2 78)3                                                 | 79)3                   |                              |                       |                     |                               |                     |                     |               |
| <br> <br> <br> <br> | 77)2 78)3                                                 | 79)3                   |                              |                       |                     |                               |                     |                     |               |

IX - CLASS

97

# <u>§§</u> <u>PERIODIC PROPERTIES</u>

#### <u>§§</u> <u>ATOMIC RADIUS</u>:

In atoms, the electron cloud around the nucleus extends to infinity. The distance between the centre of the nucleus and the electron cloud of outer most energy level is called atomic radius.

Atomic radius cannot be determined directly, but measured from the inter nuclear distance of combined atoms, using X-ray diffraction techniques.

Atomic radius depends on

a) Nature of bonding

b) Number of bonds (multiplicity of bonding)

c) Oxidation states etc.

Three types of atomic radii are considered based on the nature of bonding they are a) Crystal radius b) Van der waals radius c) Covalent radius

Atomic radii expressed in angstrom, nanometers, picometer units.

 $1 \text{ Å} = 10^{-1} \text{ nm}$ ;  $1 \text{ Å} = 10^{2} \text{ pico.metres}$ 

a)Crystal Radius (Atomic Radius) - Half of the internuclear distance between the adjacent atoms of a solid metallic crystal is called crystal radius or metallic radius.



*Ex* :Distance between two sodium atoms is 3.72Å, crystal radius of Na = 3.72/2 = 1.86 Å. b)Van der waals radius - Half of the internuclear distance between two non bonded atoms of different molecules which are very close to each other due to vander waals forces is called Vander waals radius.



The distance between two adjacent chlorine atoms of different Cl<sub>2</sub> molecules is 3.6A<sup>0</sup>, Vander waals radius of Cl is 1.8A<sup>0</sup>.Vander waals radius is 40% greater than covalent radii.It is used for molecular substances in the solid state only.

c) Covalent Radius term is generally used in reference to non-metals.

Covalent radius - Half of the inter nuclear distance of the two atoms held together by a covalent bond is called covalent radius.



**Ex**: a) in  $Cl_2$ , Cl - Cl bond distance (Internuclear distanc) is 1.98A<sup>0</sup>.



### CHEMISTRY PERIODIC CLASSIFICATION AND PROPERTIES Covalent Radius of CI = 0.99Å. b) in diamond C-C bond distance is 1.54Å. Covalent radius of $C = 0.77 A^0$ . In metals, the crystal radius (atomic radius) is slightly more than the covalent radius. As the number of covalent bonds between two atoms increases the covalent radius decreases. Ex: The covalent radius of carbon decreases with increase in the number of bonds between C - C> C = C $> C \equiv C$ carbon atoms. $(1.54 A^{\circ}) (1.34 A^{\circ}) (1.20 A^{\circ})$ Van der waal radius > crystal radius > covalent radius. Φ <u>§§</u> **IONIC RADIUS**: When a neutral atom loses one (or) more electrons a positive ion called cation is formed. $Na \rightarrow Na^+ + e^-$ The ionic radius of cation is less than that of neutral atom. It is because the cation has higher effective nuclear charge. eg: $Na > Na^+$ Among the cation as the positive charge increases, the ionic radius decreases. eg: $Fe^{2+} > Fe^{3+}$ When a neutral atom gains one (or) more electrons a negative ion called anion is formed. $Cl + e^{-} \rightarrow Cl^{-}$ The radius of anion is more than that of its atom, due to decrease in effective nuclear charge. $Cl^{-} > Cl$ Among the anions as the negative charge increases the ionic radius increases. eg: $O^{2-} > O^{-}$ The decreasing order of the radii is Anion > Atom > Cation $I^{-} > I > I^{+}$ $H^- > H > H^+$ The species (atoms or ions) having the same number of electrons are known as iso electronic species. In iso electronic species, the size increases with increase of negative charge and decrease of positive charge. $\left( \frac{\text{size } \alpha \frac{1}{z/\text{eratio}}}{z/\text{eratio}} \right)$ i.e. effective nuclear charge. Φ Decreasing order of size. $C^{4-}$ > $N^{3-}$ > $O^{2-}$ > F- > Ne > Na^{+} > Mg^{2+} > Al^{3+} > Si^{4+} **IONIZATION ENERGY (IONIZATION POTENTIAL) :** <u>§</u>§ PP **Ionization potential:** The minimum amount of energy required to remove the most loosely bound electron (i.e, outer - most shell electron) from an isolated neutral gaseous atom is called ionization potential. IE is measured in eV/atom or kJ/mole or K.cal/mole. 1 eV / atom = 23.06 K.Cal/mole = 96.45 KJ/mole Energy required to remove an electron from unipostive ion to convert it into dipositive ion is IE<sub>2</sub>. Energy required to remove an electron from dipositive ion to convert it into tripositive ion is IE. $M_{(g)}^{+} + IE_2 \rightarrow M_{(g)}^{2+} + e^{-}$

2.

|          | $M_{(g)}^{\prime +} + IE_3 \rightarrow M_{(g)}^{\prime +} + e^-$                                  |
|----------|---------------------------------------------------------------------------------------------------|
|          | Ionization energy is determined by spectral studies or discharge tube experiments                 |
|          | Ionization energy is determined by spectral studies of discharge tube experiments.                |
|          | a) With increase in the stemic size "ID" decreases due to decrease in attractive force of         |
|          | a) with increase in the atomic size in decreases due to decrease in attractive force of           |
|          | hucieus on outer most orbit electrons.                                                            |
|          | b) with increase in the effective nuclear charge IP increases.                                    |
| 1        | c) If the number of electrons in the inner shells are more, shielding capacity of the inner       |
| 1        | electrons on the nuclear charge will be more. Hence IP decreases.                                 |
| 1        | d) Order of screening power of orbitals s > p > d > f                                             |
| i        | e) As the positive charge on cation increases, IP increases.                                      |
| Ì        | f) As the -ve charge on anion increases, IP decreases.                                            |
| i        | g) If the valency electrons are more penetrated into inner shells, IP increases.                  |
| Ì        | h) Penetration power of different orbitals is in the order of $s > p > d > f$                     |
|          | i) IP order of electrons of different orbitals of same orbit.                                     |
| $ \Phi $ | IP of s-electrons > IP of p-electrons > IP of d-electrons > IP of f-electrons.                    |
|          | j) IP is more for atoms with exactly half filled and completely filled orbitals.                  |
|          | <b>Ex</b> : $IE_1$ of N > $IE_1$ of O $IE_1$ of Be > $IE_1$ of 'B'                                |
| 1        | IE, of P > IE, of S IE, of Mg >IE, of 'AI'                                                        |
|          | k) Atoms of inert gases have highest IP values due to the presence of completely filled orbitals. |
|          | I) In the graph showing relation between IP and atomic number, the inert gases appear at the      |
| 1        | peaks and alkali metals appear at the bottom                                                      |
| 1        | m) In any period an Alkali metal atom has lowest IP and Inert gas element has highest IP.         |
| i        | n) In periods from left to right side IP increases, due to decrease in atomic size and increase   |
| i        | in effective nuclear charge                                                                       |
| Ì        | a) In groups from top to bottom. IP decreases due to the increase in the atomic size and          |
|          | increase in the screening effect of inner electrons                                               |
|          | n) IF order among 2nd period elements                                                             |
| ļ        | $F = I i \leq Be > B \leq C \leq N > O \leq E \leq Ne$                                            |
|          | $ E_1 - E  > B < C < N < O > E < N = 0$                                                           |
|          | $ L_2 - L  > De < D > C < N < C > I < Ne$                                                         |
|          | q/12 order alloring 5rd period elements                                                           |
| 1        | $ E_1 - Na > Ma < A  > S  < P < S > C  < A $                                                      |
| 1        | $IE_2 - INA > INY < AI > SI < P < S > CI < AI$                                                    |
| Ì        | r) Element with Lowest IP - Cs                                                                    |
| i        | s) IE <sub>1</sub> of Be greater than B due to $\frac{1}{2}$                                      |
| Ì        | a) Completely filled s -orbital in Be b) More Penetration of s-orbitals.                          |
| 1        | t) Knowledge of successive IE can be used to find the number of valence electrons .               |
|          | u) For alkali metals the $IE_2$ shows sudden jump.                                                |
|          | v) For alkaline earth metals, the IE $_3$ shows sudden jump.                                      |
| ļ        | w) The number of IE possible for an atom of an element is equal to its atomic number.             |
|          |                                                                                                   |
|          |                                                                                                   |
| 1        |                                                                                                   |
| 1        |                                                                                                   |

| <br> <br>          | TEACHING TASK                                                                                                                                               |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <sup> </sup> I.Sin | LSingle answer type                                                                                                                                         |  |  |  |  |  |  |  |
| 1.                 | The radii of F, F <sup>-</sup> , O and O <sup>2-</sup> are in the order                                                                                     |  |  |  |  |  |  |  |
|                    | 1) O <sup>2</sup> ->F->O>F 2) O <sup>2</sup> ->F-F>O 3) F-> O <sup>2</sup> -> F>O 4) O <sup>2</sup> ->O>F->F                                                |  |  |  |  |  |  |  |
| 2.                 | Of the following, the one with largest size is (1997)                                                                                                       |  |  |  |  |  |  |  |
| 1                  | 1) Cl⁻ 2)Ar 3) K⁺ 4) Ca                                                                                                                                     |  |  |  |  |  |  |  |
| ¦3.                | The order of decrease in atomic radii for Be, Na & Mg is                                                                                                    |  |  |  |  |  |  |  |
| 1                  | 1)Na>Mg>Be 2)Mg>Na>Be 3)Be>Na>Mg 4)Be>Mg>Na                                                                                                                 |  |  |  |  |  |  |  |
| 4.                 | Which of the following is the largest ion                                                                                                                   |  |  |  |  |  |  |  |
| İ_                 | 1) Na <sup>+</sup> 2) Mg <sup>+2</sup> 3) O <sup>-2</sup> 4) F <sup>-</sup>                                                                                 |  |  |  |  |  |  |  |
| <b>5</b> .         | When a neutral atom is converted into cation, there is                                                                                                      |  |  |  |  |  |  |  |
|                    | 1) a decrease in atomic number 2) in an increase in atomic number                                                                                           |  |  |  |  |  |  |  |
|                    | 3) a decrease in size 4) an increase in size                                                                                                                |  |  |  |  |  |  |  |
| 6.                 | Ionisation potential of Boron is less than that of Beryllium. This is because                                                                               |  |  |  |  |  |  |  |
|                    | 1) B has 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>2</sup> configuration 2) B has small atomic size                                                           |  |  |  |  |  |  |  |
|                    | 3) B has higher nuclear charge 4) B has more number of shells                                                                                               |  |  |  |  |  |  |  |
| 17.                | rife energy required for the removal of outermost electron from an isolated unipositive                                                                     |  |  |  |  |  |  |  |
| 1                  | 1) first ionisation potential 2) second ionisation potential                                                                                                |  |  |  |  |  |  |  |
| 1                  | 3) third ionisation potential 4) fourth ionisation potential                                                                                                |  |  |  |  |  |  |  |
| 8.                 | An alkaline earth element has the L L and L values 9.2 eV/atom 18.5 eV/atom and 'x' eV/atom                                                                 |  |  |  |  |  |  |  |
|                    | Then 'x' is                                                                                                                                                 |  |  |  |  |  |  |  |
| İ                  | 1) 3eV/atom 2) 154 eV/atom 3) 20 eV/atom 4) 10 eV/atom                                                                                                      |  |  |  |  |  |  |  |
| 9.                 | The screening effect of d-electrons is                                                                                                                      |  |  |  |  |  |  |  |
|                    | 1) equal to the p-electrons (2) much more than the p-electrons                                                                                              |  |  |  |  |  |  |  |
|                    | 3) same as f-electrons 4) less than the p-electrons                                                                                                         |  |  |  |  |  |  |  |
| 10.                | The electron affinity of X is equal in magnitude with the ionisation potential of                                                                           |  |  |  |  |  |  |  |
|                    | 1) X <sup>+</sup> 2) X <sup>-</sup> 3) X 4) X <sup>2-</sup>                                                                                                 |  |  |  |  |  |  |  |
| ¦ 11.              | Which is less for an element                                                                                                                                |  |  |  |  |  |  |  |
| 1                  | 1) $I_1$ 2) $I_2$ 3) $I_3$ 4) $I_4$                                                                                                                         |  |  |  |  |  |  |  |
| ¦12.               | The $I_1$ , $I_2$ , $I_3$ , $I_4$ values of an element "M" are 120 kJ/mole, 600 kJ/mole, 1000 kJ/mole and 8000                                              |  |  |  |  |  |  |  |
|                    | kJ/mole. Then the formula of its sulphate is                                                                                                                |  |  |  |  |  |  |  |
|                    | 1) $MSO_4$ 2) $M_2(SO_4)_3$ 3) $M_2SO_4$ 4) $M_3(SO_4)_2$                                                                                                   |  |  |  |  |  |  |  |
| 13.                | The electron configuration of elements A, B and C are [He] 2s', [Ne]3s' and [Ar] 4s'                                                                        |  |  |  |  |  |  |  |
|                    | respectively. Which one of the following order is correct for the first ionization potentials (in K I molt) of A. B. and C2(2001E).                         |  |  |  |  |  |  |  |
|                    | $\begin{array}{ccc} \text{KJ.IIIOL} & \text{OIA, D alid C}(2001E) \\ 1 & \text{ASRSC} & 2 & \text{CSRSA} & 3 & \text{RSCSA} & 4 & \text{CSASC} \end{array}$ |  |  |  |  |  |  |  |
| 11                 | Which of the following species has the highest in ionization potential                                                                                      |  |  |  |  |  |  |  |
| 14.                | $\frac{1}{1}$                                                                                                                                               |  |  |  |  |  |  |  |
| 15                 | Flement with lowest and highest LP values in each period respectively                                                                                       |  |  |  |  |  |  |  |
| 1.10.              | 1) Alkali metals Noble cases 2) Alkali metals Halogens                                                                                                      |  |  |  |  |  |  |  |
| l<br>I             | 3) Halogens, Alkalimetals 4) Noble gases, Alkalimetals                                                                                                      |  |  |  |  |  |  |  |
| ,<br>16.           | Which one of the following relations is correct with respect to first (I) and second (II)                                                                   |  |  |  |  |  |  |  |
|                    | ionization potentials of sodium and Magnesium?                                                                                                              |  |  |  |  |  |  |  |
| İ                  | 1)   >  2)   >   3)    >   4)    >                                                                                                                          |  |  |  |  |  |  |  |
| 17.                | Among the following elements that has lowest ionization potential value is $10^{10}$ Mg $M_{\rm Mg}$                                                        |  |  |  |  |  |  |  |
|                    |                                                                                                                                                             |  |  |  |  |  |  |  |
| IX -               | IX - CLASS 101                                                                                                                                              |  |  |  |  |  |  |  |

| CHE           | CMISTRY                                                                                                         | PERIODIC CLASS                                          | IFICATION AND PROPERTIES                                                              |  |  |  |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|               | 1) Nitrogen 2) Oxygen                                                                                           | 3) Fluorine                                             | 4) Neon                                                                               |  |  |  |  |  |  |  |
| Mult          | <u>i Correct Choice Type:</u>                                                                                   |                                                         |                                                                                       |  |  |  |  |  |  |  |
| İ 🍝 👘         | ◆ This section contains multiple choice questions. Each question has 4 choices (A), (B), (C),(D), out of which  |                                                         |                                                                                       |  |  |  |  |  |  |  |
| ONE           | <b>ONE or MORE</b> is correct. Choose the correct options                                                       |                                                         |                                                                                       |  |  |  |  |  |  |  |
| 18.           | Which of the following are correct for consequences of Lanthanide contraction?                                  |                                                         |                                                                                       |  |  |  |  |  |  |  |
| 1             | 1) Atomic sizes of 4d and 5d transition                                                                         | elements become aln                                     | nost equal,due to which their                                                         |  |  |  |  |  |  |  |
| i             | properties are very close.                                                                                      |                                                         |                                                                                       |  |  |  |  |  |  |  |
| ļ             | 2) Zr and Hf resemble very closely.                                                                             |                                                         |                                                                                       |  |  |  |  |  |  |  |
|               | <ul> <li>a) The crystal structure and other prop</li> <li>b) Separation of lanthanides is not easily</li> </ul> | erties of lanthanides a                                 | are very similar.                                                                     |  |  |  |  |  |  |  |
| 1<br>19.      | Which of the following factors effects the                                                                      | ne atomic radii?                                        |                                                                                       |  |  |  |  |  |  |  |
|               | 1) Effective nuclear charge.                                                                                    | 2) Atomic number.                                       |                                                                                       |  |  |  |  |  |  |  |
|               | 3) Shielding effect.                                                                                            | 4) None of the abov                                     | /e.                                                                                   |  |  |  |  |  |  |  |
| 20.           | In groups from top to bottom, IP decrea                                                                         | ases due to :                                           |                                                                                       |  |  |  |  |  |  |  |
| 1             | 1) increase in the atomic size                                                                                  | 2) increase in the se                                   | creening effect of inner electrons.                                                   |  |  |  |  |  |  |  |
| i             | 3) decrese in the screening of inner ele                                                                        | ectrons 4                                               | ) None of these.                                                                      |  |  |  |  |  |  |  |
| Asse          | ertion & peason type:                                                                                           |                                                         | 40                                                                                    |  |  |  |  |  |  |  |
|               | This section contains certain number of que                                                                     | estions. Each question co                               | ontains Statement $-1$ (Assertion) and                                                |  |  |  |  |  |  |  |
| Staten        | nent - 2 (Reason). Each question has 4 choices                                                                  | (A), (B), (C) and (D) out o                             | f which <b>ONLY ONE</b> is correct Choose                                             |  |  |  |  |  |  |  |
| the co        | prrect option.                                                                                                  |                                                         |                                                                                       |  |  |  |  |  |  |  |
| <b>21</b> .   | Statement I: Second ionization enthal                                                                           | py will be higher than                                  | the first ionization enthalpy.                                                        |  |  |  |  |  |  |  |
|               | Statement II : Ionization enthalpy is a c                                                                       | quantitative measure (                                  | of the tendency of an element to                                                      |  |  |  |  |  |  |  |
| 22.           | Statement I: Penetration power of diff                                                                          | ferent orbitals is in the                               | e order of $s > p > d > f$                                                            |  |  |  |  |  |  |  |
|               | Statement II : Order of screening power                                                                         | er of orbitals s > p > d                                | >f                                                                                    |  |  |  |  |  |  |  |
| 23.           | Statement I: With increase in the atom                                                                          | nic size "IP" decrease                                  | es due to decrease in                                                                 |  |  |  |  |  |  |  |
|               | attractive force of nucleus on outer mo                                                                         | st orbit electrons.                                     |                                                                                       |  |  |  |  |  |  |  |
| 1             | Statement II :With increase in the effe                                                                         | ctive nuclear charge,                                   | IP increases.                                                                         |  |  |  |  |  |  |  |
| <u>  Matr</u> | <u>ix Match Type:</u>                                                                                           |                                                         |                                                                                       |  |  |  |  |  |  |  |
| •             | This section contains Matrix-Match Type qu                                                                      | estions. Each question co                               | ontains statements given in two                                                       |  |  |  |  |  |  |  |
| colum         | ans which have to be matched. Statements (A, B, Column-II) The answers to these questions have                  | C, D) in <b>Column–I</b> have                           | to be matched with statements (p, q, r, b) to be matched with statements (p, q, r, c) |  |  |  |  |  |  |  |
| examp         | ple.                                                                                                            | e to be appropriately but                               | obieu us mushuleu in me jonowing                                                      |  |  |  |  |  |  |  |
| i .           | If the correct matches are A-p,A-s,B-r,B-r,C-                                                                   | p,C-q and D-s,then the co                               | rrect bubbled 4*4 matrix                                                              |  |  |  |  |  |  |  |
| should        | d be as follows:                                                                                                |                                                         |                                                                                       |  |  |  |  |  |  |  |
| 24.           | a) Ionization energy a                                                                                          | 1) On moving left to                                    | right in a period                                                                     |  |  |  |  |  |  |  |
| 1             | b) Units of ionization energy                                                                                   | 2) e V/atom or K ca                                     | al/mole                                                                               |  |  |  |  |  |  |  |
| i             | c) Ionization energy decreases                                                                                  | 3) On moving dowr                                       | n the group                                                                           |  |  |  |  |  |  |  |
| l             | d) Ionization energy increases                                                                                  | 4) Nuclear charge                                       | 0                                                                                     |  |  |  |  |  |  |  |
|               |                                                                                                                 | 5) Stable electronic                                    | configuration                                                                         |  |  |  |  |  |  |  |
| Com           | prehension Type:                                                                                                |                                                         |                                                                                       |  |  |  |  |  |  |  |
| ♦             | This section contains paragraph. Based up                                                                       | on each paragraph multip $(P)$ $(C)$ and $(D)$ are form | ple choice questions have to be                                                       |  |  |  |  |  |  |  |
| Ì             | unswerea. Each question has 4 choices (A),<br>the correct option                                                | (D), $(C)$ and $(D)$ out of w                           | vnich <b>Uivli Uivli</b> s correct. Choose                                            |  |  |  |  |  |  |  |
|               |                                                                                                                 |                                                         |                                                                                       |  |  |  |  |  |  |  |

#### CHEMISTRY PERIODIC CLASSIFICATION AND PROPERTIES The minimum amount of energy required to remove the most loosely bound electron from an isolated neutral gases of atom $IP_n > IP_{n+1} > -- - > IP_1$ The amount of energy released, when an electron is added to a neutral isolated gases atoms of an element is called electro affinity. 1<sup>st</sup> EA, value is exothermic 2<sup>nd</sup> EA, value is endotherimic 25. The first ionization potential of Li will be 1) Greater than Be 4) Equal to F 2) Less than Be 3) Equal to Na 26. Ionisation potential of Boron is less than that of Beryllium. This is because 1) B has 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup> configuration 2) B has small atomic size 3) B has higher nuclear charge 4) B has more number of shell LEARNER'S TASK **BEGINNERS** (Level - I) SINGLE ANSWER TYPÉ: 🖡 The I.P. of an element on going from left to right in a period 27. 2) decreases 3) remain uncharged 4)gets double 1) increase 28. The atomic radius decreases in a period due to 2. Decrease in nuclear attraction 1. Increase in nuclear attraction 3. Increase in number of electrons 4. Decrease in number of electrons 29. The Lanthanide contraction relates to 3. Atomic radii 1. Oxidaion states 2. Magnetic state 4. Valence electrons When an atom of an electronegative element becomes anion, which of the following occurs? 30. 1. It acts as a reducing agent 2. It loses electrons 3. It ionic radius becomes larger 4. None 31. The first, second, third, fourth, fifth ionization potential values of an element are 6.11, 11.87, 51.21, 67.0, 84.39 eV respectively. The element is 1) Calcium 2) Potassium 3) Aluminium 4) Carbon 32. The element with highest ionization potential is 1) Nitrogen 2) oxygen 3) Helium 4) Neon 33. In the long form of periodic table elements with low ionisation potentials are present in 1) I A group 2) IV A group 3) VII A group 4) Zero group As atomic number of elements increases, the I.P. value of the elements of the same 34. period 1) decreases 2) increases 3) remains constant 4) first increases and then decreases The ionization potential values of an element are in the following order 35. $I_1 < I_2 < < < < I_3 < I_4 < I_5$ . The element is 1) alkali metal 2) chalcogen 3) halogen 4) alkaline earth metals The ionization energy of nitrogen is more than that of oxygen because 36. 1) of the extra stability of half-filled p orbitals in nitrogen 2) of the smaller size of nitrogen 3) the former contains less number of electrons 4) the former is less electronegative 37. The correct order of second I.P. values of carbon, nitrogen, oxygen and fluorine is 3) O>F>N>C 1) C>N>O>F 2) O>N>F>C 4) F>O>N>C 38. The ionisation potential of "X<sup>+</sup>" ion is equal to 1) the electron affinity of "X" atom 2) the elcetronegativity of "X" atom 3) the ionisation energy of "X" atom 4) the electron affinity of " $X^{2+}$ " ion **IX - CLASS** 103

| 39.           | The I1 of potassium is 4.339 eV/atom. the I1 of sodium                                                                                                                    |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | 1) 4.339 2) 2.21 3) 5.138 4) 1.002                                                                                                                                        |
| 40.           | The first ionization potential of four consecutive elements, present in the second period of the                                                                          |
| 1             | periodic table are 8.3, 11.3, 14.5 and 13.6 eV respectively. Which one of the following is the first                                                                      |
| 1             | ionization potential (in eV) of nitrogen?(2004)                                                                                                                           |
| 1             | 1. 13.6 2. 11.3 3. 8.3 4. 14.5                                                                                                                                            |
| ¦41.          | Which of the following transitions involves maximum amount of energy?                                                                                                     |
| 1             | $1) M^{-}(g) \to M(g) \qquad 2) M(g) \to M^{+}(g) \qquad 3) M^{+}(g) \to M^{2+}(g) \qquad 4) M^{2+}(g) \to M^{3+}$                                                        |
| <b>¦ 42</b> . | Elements X, Y and Z have atomic numbers 19, 37 and 55 respectively. Which of the                                                                                          |
| 1             | following statements is true about them?                                                                                                                                  |
| İ             | 1. Their ionization potential would increase with increasing atomic number                                                                                                |
| i             | 2. Y' would have an ionization potential between those of X and $Z$                                                                                                       |
| i             | 3. Z would have the highest ionization potential                                                                                                                          |
| 40            | 4. Y would have the highest ionization potential                                                                                                                          |
| 43.           | For any atom, the order of ionization potential values is                                                                                                                 |
| 1             | $1$ ) $I_1 < I_2 < I_3$ $2$ ) $I_1 > I_2 > I_3$ $3$ ) $I_1 < I_2 > I_3$ $4I_1 > I_2 < I_3$<br>The high ionistion potential of magnesium compared with eluminium is due to |
| 44.           | 1) filled orbitals in magnesium 2) high nuclear charge in magnesium                                                                                                       |
|               | 3) low radius of magnesium atom 4) low effective nuclear charge in magnesium                                                                                              |
| 45            | The correct order of ionization potential values of Be, B, Li, C atom is                                                                                                  |
| -0.           | 1) $Be < B < L < C$ 2) Li $< Be < B < C$ 3) Li $< Be > B < C$ 4) Li $> Be > B < C$                                                                                        |
| 46            | The ionisation energy is lowest for                                                                                                                                       |
|               | 1) Nitrogen 2) Oxygen 3) Fluorine 4) Neon                                                                                                                                 |
| 47.           | The element with highest ionisation potential is                                                                                                                          |
|               | 1) Na 2) Ar 3) Cl 4) P                                                                                                                                                    |
| 48.           | The ionisation potential is very low for                                                                                                                                  |
|               | 1) Be 2) Mg 3) B 4) Al                                                                                                                                                    |
| 49.           | The I, value of potassium is less than the I, value of sodium. This is due to                                                                                             |
| 1             | 1) large size of potassium atom 2) small size of potassium atom                                                                                                           |
| 1             | 3) low density of potassium 4) Univalent nature of potassium                                                                                                              |
| ¦ 50.         | The ionization potential of elements in any group decreases from top to bottom. This is due to                                                                            |
| 1             | 1) Increase in size of atom       2) Increase in atomic number                                                                                                            |
| l             | 3) Increase in screening effect                                                                                                                                           |
|               | 4) both increase in size of atom and increase in screening effect                                                                                                         |
| 51.           | 1) Detential energy required to remove an electron of a gaseous atom from its ground state is called                                                                      |
| 52            | The first ionization operated bithium will be                                                                                                                             |
| 52.           | 1) Greater than Be                                                                                                                                                        |
|               | 3) Equal to that of Na A) Equal to that of E                                                                                                                              |
| 53            | Which has maximum first ionization potential?                                                                                                                             |
| 00.           | 1) C 2) N 3) B 4) O                                                                                                                                                       |
| 54.           | Which has the highest second ionization potential?                                                                                                                        |
| •             | 1) Nitrogen 2) Carbon 3) Oxygen 4) fluorine                                                                                                                               |
| 55.           | Which has least ionization potential?                                                                                                                                     |
|               | 1) Li 2) Čs 3) Cl 4) l                                                                                                                                                    |
| 56.           | The first ionization energy values of an element are 191, 578,872, and 5692 kcals. The number                                                                             |
| 1             | of valence electrons in the element are                                                                                                                                   |
| 1             | 1) 5 2) 2 3) 3 4) 4                                                                                                                                                       |
| ¦ 57.         | The peaks in ionisatoin potential curves are occuiped by                                                                                                                  |
| 1             | 1) alkali metals2) inert gases3) transition metals4) halogens                                                                                                             |
| -             |                                                                                                                                                                           |

**CHEMISTRY** PERIODIC CLASSIFICATION AND PROPERTIES 58. The first ionization potential of Li will be 1) greater than Be 2) less than Be 3) equal to Na 4) equal of F 59. The I.P. of sodium is 5.14 eV. The I.P. of potassium could be 1) same as that of sodium 2) 5.68eV 3) 4.34eV 4) 10.28eV 60. A sudden large jump between the values of second and third ionization energies of an element would be associated with the electronic configuration 2) 1s<sup>2</sup>, 2s<sup>2</sup>p<sup>6</sup>, 3s<sup>2</sup>p<sup>1</sup> 1)  $1s^2$ ,  $2s^2p^6$ ,  $3s^1$ 3) 1s<sup>2</sup>, 2s<sup>2</sup>p<sup>6</sup>, 3s<sup>2</sup>p<sup>2</sup> 4) 1s<sup>2</sup>, 2s<sup>2</sup>p<sup>6</sup>, 3s<sup>2</sup> 61. The first ionisation potential is maximum for 1. Lithium 2. Uranium 3. Iron 4. Hydrogen 62. In the following four elements, the ionisation potential of which one is the highest? 2. Argon 3. Barium 4. Cesium 1. Oxygen 63. The incorrect statement among the following is 1. The first ionisation potential of Al is less than the first ionisation potential of Mg 2. The second ionisation potential of Mg is greater than the second ionisation potential of Na 3. The first ionisation potential of Na is less than the first ionisation potential of Mg 4. The third ionisation of potential of Mg is greater than the third ionisation potential of Al 64. The decreasing order of the second ionization potential of K, Ca and Ba is 2. Ca > Ba > K 3. Ba > K > Ca 1. K > Ca > Ba 4. K > Ba > Ca 65. The low electron affinity value of nitrogen is due to 1) small size 2) high nuclear charge 3) half-filled 2p sublevel 4) high metallic character 66. Which of the following has zero electron affinity? 1) Oxvaen 2) Fluorine 3) Nitrogen 4) Neon 67. Electron affinity values are obtained indirectly by 1) electric discharge method 2) Born-Haber cycle method 3) electron microscopic method 4) Millikian oil drop method 68. Energy is absorbed when a second electron is added to oxygen. This is because 1) O<sup>-</sup> has stable configuration 2) O<sup>-</sup> has repulsion with electron to be added 3) O<sup>-</sup> has lower nuclear charge than O 4) O<sup>2-</sup> has unstable configuration The decreasing order of electron affinity of halogen's is 69. 1) F > Cl > Br > l 2) F < Cl < Br < I 3) F < Cl > Br < I 4) Cl > F > Br > I ACHIEVERS (Level - II) + H+ + **Descriptive Answers** A student reported the atomic radii of Cu, Cu+ and Cu+2 as 96 pm, 122 pm 70. and 72 pm respectively. Do you agree with the reported values. 71. Mn+2 is smaller than O-2 in size, though both have same electronic configuration. Explain. 72. Calculate the amount of energy required to convert 7.974 g of cesium atom in the gaseous state to form cesium ions. IE1 of Cs =374 kj/mol and atomic mass of Cs is 132.9 amu. EXPLORERS (Level - III) **←}#**₹≯ Multi Correct Choice The \* This section contains multiple choice questions. Each question has 4 choices (A), (B), (C), (D), out of which ۲ **ONE or MORE** is correct. Choose the correct options Atomic radius depends upon. 73. 1) Number of bonds formed by the atom 2) nature of bonding 3) oxidation state of the atom 4) None of the above 74. Which of the following effects the atomic radius? **IX - CLASS** 105

PERIODIC CLASSIFICATION AND PROPERTIES CHEMISTRY 1) Effective nucler charge 2) Number of orbits 3) Shielding effect 4) None Which of the following order is correct? 75. 1) Vanderwaal radius > crystal radius > covalent radius Covalent radius < crystal radius < vanderwaal radius</li> 3) Covalent radius > crystal radius > vanderwaal radius 4) None of these Assertion & reason type: This section contains certain number of questions. Each question contains Statement -1 (Assertion) and Statement -2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct Choose the correct option. 1) Statement-I, Statement-II both are true and Statement-II is the correct explanation of Statement-I. 2) Statement-I, Statement-II both are true but Statement-II is not the correct explanation of Statement-I. Statement-I is true, Statement-II is false. 3) 4) Statement-I is false, Statement-II is true. 76. Statement I: Half of the internuclear distance between the adjacent atoms of a solid metallic crystal is called crystal radius. Statement II : The effect of increase in the number of orbits in an atom increases the atomic size 77. Statement I: Covalent radius term is generally used in reference to non-metals. Statement II: Vanderwaals is 40% greater than covalent radii. 78. Statement I: The decreasing order of the radii is : Anion > Atom > Cation ;  $I^- > I > I^+$ ;  $H^- > H > H^+$ Statement II : When a neutral atom gains one (or) more electrons a negative ion called anion is formed. Statement I: When a neutral atom loses one (or) more electrons a positive ion called cation 79. is formed. Statement II : Among the cation as the positive charge increases, the ionic radius decreases. Matrix Match Type: This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in **Column–I** have to be matched with statements (p, q, D)r, s) in Column-II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4\*4 matrix should be as follows: 80. Column-I Column-II a) Size of anion  $\alpha$ 1) Increases b) Size of cation  $\frac{1}{\alpha}$ 2) Decreases c) Atomic radii in a period 3) Effective nuclear charge d) Atomic radii in a group 4) Number of orbits 5) Electronic repulsion Comprehension Type: This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Choose the correct option. A. In atoms, the electron colud around the nucleus extends to infinity. The distance between the centre of the nucleus and the electron cloud of outer most energy level is called atomic radius.

| CHE           | HEMISTRY PERIODIC CLASSIFICATION AND PROPERTIES                                                                                               |                                                                                                 |  |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
|               | Atomic radius cannot be determined directly, but me                                                                                           | easured from the inter nuclear distance of                                                      |  |  |  |  |  |
| 1             | combined atoms, using X-ray diffraction techniques.                                                                                           |                                                                                                 |  |  |  |  |  |
| ¦ 81.         | Atomic radius is measured by                                                                                                                  |                                                                                                 |  |  |  |  |  |
| i             | 1) Rutherford's $\alpha$ - ray scattering experiment 2) X                                                                                     | ray diffraction technique                                                                       |  |  |  |  |  |
| 82            | The atomic radii in case of inert cases is .                                                                                                  |                                                                                                 |  |  |  |  |  |
| •             | 1) Ionic radii 2) Covalent radii 3) Vander waals                                                                                              | radii 4) None of these                                                                          |  |  |  |  |  |
| 83.           | Lower atomic radius is:                                                                                                                       | <i>,</i>                                                                                        |  |  |  |  |  |
| <br>          | 1) Lithium 2) Magnesium 3) Sodium 4) Ba                                                                                                       | aryllium                                                                                        |  |  |  |  |  |
| ¦B.           | When a neutral atom loses one (or) more electrons                                                                                             | a positive ion called cation is formed.                                                         |  |  |  |  |  |
| İ             | $Na \rightarrow Na^+ + e^-$                                                                                                                   | İ                                                                                               |  |  |  |  |  |
|               | The ionic radius of cation is less than that of neutral                                                                                       | l atom. It is because the cation has higher                                                     |  |  |  |  |  |
|               | effective nuclear charge. eg: $Na > Na^+$                                                                                                     |                                                                                                 |  |  |  |  |  |
|               | Among the cation as the positive charge increases                                                                                             | , the ionic radius decreases.                                                                   |  |  |  |  |  |
|               | <b>eg</b> : $Fe^{2+} > Fe^{3+}$                                                                                                               |                                                                                                 |  |  |  |  |  |
| ¦ 84.         | Na <sup>+</sup> , Mg <sup>2+</sup> , Al <sup>3+</sup> , Si <sup>4+</sup> are isoelctronics. Their ionic siz                                   | e follows the order:                                                                            |  |  |  |  |  |
|               | 1) $Na^{1} < Mg^{2} < Al^{3} < Sl^{4}$<br>2) $Na^{1} > Mg^{2} < A$<br>3) $Na^{4} < Mg^{2} > Al^{3} > Si^{4}$<br>4) $Na^{4} > Mg^{2} > Mg^{2}$ | Λ  <sup>3</sup> ' < S  <sup>+</sup> '<br>Λ  <sup>3</sup> ' > Si <sup>4</sup> '                  |  |  |  |  |  |
| 85.           | In the isoelectronic series: K <sup>+</sup> , Cl <sup>-</sup> , S <sup>2-</sup> , Ca <sup>2+</sup> the larce                                  | uest size is of :                                                                               |  |  |  |  |  |
|               | 1) K <sup>+</sup> 2) C <i>I</i> <sup>-</sup> 3) Ca <sup>2+</sup> 4) S                                                                         | 2-                                                                                              |  |  |  |  |  |
| ¦ <u>но</u> т | <u>TS</u>                                                                                                                                     | nQa                                                                                             |  |  |  |  |  |
| 86.           | If the differentiating electron enters (n-1) d-sublevel.                                                                                      | The element is                                                                                  |  |  |  |  |  |
| i             | 1) a representative element (2) a r                                                                                                           | noble gas                                                                                       |  |  |  |  |  |
|               | 3) an alkali metal 4) a t                                                                                                                     | ransition element                                                                               |  |  |  |  |  |
| 87.           | Atomic number of next inert gas to be discovered w                                                                                            | 11 De                                                                                           |  |  |  |  |  |
| <br>  88      | Total number of groups in Mendeleef's table                                                                                                   | o 4) 132                                                                                        |  |  |  |  |  |
|               | 1) 18 2) 9 3) 7                                                                                                                               | 4) 10                                                                                           |  |  |  |  |  |
| 89.           | Which of the following electronic configuration corre                                                                                         | esponds to an inert gas?                                                                        |  |  |  |  |  |
|               | 1) $1s^{1}2s^{2}2p^{5}$ 2) $1s^{2}2s^{2}2p^{6}$ 3) $1s^{2}s^{2}s^{2}p^{6}$                                                                    | <sup>2</sup> 2s <sup>1</sup> 4) 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>1</sup> |  |  |  |  |  |
| 90.           | lonic radii of (IIT)                                                                                                                          |                                                                                                 |  |  |  |  |  |
|               | 1. $Ti^{4+} < Mn^{/+}$ 2. ${}^{30}Cl < {}^{3/}Cl$ 3. $K^+$                                                                                    | > Cl <sup>-</sup> 4. $P^{3+} > P^{5+}$                                                          |  |  |  |  |  |
| 91.<br>       | $1 \text{ field}_1$ values of LI, Be and C are 5.4 eV/alom, 9.32 e<br>Boron is                                                                | $\sqrt{a}$ com and 11.26 eV/atom. The $r_1$ value of $r_1$                                      |  |  |  |  |  |
| Ì             | 1) 13.6 eV/atom 2) 8.29 eV/atom 3) 14                                                                                                         | .5 eV/atom 4) 21.5 eV/atom                                                                      |  |  |  |  |  |
| 92.           | The process requiring the absorption of energy is                                                                                             | ,<br>,                                                                                          |  |  |  |  |  |
|               | 1) $F \rightarrow F^-$ 2) $Cl \rightarrow Cl^-$ 3) $O^-$                                                                                      | $^{-} \rightarrow O^{2-}$ 4) $H \rightarrow H^{-}$                                              |  |  |  |  |  |
| 93.           | The electron affinity values (KJmol-1) of three haloge                                                                                        | ens X,Y and Z are respectively - 349, -333                                                      |  |  |  |  |  |
| 1             | and -325. Then X,Y and Z respectively are                                                                                                     |                                                                                                 |  |  |  |  |  |
| Ì             | 1. $F_2$ , $Cl_2$ and $Br_2$ 2. $Cl_2$ , $F_2$ and $Br_2$ 3. $Cl_2$                                                                           | , $Br_2$ and $F_2$ 4. $Br_2$ , $Cl_2$ and $F_2$                                                 |  |  |  |  |  |
| I             |                                                                                                                                               |                                                                                                 |  |  |  |  |  |
|               |                                                                                                                                               |                                                                                                 |  |  |  |  |  |
| <br>          |                                                                                                                                               |                                                                                                 |  |  |  |  |  |
| ι <u>ΦΦ</u>   | $\frac{1 \text{EAUTING IASK}}{1 (1 - 2)(1 - 3)(1 - 4)(2 - 5)(2 - 6)(4)}$                                                                      | 7\2 8\3 0\4 10\2 11\1                                                                           |  |  |  |  |  |
| İ             | 12) 2 13) 1 14) 1 15) 1 16) 4 17) 2                                                                                                           | 18) 2.3 19) 1 2 3 20) 1 2                                                                       |  |  |  |  |  |
| l             | 21) 3 22) 1 23) 1 24)a-4,b-2,c-3,                                                                                                             | d-1 25) 2 26)1                                                                                  |  |  |  |  |  |
|               | - CLASS                                                                                                                                       | , , ,<br>107                                                                                    |  |  |  |  |  |
| 1A -          | - ULADD                                                                                                                                       | 107                                                                                             |  |  |  |  |  |

| $\Phi\Phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>LEARNER</u>                                                     | <u>'STASK</u> :                                                         |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|
| 🗆 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BEGINNERS                                                          | <b>;</b>                                                                |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                                                                           |
| <br> <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27) 1<br>38) 1<br>49) 1<br>60) 4                                   | 28) 1<br>39) 3<br>50) 1<br>61) 1                                        | 29) 3<br>40) 4<br>51) 2<br>62) 2 | 30) 3<br>41) 4<br>52) 2<br>63) 4 | 31) 1<br>42) 2<br>53) 2<br>64) 1 | 32) 3<br>43) 1<br>54) 3<br>65) 1 | 33) 1<br>44) 1<br>55) 2<br>66) 4 | 34) 1<br>45) 3<br>56) 3<br>67) 2 | 35) 4<br>46) 2<br>57) 3<br>68) 2 | 36) 1<br>47) 2<br>58) 2<br>69) 4 | 37) 3<br>48) 4<br>59) 3                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EXPLORER                                                           | S:                                                                      |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  | I                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73)2,3<br>81)2<br>92)3                                             | 8 74)1,2,3<br>82)3<br>93)2                                              | 75)<br>83)4                      | 1 7<br>84)4                      | 6)2<br>85)4                      | 77)2<br>86)4                     | 78)2<br>87)3                     | 79)2<br>88)2                     | 80)a-3<br>89)2                   | 9,b-5,c-2<br>90)4                | 2,d-1  <br>91)2  <br>                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                                                                         |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  | -)<br>                                                                                    |
| <br>  <u>\$\$</u><br> <br> elect<br> <br> of ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ELECTRO<br>It is an ato<br>ron to form<br>The amou<br>n element is | DN <u>AFFIN</u><br>omic prope<br>an anion.<br>nt of energ<br>called EA. | IITY<br>rty which<br>y release   | n gives u<br>ed when             | is an idi<br>an elec             | ea of th<br>tron is a            | e tende<br>added to              | ncy of t                         | he elen<br>ral isola             | nent to a                        | <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $X \rightarrow \rho^{-}$                                           | $\rightarrow X = + F$                                                   | 4 (or)                           | $X \rightarrow \rho^{-}$         | $\rightarrow X$                  | - AL                             |                                  | (Exoth                           | ermic r                          | rocess                           | ر<br>۱                                                                                    |
| <br> <br> force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $X_{(g)} + e^{-2}$<br>When an e<br>es. This ene                    | electron is a rgy is calle                                              | added to<br>d second             | uni-neg<br>d electro             | ative ion affinit                | n, energ<br>y.                   | y = LA                           | sorbed t                         | o overc                          | ome the                          | /<br>e repulsive  <br>                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EA <sub>2</sub> has p                                              | ositive sign                                                            | $X^{-}_{(g)} +$                  | $e^- \rightarrow X$              | -2⊢<br>(g)                       | $\Delta H = -$                   | + <i>EA</i> <sub>2</sub> (E      | Endothe                          | ermic pr                         | ocess).                          |                                                                                           |
| EA is measured in eV/atom, Kcal/mole, KJ/mole<br>EA can be calculated indirectly from Born - Haber Cycle.<br>EA depends on size, effective nuclear charge and electronic configuration of an element.<br>Be group elements have completely filled orbitals and hence the addition of any extra electron<br>from out side to these atoms is not possible. Therefore they have practically zero EA.<br>Noble gases have most stable ns <sup>2</sup> np <sup>6</sup> configuration. Hence their EA values are practically zero.<br>For N, P - due to half filled orbitals, they have some extra stability hence their EA values are |                                                                    |                                                                         |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                                                                           |
| close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e to zero (ve                                                      | ery small va                                                            | alues). ]                        | Be(+66)                          | KJ mol⁻                          | <sup>1</sup> ). Mg               | (+67  K)                         | $\operatorname{Imol}^{-1}$       | N(+3)                            | l KJ mo                          | $1^{-1}$ )                                                                                |
| In groups, EA decreases from top to bottom as the atomic size increases.<br>EA, of third period element is greater than corresponding second period element of each group.<br>In VII A group EA of CI > EA of F<br>VIA group EA of S > EA of O<br>VA group EA of P > EA of N<br>IV A group EA of Si > EA of C<br>EA of F (333 K.J mole <sup>-1</sup> ) < EA of CI (348K.J mole <sup>-1</sup> ). This is due to<br>a) Smaller size of F-atom<br>b) Strong inter electronic repulsions<br>In a period from left to right side EA increases due to decrease in size of atoms and increase<br>in the nuclear charge.                 |                                                                    |                                                                         |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EA of a ne                                                         | utral atom                                                              | = IE of its                      | s unineg                         | ative io                         | n.                               |                                  |                                  |                                  |                                  |                                                                                           |
| <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IE of a ne<br>Among all                                            | utral atom :<br>the eleme                                               | = EA of it                       | ts unipos<br>ine has t           | sitive ior<br>the max            | n.<br>Kimum E                    | EA.                              |                                  |                                  |                                  |                                                                                           |
| IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLASS                                                              |                                                                         |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  | 100                                                                                       |

PERIODIC CLASSIFICATION AND PROPERTIES CHEMISTRY The metal which has higher EA is gold. **ELECTRO NEGATIVITY** <u>§§</u> It is property of an atom in a molecule. The tendency of an atom to attract the shared electron pair towards itself in a molecule is called EN. Pauling Scale : EN of elements are calculated from the values of bond energies. P Pauling calculated the EN of other elements by using the formula  $X_A - X_B = 0.208 \sqrt{\Delta}$ . [ $\Delta$  is in K.Cal./mole.] In SI units,  $X_A - X_B = 0.1017 \sqrt{\Delta}$ , [ $\Delta$  is in KJ/mole.] where  $X_A$  and  $X_B$  are the EN's of A & B.  $\Lambda$  is a measure of the polarity of A-B bond.  $\Lambda$  = Experimental BE - Theoritical BE  $_{\Delta}\,$  = Actual BE -1/2  $[{\rm E}_{_{\rm A-A}}$  +  ${\rm E}_{_{\rm B-B}}]$  . BE = Bond Energy Hydrogen (whose EN is 2.1) is used to calculate EN of other elements. Mulliken scale, P  $\frac{A \text{ in } eV}{5.6}$   $EN = \frac{(IE \text{ in } kj / mole) + (EA \text{ in } kj / mole)}{544}$   $EN = \frac{(IE \text{ in } kcals / mole) + (EA \text{ in } kcals / mole)}{125}$ Mulliken EN values are approxim Mulliken scale is approxim EN concert EN is the average of IE and EA. Mulliken EN values are approximately 2.8 times greater than Pauling EN values. EN concept is not applicable for Inert gas elements. In groups from top to bottom EN decreases. In periods from left to right EN increases. In a period, Halogen has high EN value.Alkali metal has low EN value. Highest EN element is F(4.0).Next to F, oxygen has high EN (3.5) .Least EN element is Cesium (0.7). Noble gas elements have zero EN due to octet configuration. EN values are used to know the nature of chemical bond. If EN difference is less than 1.7 the bond is covalent in nature equals to 1.7 the bond is 50% ionic in nature. more than 1.7 the bond is ionic in nature.

TEACHING TASK

# Single answer type

- 1. The energy released when a neutral gaseous atom, takes up an electron and forms a uninegative ion is called its
  - 1) effective nuclear charge

- 2) polarising power
- 3) electron affinity
  4) ionization potential
  Among fluorine and chlorine, the electron affinity of the latter is high. This is due to
  1) bigh electronagativity of fluoring
  2) low dispersion energy of

| <br>  2          | <ul> <li>3) F repels with the added e- due to its small size</li> <li>4) small size of Chlorine</li> <li>Which of the following will have almost positive FA</li> </ul> |  |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                  | 1) Chlorine 2) Oxygen 3) Magnesium 4) Sulphur                                                                                                                           |  |  |  |  |  |  |  |
| 4.               | The element having highest electron affinity is                                                                                                                         |  |  |  |  |  |  |  |
| 5                | 1) Fluorine 2) Nitrogen 3) Chlorine 4) Oxygen<br>The element with high electron affinity is                                                                             |  |  |  |  |  |  |  |
|                  | 1) nitrogen 2) oxygen 3) sulphur 4) phosphorous                                                                                                                         |  |  |  |  |  |  |  |
| 6.               | The electron affinity of an atom is numerically equal to the                                                                                                            |  |  |  |  |  |  |  |
| <br>             | 1) ionization potential of its uni negative ion                                                                                                                         |  |  |  |  |  |  |  |
| ļ                | 3) ionization potential of its di negative ion 4) ionization potential of it uni positive ion                                                                           |  |  |  |  |  |  |  |
| <br>  <b>7</b> . | $X_{(1)} + e \rightarrow X_{(1)} + E$ Here "E" is                                                                                                                       |  |  |  |  |  |  |  |
|                  | (g) = (g) = (g) = (g) = (g)                                                                                                                                             |  |  |  |  |  |  |  |
| l                | 3) second electron affinity 4) second ionisation energy                                                                                                                 |  |  |  |  |  |  |  |
| 8.               | Among the following electronic configurations which one will have highest electron affinity value                                                                       |  |  |  |  |  |  |  |
|                  | 1) $1s^2$ 2) $1s^2 2s^2$ 3) $1s^2 2s^2 2p^4$ 4) $1s^2 2s^2 2p^5$                                                                                                        |  |  |  |  |  |  |  |
| 9.               | 1) F 2) Q 3) I 4) N                                                                                                                                                     |  |  |  |  |  |  |  |
| <b>10</b> .      | The units of Electron Affinity are                                                                                                                                      |  |  |  |  |  |  |  |
| <br>             | 1) k cal/mole 2) erg. sec 3) $A^{\circ}$ 4) no units                                                                                                                    |  |  |  |  |  |  |  |
| ; 11.<br>        | 1) the atomic size 2) the screening effect 3) the nuclear charge 4) all of these                                                                                        |  |  |  |  |  |  |  |
| 12.              | Among the following electronic configurations which one will have low electron affinity value                                                                           |  |  |  |  |  |  |  |
| <br>             | 1) $1s^2$ 2) $1s^2 2s^2$ 3) $1s^2 2s^2 2p^4$ 4) $1s^2 2s^2 2p^5$                                                                                                        |  |  |  |  |  |  |  |
| ¦ 13.            | Diagonal relationship is shown by<br>1) Elements of second paried                                                                                                       |  |  |  |  |  |  |  |
| l                | 3) Elements of third period 4) None                                                                                                                                     |  |  |  |  |  |  |  |
| 14.              | The electron affinities of N, O, S and Cl are                                                                                                                           |  |  |  |  |  |  |  |
| <br>             | 1. $N < O < S < CI$<br>2. $O < N < CI < S$<br>3. $O = CI < N = S$<br>4. $O < S < CI < N$                                                                                |  |  |  |  |  |  |  |
|                  | <u><b>I CORRECT CHOICE TYPE:</b></u><br>This section contains multiple choice questions. Each question has $A$ choices $(A)$ $(B)$ $(C)$ $(D)$ out of which             |  |  |  |  |  |  |  |
| •<br>  ONE       | or <b>MORE</b> is correct. Choose the correct options                                                                                                                   |  |  |  |  |  |  |  |
| 15               | Which one of the following statements are correct?                                                                                                                      |  |  |  |  |  |  |  |
|                  | 1) Greater is the nuclear charge, greater is the electron gain enthalpy.                                                                                                |  |  |  |  |  |  |  |
|                  | 2) Nitrogen has zero electron gain enthalpy.                                                                                                                            |  |  |  |  |  |  |  |
| <br>             | 3) Electron gain enthalpy decreases from chlorine to iodine in the group.<br>4) Chlorine has highest electron gain enthalpy                                             |  |  |  |  |  |  |  |
| Asse             | ertion &reason type:                                                                                                                                                    |  |  |  |  |  |  |  |
| •                | This section contains certain number of questions. Each question contains Statement – 1 (Assertion) an                                                                  |  |  |  |  |  |  |  |
| Staten           | nent – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct Choos                                                             |  |  |  |  |  |  |  |
| the co           | prrect option.                                                                                                                                                          |  |  |  |  |  |  |  |
| <br>             | <ol> <li>Statement-I, Statement-II both are true and Statement-II is the correct explanation<br/>of Statement-I.</li> </ol>                                             |  |  |  |  |  |  |  |
| <br>             | 2) Statement-I, Statement-II both are true but Statement-II is not the correct explanation of Statement-I.                                                              |  |  |  |  |  |  |  |
| <br>             | 3) Statement-I is true, Statement-II is false.                                                                                                                          |  |  |  |  |  |  |  |
| İ                | 4) Statement-I is false, Statement-II is true.                                                                                                                          |  |  |  |  |  |  |  |
| <br>  IX -       | CLASS 11                                                                                                                                                                |  |  |  |  |  |  |  |
|                  |                                                                                                                                                                         |  |  |  |  |  |  |  |

| 16.                                                          | Statement I: The lower electron gain enthalpy of fluorine than that of chlorine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                         |  |  |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|
| Matr                                                         | ix Match Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n nuonne                                                                              | l                       |  |  |  |  |  |
| ∳<br>in two<br>(p, q,<br>follow                              | <ul> <li>This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with statements (p, q, r, s) in Column–II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |                         |  |  |  |  |  |
| should                                                       | d be as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                         |  |  |  |  |  |
| 17.<br> <br> <br>                                            | Column-I         a)       Highest electronegativity value         b)       Least electronegative element         c)       Electronegativity α         1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Column-II<br>1) Effective nuclear of<br>2) S - character in hy<br>3) Site of the atom | charge<br>/brid orbital |  |  |  |  |  |
|                                                              | d) Electronegativity $\frac{-\alpha}{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4) Cs5) F                                                                             |                         |  |  |  |  |  |
| <u>Com</u>                                                   | prehension Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                         |  |  |  |  |  |
| <ul> <li>▲</li> <li>18.</li> <li>19.</li> <li>20.</li> </ul> | <ul> <li><i>Omprenension Type:</i></li> <li><i>This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A) , (B) ,(C) and (D) out of which ONLY ONE is correct. Choose the correct option.</i></li> <li>On moving from left to right in a period electronegativity values increases because atomic size decreases and effective nuclear charge increases. On moving down in a group, electronegativity desreases because atomic size increases.</li> <li>8. Electronegativity is a measure of the capacity of an atom to: <ol> <li>Repel electrons</li> <li>Share electrons with another atom</li> <li>Combine with protons.</li> </ol> </li> <li>9. In periodic table from I group to VII group electronegativity of elements: <ol> <li>Decreases</li> <li>In the series carbon, nitrogen , oxygen and fluorine the electronegativity : <ol> <li>Decreases from carbon to fluorine.</li> <li>Decreases from carbon to fluorine.</li> </ol> </li> </ol></li></ul> |                                                                                       |                         |  |  |  |  |  |
|                                                              | LEARNER'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S TASK                                                                                |                         |  |  |  |  |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |                         |  |  |  |  |  |
|                                                              | ◆ I-I ◆ <u>BEGINNERS</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>(Levei-I)</u> <b>«</b> ∎                                                           | [                       |  |  |  |  |  |
| Sing                                                         | Ie answer type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | irot ionization notarti-                                                              | l and first alastran    |  |  |  |  |  |
| <b>2</b> 1.<br> <br>                                         | affinity is equal to its<br>1) Polarising power 2) Covalent radius 3) el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ectronegativity                                                                       | 4)dipole moment         |  |  |  |  |  |
| 22.                                                          | The reference element in Paulings scale of Ele<br>1) H 2) O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ectronegativity is<br>3) N                                                            | 4) Cl                   |  |  |  |  |  |
| 23.                                                          | The electronegativity of Be is same as that of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0) NI                                                                                 |                         |  |  |  |  |  |
| 24                                                           | 1) AI 2) Mg<br>Electropedativity is the property related to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3) Na                                                                                 | 4) Li                   |  |  |  |  |  |
| <b>~</b> -*•<br>                                             | 1) Isolated atom in gaseous state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) Isolated atom in so                                                                | blid state              |  |  |  |  |  |
| 25                                                           | Jinen yas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4) Donueu aloms IN a                                                                  | 1.7 the nature of head  |  |  |  |  |  |
| <b>2</b> 5.<br> <br>                                         | formed is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ided atoms is exactly                                                                 |                         |  |  |  |  |  |
| IX -                                                         | CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       | 111                     |  |  |  |  |  |

| <br>             | 1) >50% Ionic 2) <50% Ionic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3) 50% Ionic & 50% c       | ovalent 4) 100% Ionic <sup>I</sup> |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------|
| ¦26.             | Which of the following elements have relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ly high electronegativit   |                                    |
| 0-               | 1) alkali metals 2) Halogens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3) alkaline earth meta     | als 4) all the above               |
| '27.             | I he element with high electronegativity is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a) <b>a</b>                |                                    |
|                  | 1) Chlorine 2) Sulphur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3) Oxygen                  | 4) Nitrogen                        |
| ¦28.             | Element with high electronegativity is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                          |                                    |
| <br>             | 1) Nitrogen 2) Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3) Fluorine                | 4) Hydrogen                        |
| ¦29.             | Electronegativity is a measure of the capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / of an atom to            |                                    |
|                  | 1) Attract electrons 2) Attract protons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3) Repel electrons         | 4)repel protons                    |
| 30.              | Of the following elements, which one has the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | low electronegativity      |                                    |
| <br>  24         | 1) I Z) DI<br>Kaaning in view the periodic low and the periodi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3) UI                      | 4) F                               |
| <b>3</b>   .<br> | electropedative character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c table, predict the elem  | ient that has the maximum          |
| <br>             | $\frac{1}{D} = \frac{2}{\Lambda_{c}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3) Bi                      | 1) Sh                              |
| 30               | Which of the following set of atoms is arrange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d in order of decreasi     | ng electronegativity               |
| JZ.<br>          | (1) E > O > C   > S = 2) E < O < C   < S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                    |
| 33<br>           | Pauling's values of electronegativities are der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/0 < 1 < 0 < 0 < 4        |                                    |
| 55.              | 1) Ionisation potentials 2) Bond energies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3) Electron affinities     | 1) Atomic radii                    |
| <br>  2/I        | In a period from Alkali metal to Halogens, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                    |
| 0-7.             | 1) gradually increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) aradually decrease      |                                    |
| 1                | 3) gradually increases excent in IIA and VI gradually                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | un elements                |                                    |
| 1                | 4) gradually decreases except in IIA and VI gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oun elements               |                                    |
| 35               | Going from Eluroine, chlorine, bromine to iodi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne the electronegativit    | hv.                                |
| 00.              | 1) increases 2) first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | decreases then increase    |                                    |
| 1                | 3) decreases (4)Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ndes randomly              |                                    |
| 36               | Let electronegativity ionisation energy and el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ectron affinity be repre   | sented as EN_IP and EA_I           |
|                  | respectively. Which one of the following equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion is correct accordin    | a ot Mulliken?                     |
| 1                | 1) FN=IP x FA 2) FN=IP/FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3) FN=(IP+FA) / 2          | 4) FN=IP_FA                        |
| 37.              | Which of the following has the highest electro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | negativity?(2000M)         | .,                                 |
|                  | 1) Na 2) Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3) K                       | 4) B                               |
| İ                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - /                        | (-)                                |
| 1                | A III A ACHIEVERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S(Level-II)     •∎         | [◆                                 |
| 38.              | Why E.A Of Flurine is lessthan chlorine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                   |                                    |
| 39.              | Generally 2nd E.A is endothermic. Explain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | i                                  |
| 40.              | Calculate the E.N value of chlorine on mullike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n scale, given that I.P    | = 13/O AND E.N =4.0.               |
| İ                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | -                                  |
|                  | EXPLORERS ( L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _evel - III ) 🔹 📲          |                                    |
| Multi            | i correct answer type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                    |
|                  | This section contains multiple choice questions. Each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | question has 4 choices (A) | , (B), (C),(D), out of which       |
| ONE              | or MORE is correct. Choose the correct options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                          |                                    |
| 41               | On which of the following factors, electron a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ffinity depends?           |                                    |
|                  | 1) Atomic size 2) Nuclear charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3) Electronic configur     | ation 4) None                      |
| 42               | Which one of the following factors affects the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | electronegativity?         |                                    |
|                  | 1) Effective nuclear charge 2) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | creening effect            |                                    |
|                  | 3) Size of the atom $4)$ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vidation state             |                                    |
| 43               | Which of the following is/are correct order of i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ncreasing electronega      | tivity in aroun?                   |
|                  | $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$ | n < C (1) None (           | of the above                       |
| 44               | Which of the following scales are used to evo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ress electronecativity     | 7                                  |
|                  | 1) Pauling's scale 2) Allred and Rochow sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ale 3) Mulliken's eca      | ile 4) None                        |
|                  | The adding source 2/Amer and Noonow Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                    |

#### Assertion &reason type:

• This section contains certain number of questions. Each question contains Statement – 1 (Assertion) and Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct Choose the correct option.

1) Statement-I, Statement-II both are true and Statement-II is the correct explanation of Statement-I.

2) Statement-I, Statement-II both are true but Statement-II is not the correct explanation of Statement-I.

- 3) Statement-I is true, Statement-II is false.
- 4) Statement-I is false, Statement-II is true.

**45.** *Statement I:* Electron affinity is numerically equal to ionization energy but opposite to each other.

- **Statement II**: Halogens have the highest electron affinity in their resolutive periods.
- **46.** *Statement I:* An atom in higher oxidation state is more electronegative.
- **Statement II:** Atom having less effective nuclear charge is more electronegative.
- **47.** *Statement I:* Greater is the s character in hybrid orbital, greater will be its electronegativity.
- Statement II: Greater is the s character in hybrid orbital, lesser will be its electronegativity.
- **48.** *Statement I:* Electronegativity is used to detect the nature of bond.
- Statement II: Electronegativity is used to measure the strength of bond.

### Matrix Match Type:

• This section contains Matrix-Match Type questions. Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in **Column–I** have to be matched with statements (p, q, r, s) in **Column–II**. The answers to these questions have to be appropriately bubbled as illustrated in the following example.

If the correct matches are A-p,A-s,B-r,B-r,C-p,C-q and D-s,then the correct bubbled 4\*4 matrix

| should | d be as | follows:  |    | ·    |                                    |
|--------|---------|-----------|----|------|------------------------------------|
| 49.    | Colu    | mn-l      |    | 202  | Column-II                          |
|        | Elem    | nent      |    | 7.05 | Electronegativity on pauling scale |
|        | a)      | Carbon    |    |      | 1) 0.8                             |
|        | b)      | Nitrogen  | J. |      | 2) 1.6                             |
|        | c)      | Aluminium |    |      | 3) 2.5                             |
|        | d)      | Cesium    |    |      | 4) 3.0                             |
|        |         |           |    |      | 5) 4.0                             |

#### Comprehension Type:

This section contains paragraph. Based upon each paragraph multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. Choose the correct option.

According to Mulliken, electronegativity of an atom is average of I.E. and E.A.

$$\chi_{\rm M} = \frac{I \cdot E + E \cdot A}{2}$$
.I.E. and E.A. are ionization energy and electron affinity in electron volts.

Mulliken values are  $\approx 2.8$  times greater than pauling values.Pauling based his scale on thermochemical data. He concluded that the bond formed between the two atoms A and B must be stronger than the average of single bond energies A — A and B — B molecules.

According to him the electronegativity difference between two atoms A and B (  $\chi_{_A} \sim \chi_{_B})$  is

given by:

by:  $\chi_{\rm A} \sim \chi_{\rm B}$  = 0.208  $\sqrt{\Delta}$ 

**50.** Pauling's electronegativity scale is based on experimental value of:

1) Atomic radii 2) Bond energies 3) Bond lengths 4) Electron affinity

#### PERIODIC CLASSIFICATION AND PROPERTIES

| 51.        | <b>51.</b> An atom with high electronegativity generally has:                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|            | 1) Tendency to form +ve ions                                                  | 2) High ionisation potential |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 1          | 3) Large atomic size                                                          | 4) Low electron affinity.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 52.        | The element among the following having max                                    | timum electronegativit       | y is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 1          | 1)A/ 2) P                                                                     | 3) Si                        | 4) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| <u> </u>   | HOTS                                                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| ¦ 53.      | The energy released when an electron is added to a neutral gaseous atom would |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 1          | be highest if the element belongs to                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| <br>       | 1) VII A group 2) V A group                                                   | 3) VI A group                | 4) II A group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| ¦ 54.      | The electron affinity of sulphur is -200 kJ/mole.                             | Then the electron affir      | nity of oxygen is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| <br>       | 1) -142 kJ/mole 2) -702 kJ/mole                                               | 3) -332 kJ/mole              | 4) -348 kJ/mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| ¦ 55.      | A correct variation in the electronegativity value                            | ue of atoms is               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| <br>       | 1) F>N <o>C 2) F&gt;O&gt;N&gt;C</o>                                           | 3) F <n<o>C</n<o>            | 4) F>N>O <c< th=""></c<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 56.        | Which of the following is a highly polar bond?                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| <br>       | 1) O-H 2) N-H                                                                 | 3) H-Cl                      | 4) H-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 157.       | which of the following would you except to ha                                 | ve nignest electronega       | $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}$ |  |  |  |  |  |  |  |
| 1          | 1) $Mg(Z=12)$ 2) $S(Z=16)$                                                    | 3) B(Z=5)                    | 4) Ie(Z=52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 1          |                                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|            | KEY                                                                           |                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| <u> ΦΦ</u> | TEACHING TASK :                                                               | 191                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 1          | 1)3 2)3 3) 3 4) 3 5)3                                                         | 6)1 7) 1 8)4                 | 9) 1 10) 1 11)4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 1          | 12) 1 13) 2 14) 1 15) 3,4 16) 3                                               | 3 17)a-5,b-4,c-1,d-3         | 18) 2 19)2 20) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| <u> ΦΦ</u> | LEARNER'STASK :                                                               | 74                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| ¦□         | BEGINNERS :                                                                   | 07                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 1          | 21) 3 22) 1 23) 1 24) 4 25) 3                                                 | 26) 2 27) 3 28) 1            | 29) 2 30) 4 31) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| 1          | 32) 1 33) 1 34) 1 35) 2 36) 1                                                 | 37) 3                        | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| ¦ 🗆        | EXPLORERS :                                                                   | · ·                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 1          | 41)1 2 42)1 2 3 43)1 2 3                                                      | 44)1.3 45)2 46)3             | 47)3 48)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| i          | 49)a-3 b-4 c-2 d-1 50)2 51)2                                                  | 52)4 53)1 54)1               | 55)2 56)4 57)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| i          |                                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|            |                                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| <u>88</u>  | VALENCY                                                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| i          | Valency of an element is the number of H-ator                                 | ms (or) double the num       | ber of oxygen atoms that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| ¦can       | combine with one atom of that element.                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| i          | The valency of an element is not always cons                                  | itant.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| i          | Exhibition of more than one valency by one el                                 | ement is known as var        | lable valency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|            | I ne maximum valency of a representative eler                                 | ment is equal to the nu      | mper of electrons present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| in th      | ne outermost orbit of an atom.                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| : 88       | 88 OXIDATION STATE                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |

#### 88

The possible charge with which an atom appears in a compound is called its oxidation state. s-block elements, oxidation state is equal to group number. For alkali metals "+1". For alkaline earth metals "+2"

Oxidation state may be positive or negative or zero or fraction.

p-block elements show multi valency, their oxidation state change by two numbers.

The stable oxidation state of Thallium is +1. It is due to inert pair effect.

In IVA group +2 is more stable than +4 for Lead due to inert pair effect.

In VA group, +3 is more stable than +5 for Bismuth due to inert pair effect.

Group IV elements show +4 and +2 oxidation states.

Group V elements show +5 and +3 oxidation states.

| СНЕ                                             | MISTRY PEF                                                                                                                                                                                                                                                                                                                                                                                                                                           | RIODIC CLASSIFICATION AND PROPERTIES                                                                                                                                                                              |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br> <br> <br> <br>  ns²(r                      | The general oxidation state of group VI is -2.<br>The most electronegative element. Fluorine s<br>The common oxidation state of d-block elements<br>Rutheum, Osmium and Xenon exhibit maxim<br>The common oxidation state of f-block eleme<br>-1)d <sup>1</sup> .                                                                                                                                                                                    | shows -1 oxidation state only (in its compounds)<br>is +2. All transition elements show variable valencies.<br>hum oxidation state +8.<br>nts is +3 due to their outer electron configuration                     |
| 8 <u>8</u>                                      | ELECTRO POSITIVE NATURE<br>The tendency of an element to lose an electr                                                                                                                                                                                                                                                                                                                                                                              | r exceeds its group number.<br>on is called electro positivity.                                                                                                                                                   |
|                                                 | It is the converse of electro negativity.<br>As electropositivity increases, metallic chara<br>The smaller the ionisation energy or ionisatio<br>As electropositive nature increases, capacity<br>Electropositive nature increases down the g<br>Electro positivity decreases across a period.<br>In any period the strong electropositive eleme<br>Most electro positive element is Cs in periodi<br>The ions of strong Electro Positive metal do n | cter increases.<br>n potential the greater is the electro positivity.<br>to form ionic bond increases.<br>roup, as the size of the atom increases.<br>ent is alkali metal.<br>c table.<br>not undergo hydrolysis. |
| <u>\$\$</u><br> <br>                            | <b>METALLIC AND NON-METALLIC NATURE</b><br>If an element has low electro negativity, and h<br>The groups IA and IIA elements have strong nor<br>Group VIA and VIIA elements have strong nor                                                                                                                                                                                                                                                          | <u>:</u><br>high EP, then it will have high metallic nature.<br>netallic nature.                                                                                                                                  |
|                                                 | On moving from top to bottom<br>a) non metallic nature decreases<br>b) metallic nature increases                                                                                                                                                                                                                                                                                                                                                     | 04                                                                                                                                                                                                                |
| <u>¶¶</u><br> <br> <br>                         | On moving from left to right in a period<br>a) metallic nature decreases b) non metall<br>Order of metallic nature<br>Alkali metals > Alkaline earth metals > d-bloc                                                                                                                                                                                                                                                                                 | ic nature increases<br>k > p-block.                                                                                                                                                                               |
| <u>§§</u><br> <br> <br> <br> <br> <br> <br>     | ACIDIC AND BASIC NATURE OF OXIDES:<br>Metal oxides are basic. Eg: $Na_2O$ , BaO, MgO<br>IA, IIA group metal oxides are strong bases.<br>Non metal oxides are acidic. Examples : SO<br>Oxides of halogens are highly acidic.<br>Oxides of metalloids are amphoteric.<br>Eg: $As_2O_3$ , $Sb_2O_3$ .<br>Acidic oxides dissolve in water to form acidic<br>Basic oxides dissolve in water to form basic                                                 | p, CaO<br>$_{2}$ , P $_{2}O_{5}$ , CO $_{2}$ , P $_{2}O_{3}$ , NO $_{2}$<br>solutions.<br>solutions, known as hydroxides.                                                                                         |
|                                                 | In groups from top to bottom<br>a) acidic nature of oxides decreases                                                                                                                                                                                                                                                                                                                                                                                 | b) basic nature of oxides increases                                                                                                                                                                               |
|                                                 | a) basic nature of oxides decreases                                                                                                                                                                                                                                                                                                                                                                                                                  | b) acidic nature of oxides increases                                                                                                                                                                              |
| <u>\$\$</u><br> <br>  of th<br> <br> <br>  IX - | DIAGONAL RELATIONSHIP         In the periodic table the first element of a group.         next group. This is called diagonal relationsh         I       II         2nd Period       Li         Be       B         3rd Period       Na         Mg       Al         Si       The diagonal relationship disappears after IV/CLASS                                                                                                                      | up has similar properties with the second element<br>ip.<br>Agroup.<br>115                                                                                                                                        |

|                   | The diagonal relationship is due to                                   | aimilar aizaa af ata                                      | ma ariana and                                | ala atrana gativitian of the                                       |  |  |
|-------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|--|--|
| İ                 | i ne diagonal relationship is due to                                  | o similar sizes of alc                                    | oms or ions and                              | electronegativities of the                                         |  |  |
| <br>narti         | cipating elements and same polaris                                    | sing nower Polaris                                        | ing power = $\frac{10}{\sqrt{2}}$            | $\frac{\operatorname{nic}\operatorname{cn}\operatorname{arg}e}{1}$ |  |  |
|                   |                                                                       |                                                           | (io                                          | nic radius) <sup>2</sup>                                           |  |  |
|                   | The elements present under diago                                      | onal relationship ha                                      | ve very close pr                             | operties.                                                          |  |  |
|                   | 1) BeO amphoteric, $Al_2O_3$ amphot                                   | ieric                                                     |                                              |                                                                    |  |  |
|                   | 2) $\text{Be}_2 \text{C}$ or $\text{Al}_4 \text{C}_3$ produce methane | e on hydrolysis.                                          |                                              | l                                                                  |  |  |
|                   | $\bigcirc$                                                            |                                                           |                                              |                                                                    |  |  |
| l                 |                                                                       |                                                           |                                              |                                                                    |  |  |
| ļ                 | <u> </u>                                                              | EACHING TASK                                              |                                              |                                                                    |  |  |
| <br>  Sinc        |                                                                       |                                                           |                                              |                                                                    |  |  |
| <u>Sing</u><br>14 | Of the following electronogativity                                    | of Lithium is approv                                      | vimately equal t                             | o that of                                                          |  |  |
| ••                | 1) Ma 2) B                                                            |                                                           | kinalely equal l                             | Δ ( ) N 2                                                          |  |  |
| <br>  2           | Most metallic element has the foll                                    | owing electron arra                                       | incoment in its                              | atom is                                                            |  |  |
| <b>-</b>          | 1) 2 8 4 2) 2 8 8                                                     |                                                           | 8 1                                          | 4) 2 8 8 7                                                         |  |  |
| <br>  3.          | Boron and Silicon resemble cherr                                      | nically This is due t                                     | to the equal val                             | ue of their                                                        |  |  |
| 1                 | 1) EA 2) Atomic                                                       | Volume 3) ions                                            | polarizing pow                               | er 4) Nuclear charge                                               |  |  |
| 4.                | Among (a) Na <sub>2</sub> O, (b) MaO. (c) Al                          | O <sub>3</sub> , (d) P <sub>2</sub> O <sub>2</sub> (e) Cl | O, the most ba                               | sic, most acidic                                                   |  |  |
|                   | and amphoteric oxide can be                                           | 2 3 ( ) 2 - 5 ( - ) - 2                                   |                                              | ,                                                                  |  |  |
| 1                 | 1) a, b, c 2) b, e, c                                                 | 3) a, e                                                   | , c                                          | 4) e, c, a                                                         |  |  |
| 5.                | Metal exhibiting higher oxidation s                                   | state is in which bloc                                    | ck?                                          | ,                                                                  |  |  |
| Ì                 | 1) p 2) s                                                             | 3) d                                                      |                                              | 4) f                                                               |  |  |
| 6.                | The less electropositive element                                      | is                                                        |                                              |                                                                    |  |  |
| İ                 | 1) Na 2) Be                                                           | 3) Li                                                     | 0                                            | 4) Mg                                                              |  |  |
| į <b>7</b> .      | Electropositivity is very high for                                    |                                                           |                                              |                                                                    |  |  |
| Ì                 | 1)Al 2)Ge                                                             | 3) Li                                                     |                                              | 4) Ba                                                              |  |  |
| 8.                | The most electropositive element                                      | is                                                        |                                              |                                                                    |  |  |
|                   | 1) Cs 2) C                                                            | 3) Cl                                                     |                                              | 4) K                                                               |  |  |
| 9.                | Which of the following electron co                                    | onfiguration corresp                                      | onds to the mo                               | st electropositive                                                 |  |  |
|                   |                                                                       |                                                           | Co1                                          |                                                                    |  |  |
| 10                | I) [He]2S 2) [He]2S                                                   | 3) [Xe]                                                   | os                                           | 4) [Xe]0S <sup>2</sup>                                             |  |  |
| 10.               | 1) Boron 2) Alumini                                                   |                                                           | necium                                       | 1) Silicon                                                         |  |  |
| <br>  11          | Diagonal relationship is shown by                                     | uni 5) Mag                                                | JIESIUII                                     |                                                                    |  |  |
| 1                 | 1) B - S $2$ $1$ i - Ma                                               | 3) Ma                                                     | - Ca                                         | 4) S - Se                                                          |  |  |
| 1<br>12.          | In the first few groups of periodic                                   | table, the group nur                                      | mber represent                               | s the                                                              |  |  |
| • <b></b> •       | 1) Valency 2) Atomic                                                  | weight 3) Ator                                            | nic number                                   | 4) both 1 & 3                                                      |  |  |
| 13.               | Which has most stable +2 oxidati                                      | on state?                                                 |                                              | .,                                                                 |  |  |
| 1                 | 1) Cs 2) Cl                                                           | 3) Pb                                                     |                                              | 4) <i>Tl</i>                                                       |  |  |
| -<br>  M ! •      | i Correct Choice Type                                                 | ,                                                         |                                              | ,<br>                                                              |  |  |
|                   | This section contains multiple choice and                             | estions Fach question                                     | has 4 choices (4)                            | (B) $(C)$ $(D)$ out of which                                       |  |  |
|                   | or MORE is correct Choose the correct                                 | ontions. Buch question                                    | A, $A$ , $A$ , $A$ , $A$ , $A$ , $A$ , $A$ , |                                                                    |  |  |
|                   | or more is correct. Choose the correct                                | οριιοπο                                                   |                                              |                                                                    |  |  |
| 14.               | Which of the following elements e                                     | xhibit maximum ox                                         | idations state +                             | 8?                                                                 |  |  |
|                   | 1) Rutheum 2) Osmiur                                                  | n <u>3)</u> Soo                                           | dium                                         | 4) Magneaium                                                       |  |  |
| 15.               | Which of the following is/are correct                                 | ect statements?                                           |                                              | () No. 511                                                         |  |  |
|                   | 1) Be resembles A 2) B reser                                          | ndles Si 3) Li r                                          | esemples Mg                                  | 4) None of these                                                   |  |  |
| ASS               | ertion &reason type:                                                  |                                                           |                                              |                                                                    |  |  |
| •                 | This section contains certain number                                  | of questions. Each qu                                     | estion contains Si                           | tatement - 1 (Assertion) and                                       |  |  |
| State             | <u>ment – 2 (Reason). Each question has 4 ch</u>                      | <i>oices (A). (B). (C) and</i>                            | (D) out of which <b>(</b>                    | ONLY ONE is correct Choose                                         |  |  |
| 1X -              | IX - CLASS 116                                                        |                                                           |                                              |                                                                    |  |  |

## PERIODIC CLASSIFICATION AND PROPERTIES

| the correct option. |                                                                                                                                                           |                                                                                     |                                                                                                         |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| 16.                 | <b>16.</b> Statement I: Electropositivity increases on going down a group from top to bottom.                                                             |                                                                                     |                                                                                                         |  |  |
|                     | State                                                                                                                                                     | <b>Statement II :</b> The most electropositive element in first period is hydrogen. |                                                                                                         |  |  |
| 17.                 | State                                                                                                                                                     | atement I: Oxides of metals are usually basic.                                      |                                                                                                         |  |  |
| Matu                | State                                                                                                                                                     | <b>ement II</b> : Oxides of non - metals are acid                                   | dic.                                                                                                    |  |  |
| Matr                | <u>IX IVIA</u>                                                                                                                                            | IICN IVPE:                                                                          | the substitute contains statements since in two                                                         |  |  |
| ▼<br>  colum        | 1 nis<br>ns whi                                                                                                                                           | ich have to be matched Statements (A B C D) in $C$                                  | con question contains statements given in two<br>Column-I have to be matched with statements (n_a, r_1) |  |  |
| (s) in $($          | Column                                                                                                                                                    | <b>n-II</b> . The answers to these questions have to be app                         | propriately bubbled as illustrated in the following                                                     |  |  |
| examp               | ole.                                                                                                                                                      | 1 11                                                                                |                                                                                                         |  |  |
|                     | If th                                                                                                                                                     | he correct matches are A-p,A-s,B-r,B-r,C-p,C-q and L                                | D-s,then the correct bubbled 4*4 matrix                                                                 |  |  |
| should              | l be as                                                                                                                                                   | s follows:                                                                          | I                                                                                                       |  |  |
| 18.                 | Colu                                                                                                                                                      | Imn-I C                                                                             |                                                                                                         |  |  |
|                     | a)<br>b)                                                                                                                                                  | A strong base 1                                                                     |                                                                                                         |  |  |
|                     | (U                                                                                                                                                        | A strong actu Z                                                                     | ) 90 <sup>3</sup>                                                                                       |  |  |
|                     | d)                                                                                                                                                        | Basic oxide                                                                         | ) NaOH                                                                                                  |  |  |
|                     | u)                                                                                                                                                        | 5                                                                                   | ) A/ O                                                                                                  |  |  |
| 19.                 | Colu                                                                                                                                                      | ımn-l C                                                                             | column-ll                                                                                               |  |  |
|                     | a)                                                                                                                                                        | Common oxidation state of 1                                                         | )+2                                                                                                     |  |  |
|                     |                                                                                                                                                           | d-block elements                                                                    | 191                                                                                                     |  |  |
|                     | b)                                                                                                                                                        | Maximum oxidation state of 2                                                        | )Never exceeds its group number                                                                         |  |  |
|                     |                                                                                                                                                           | an element                                                                          |                                                                                                         |  |  |
|                     | c)                                                                                                                                                        | Maximum oxidation state of Os                                                       | )+8                                                                                                     |  |  |
|                     | a)                                                                                                                                                        | Stable oxidation state of 4                                                         |                                                                                                         |  |  |
| Com                 | nrehe                                                                                                                                                     | ension Type:                                                                        | )+3                                                                                                     |  |  |
| •                   | This                                                                                                                                                      | s section contains paragraph Based upon each pa                                     | ragraph multiple choice questions have to be                                                            |  |  |
|                     | answered. Each question has 4 choices $(A)$ , $(B)$ , $(C)$ and $(D)$ out of which <b>ONLY ONE</b> is correct. Choose                                     |                                                                                     |                                                                                                         |  |  |
|                     | the correct option.                                                                                                                                       |                                                                                     |                                                                                                         |  |  |
|                     | It is observed that the first few elements of period 2 resemble those placed diagonally across                                                            |                                                                                     |                                                                                                         |  |  |
|                     | them, in period 3. More generally, the first element of a group is different from the rest in that                                                        |                                                                                     |                                                                                                         |  |  |
|                     | group and resembles an element of the next group, in the next period                                                                                      |                                                                                     |                                                                                                         |  |  |
| 20.                 | Diago                                                                                                                                                     | ional relationship is shown by:                                                     | , , , , , , , , , , , , , , , , , , ,                                                                   |  |  |
|                     | 1) El                                                                                                                                                     | lements of first period 2) Elem                                                     | 2 and 3                                                                                                 |  |  |
| 21                  | Bervl                                                                                                                                                     | dium resembles Aluminium in properties. Th                                          | his is mainly due to:                                                                                   |  |  |
| 21.                 | 1) Equal electro negativity values of elements                                                                                                            |                                                                                     |                                                                                                         |  |  |
|                     | 2) Equal atomic volumes of the elements                                                                                                                   |                                                                                     |                                                                                                         |  |  |
|                     | 3) Eq                                                                                                                                                     | ,<br>qual electron affinity. 4) Equal nucl                                          | lear charges in their atoms.                                                                            |  |  |
| 22.                 | Diage                                                                                                                                                     | onal relationship is quite pronounced in the                                        | elements of:                                                                                            |  |  |
|                     | 1) 2 <sup>nd</sup> & 3 <sup>rd</sup> periods 2) 1 <sup>st</sup> & 2 <sup>nd</sup> periods 3) II & III groups 4) 3 <sup>rd</sup> & 4 <sup>th</sup> periods |                                                                                     |                                                                                                         |  |  |
|                     |                                                                                                                                                           |                                                                                     |                                                                                                         |  |  |
|                     |                                                                                                                                                           | KEY                                                                                 |                                                                                                         |  |  |
| $ \Phi\Phi $        | TEAC                                                                                                                                                      | CHING TASK :                                                                        |                                                                                                         |  |  |
|                     | 1)1 2)3 3) 3 4) 3 5)3 6) 2 7)4 8)1 9) 3 10) 4 11)2                                                                                                        |                                                                                     |                                                                                                         |  |  |
|                     | 12) 1 13) 3 14) 1,2 15) 1,2,3 16) 3 17) 2 18)a-4,b-2,c-5,d-1                                                                                              |                                                                                     |                                                                                                         |  |  |
|                     | 19) a-2, b-1, c-3, a-4 20) 4 21)1 22) 1                                                                                                                   |                                                                                     |                                                                                                         |  |  |
|                     |                                                                                                                                                           |                                                                                     |                                                                                                         |  |  |

| LEARNER'S TASK                                                                                                                              |                                                                                                                                                  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <br>                                                                                                                                        | ◆ ■ ■ ◆ BEGINNERS (Level - I) ◆ ■ ■ ◆                                                                                                            |  |  |  |  |  |
| Sing                                                                                                                                        | le answer type                                                                                                                                   |  |  |  |  |  |
| 23.                                                                                                                                         | Diagonal relationship is quite pronounced in the elements of                                                                                     |  |  |  |  |  |
| 04                                                                                                                                          | 1) $2^{n\alpha}$ and $3^{n\alpha}$ periods 2) $1^{st}$ and $2^{n\alpha}$ periods 3) II and III groups 4) $3^{n\alpha}$ and $4^{n\alpha}$ periods |  |  |  |  |  |
| <b>24</b> .<br>                                                                                                                             | 1) increase 2) decrease 3) does not alter 4) none                                                                                                |  |  |  |  |  |
| 25                                                                                                                                          | The most metallic among the following is?                                                                                                        |  |  |  |  |  |
| _0.                                                                                                                                         | 1) P 2) As 3) Bi 4) Sb                                                                                                                           |  |  |  |  |  |
| 26.                                                                                                                                         | The pair of elements that have similar chemical properties are                                                                                   |  |  |  |  |  |
| l                                                                                                                                           | 1) Lithium and Magnesium 2) Beryllium and Boron                                                                                                  |  |  |  |  |  |
|                                                                                                                                             | 3) Aluminium and Magnesium 4) Carbon and Nitrogen                                                                                                |  |  |  |  |  |
| 27.                                                                                                                                         | Atom becomes ion by                                                                                                                              |  |  |  |  |  |
| 1                                                                                                                                           | 1) OXIdation 2) reduction 2) reduction ar reduction 2) noither evidation per reduction                                                           |  |  |  |  |  |
| 28                                                                                                                                          | Which has the maximum atomic radius?                                                                                                             |  |  |  |  |  |
| _0.                                                                                                                                         | 1) $AI^{3+}$ 2) $Li^+$ 3) P 4) Mg                                                                                                                |  |  |  |  |  |
| 29.                                                                                                                                         | In which of the following pairs, the first atom or ion is not large than the second ?                                                            |  |  |  |  |  |
| l                                                                                                                                           | 1) Fe <sup>2+</sup> , Fe <sup>3+</sup> 2) O, S 3) N, O 4) Cl <sup>-</sup> Cl                                                                     |  |  |  |  |  |
| 30.                                                                                                                                         | Which of the following is large radius                                                                                                           |  |  |  |  |  |
|                                                                                                                                             | 1) crystal 2) covalent 3) vanderwaal's 4) all are same                                                                                           |  |  |  |  |  |
| <sup>1</sup> 31.                                                                                                                            | The element with the following atomic number may be bigger than aluminium atom is                                                                |  |  |  |  |  |
|                                                                                                                                             | 1) 12 2) 14 3) 16 4) 17                                                                                                                          |  |  |  |  |  |
|                                                                                                                                             | ACHIEVERS (Level - II) + I I +                                                                                                                   |  |  |  |  |  |
|                                                                                                                                             |                                                                                                                                                  |  |  |  |  |  |
| $\frac{Dest}{32}$                                                                                                                           | Write a short notes on valency                                                                                                                   |  |  |  |  |  |
| 33.                                                                                                                                         | Explain diagonal relationship.                                                                                                                   |  |  |  |  |  |
| 34.                                                                                                                                         | What is electro positivity. How vary E.P in a group and period.                                                                                  |  |  |  |  |  |
| 35.                                                                                                                                         | Explain the variation of metallic and non metallic nature, nature o0f oxides in a group and                                                      |  |  |  |  |  |
|                                                                                                                                             | period.                                                                                                                                          |  |  |  |  |  |
| <mark> </mark> 36.                                                                                                                          | In s and p block elements the O.S changes by 2 units but in transition elements it changes in                                                    |  |  |  |  |  |
|                                                                                                                                             | the units of 1. Explain.                                                                                                                         |  |  |  |  |  |
|                                                                                                                                             |                                                                                                                                                  |  |  |  |  |  |
| <br>  N/I14                                                                                                                                 |                                                                                                                                                  |  |  |  |  |  |
|                                                                                                                                             | This section contains multiple choice questions. Each question has $A$ choices $(A)$ $(B)$ $(C)$ $(D)$ out of which                              |  |  |  |  |  |
|                                                                                                                                             | ar MORF is correct. Choose the correct ontions                                                                                                   |  |  |  |  |  |
|                                                                                                                                             | Or more is correct. Choose the correct options                                                                                                   |  |  |  |  |  |
| 1.                                                                                                                                          | Group V elements show oxidation states of                                                                                                        |  |  |  |  |  |
| Reas                                                                                                                                        | (1)+5 $(2)+5$ $(3)+6$ $(4)$ All of these soning Type:                                                                                            |  |  |  |  |  |
| This section contains contain number of monthing E 1 (i) (i) (i) (i) (i) (i)                                                                |                                                                                                                                                  |  |  |  |  |  |
| Statement – 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which <b>ONLY ONE</b> is correct Choose the correct option |                                                                                                                                                  |  |  |  |  |  |
| 2                                                                                                                                           | Statement I: Non-metalic character increases across a period from left to right                                                                  |  |  |  |  |  |
|                                                                                                                                             |                                                                                                                                                  |  |  |  |  |  |
| IX -                                                                                                                                        | CLASS 118                                                                                                                                        |  |  |  |  |  |

| <ul> <li>Statement II : A more electropositive element has less metallic character.</li> <li>Statement I : The possible charge with which an atom appears in a compound oxidation state.</li> <li>Statement II : Oxidation state may be positive or pegative or zero or fraction</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| <b>3. Statement I:</b> The possible charge with which an atom appears in a compound oxidation state. <b>Statement II:</b> Oxidation state may be positive or pegative or zero or fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |  |  |  |
| oxidation state.<br>Statement II: Oxidation state may be positive or negative or zero or fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l is called its                                                 |  |  |  |
| Statement II: Oxidation state may be positive or penative or zero or fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |  |  |  |
| Cutementin: Oxidation state may be positive of negative of Zero of nacion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | xidation state may be positive or negative or zero or fraction. |  |  |  |
| <b>4. Statement I:</b> The common oxidation state of f-block elements is +3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |  |  |  |
| Statement II: The general oxidation state of group VI is -2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |  |  |  |
| Matrix Match Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |  |  |  |
| This section contains Matrix-Match Type questions. Each question contains statements given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in two                                                          |  |  |  |
| columns which have to be matched. Statements (A, B, C, D) in Column–I have to be matched with state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ments (p, q, r,                                                 |  |  |  |
| s) in <b>Column–II</b> . The answers to these questions have to be appropriately bubbled as illustrated in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e following                                                     |  |  |  |
| example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |  |  |  |
| If the correct matches are A-p,A-s,B-r,C-p,C-q and D-s,then the correct bubbled 4*4 matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |  |  |  |
| should be as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |  |  |  |
| 5. Column-l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |  |  |  |
| a) Size of an atom decreases 1) Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |  |  |  |
| b) Sulphur 2) From left to right decreases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |  |  |  |
| c) Nitrogen 3) Low electro positive element in v grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıp                                                              |  |  |  |
| 4) Non-metai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                               |  |  |  |
| 5) High electropositive element in v grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | þ                                                               |  |  |  |
| This section sections are seen by the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th |                                                                 |  |  |  |
| This section contains paragraph. Based upon each paragraph multiple choice questions have answered. Each question has $A$ choices $(A)$ , $(B)$ , $(C)$ and $(D)$ out of which ONLY ONE is com-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 10 De                                                         |  |  |  |
| the correct option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eci. Choose                                                     |  |  |  |
| As we move from top to bottom, the size of atoms increases resulting in the decru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ease in                                                         |  |  |  |
| ionisation energy Thus, the non-metallic character decreases down the group. Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |  |  |  |
| move down the group, the metallic character increases and the non-metallic char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o, as we                                                        |  |  |  |
| decreases in a period as we move from left to right the size of atom decreases in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | esulting in                                                     |  |  |  |
| a decrease in electronositivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | counting in                                                     |  |  |  |
| Thus metallic character decreases as we move from left to right in a period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |  |  |  |
| As we move from left to right the size of atoms increases, resulting in an increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e in                                                            |  |  |  |
| ionisation energy or electronegativity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                               |  |  |  |
| Thus non-metallic character increases, as we move from left to right in a period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |  |  |  |
| Thus metallic character decreases and non-metallic character increases from left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t to -riaht in                                                  |  |  |  |
| a period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |  |  |  |
| 6. Which of the following has least tendency to form unipositive ions in gaseous stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e?                                                              |  |  |  |
| 1) 1) 2) C/ 3) Br 4) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |  |  |  |
| 7. Which of the following sets of elements has the strongest tendency to form positiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ve ions in                                                      |  |  |  |
| gaseous state?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 |  |  |  |
| 1) Li, Na, K 2) Be, Mg, Ca 3) F, Cl, Br 4) Ο, S, Sε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ;                                                               |  |  |  |
| <b>8.</b> Among B, A/, C and Si which has the most metallic character?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |  |  |  |
| 1) B 2) A/ 3) C 4) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |  |  |  |
| Higher Order Thinking Skills (HOTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |  |  |  |
| <b>9.</b> In which group all the elements do not have same number of valence electrons?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |  |  |  |
| 1) Zero2) Frist3) Second4) Seventh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |  |  |  |
| 10. Beryllium shows diagonal relationship with aluminium. Which of the following sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nilarity is                                                     |  |  |  |
| incorrect?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |  |  |  |
| 1) Be <sub>2</sub> C like Al <sub>4</sub> C <sub>3</sub> yields methane on hydrolysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |  |  |  |
| 2) Be, like Al is renderd passive by $HNO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |  |  |  |
| 3) Be $(OH)_2$ like Al $(OH)_3$ is basic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |  |  |  |
| 4) Be forms beryllates and Al forms aluminate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |  |  |  |
| IX - CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119                                                             |  |  |  |

| CHE          | CMISTRY                                                                                                                             | PERIODIC CLASSIFICATION AND PROPERTIES                                                            |                               |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|--|--|
| 11.          | The elements x, y and z are present in c                                                                                            | one period of the periodic                                                                        | table. Chemically their       |  |  |
| i            | oxides are acidic, amphoteric and basic respectively. When these elements are arranged in ascending order of atomic number they are |                                                                                                   |                               |  |  |
|              | 1) x, y, z $(2)$ z, y, x                                                                                                            | 3) v. z. x                                                                                        | 4) v. x. z                    |  |  |
| 12.          | Which of the following is the smallest in                                                                                           | size?                                                                                             | , , , ,                       |  |  |
|              | 1) Br 2) I⁻                                                                                                                         | 3) I                                                                                              | 4) Br                         |  |  |
| 13.          | The size of Hafnium is almost similar to                                                                                            | that of zirconium this is o                                                                       | due to                        |  |  |
| 1            | 1) increase in size as expected                                                                                                     | 2) decrease in size                                                                               | as expected                   |  |  |
| Ì            | 3) lanthanide contraction                                                                                                           | 4) similar chemica                                                                                | I properties                  |  |  |
| Ì            | <↓↓↓↓ <u>RESEAR</u>                                                                                                                 | CHERS(Level - IV)                                                                                 | <111>                         |  |  |
| ίι. <u>s</u> | <u>ingle answer type</u>                                                                                                            |                                                                                                   |                               |  |  |
| j <b>1</b> . | Most common oxidation states of Ce                                                                                                  |                                                                                                   | [AIEEE 2002]                  |  |  |
|              | 1) +2,+3 2) +2, +4                                                                                                                  | 3) +3, +4                                                                                         | 4) +3, +5                     |  |  |
| 2.           | I he correct order of atomic radii is:                                                                                              | - <sup>3</sup> + <b>√/</b> - <sup>3</sup> + <b>√</b> /- <sup>3</sup> + <b>√</b> /- <sup>3</sup> + | [AIEEE 2002]                  |  |  |
| ļ            | (1) YD' $<$ Pm <sup>3+</sup> $<$ Ce <sup>3+</sup> $<$ Ce <sup>3+</sup> $<$ (2) C                                                    | $e^{3} < 1 D^{3} < Pm^{3} < La^{3}$                                                               |                               |  |  |
| 3            | The correct order of atomic radii is                                                                                                |                                                                                                   | [AIEEE 2002]                  |  |  |
| <b>v</b> .   | 1) Ce>Sn>Yb>Lu 2) Sn>Ce>Lu>Y                                                                                                        | b 3) Lu>Yb>Sn>Ce                                                                                  | 4) SN>Yb>Ce>Lu                |  |  |
| 4.           | The radius La <sup>3+</sup> (Atomic number=57) is                                                                                   | 1.06 A <sup>o</sup> .What may be the                                                              | radius of Lu³⁺ (Atomic        |  |  |
| 1            | number=71)?                                                                                                                         |                                                                                                   | [AIÈEE 2003]                  |  |  |
| i            | 1) 1.06A <sup>0</sup> . 2) 0.85A <sup>0</sup> .                                                                                     | 3) 0.60Aº.                                                                                        | 4) 1.40A <sup>0</sup> .       |  |  |
| 5.           | According to periodic law of elements, th                                                                                           | ne variation in properties of                                                                     | of elements is related to     |  |  |
|              | their                                                                                                                               |                                                                                                   |                               |  |  |
|              | 1) Atomic number 2) Atomic mass                                                                                                     | 3) Nuclear mass                                                                                   | 4) Neutron/proton ratio       |  |  |
| 0.           | 1) Be $Al^{3+}$ Cl <sup>-</sup> 2) Ca <sup>2+</sup> Cs <sup>+</sup> Br                                                              | 3) Na Ca2+ Ma2+                                                                                   | 4) N <sup>3-</sup> F- Na+     |  |  |
| 1<br>17.     | The atomic number of vanadium (V) chr                                                                                               | omium (Cr) manganese (                                                                            | (Mn) and iron (Fe) are        |  |  |
| 1            | respectively 23, 24, 25 and 26. Which ou                                                                                            | ut of these may be expect                                                                         | ted to have the jump in       |  |  |
| i            | second ionization enthalpy                                                                                                          |                                                                                                   | <i>,</i>                      |  |  |
| i            | 1) Mn 2) Fe                                                                                                                         | 3) V                                                                                              | 4) Cr                         |  |  |
| <b>8</b> .   | A reduction in atomic size with increase                                                                                            | in atomic number is a ch                                                                          | aracteristic of element of    |  |  |
|              | 1) F-block 2) Radioactives                                                                                                          | series 3) High atomic ma                                                                          | ass 4) d-block.               |  |  |
| 9.           | $1) E^+$ 2) $B^{3+}$                                                                                                                | 1adius:<br>3)∩ <sup>2-</sup>                                                                      | 1)   i+                       |  |  |
| 10.          | The formatio of the oxide ion O2- requir                                                                                            | es first an exothermic an                                                                         | d then an endothermic step    |  |  |
| 1.0.         | as shwon below                                                                                                                      |                                                                                                   |                               |  |  |
| i            | Ο, ,+e <sup>-</sup> > Ο <sup>-</sup> , ; ΔH = 142k                                                                                  | ki / mol                                                                                          |                               |  |  |
| i            | $(g)$ $(g)^{r}$                                                                                                                     | xi / mol this is becuase                                                                          |                               |  |  |
|              | $O_{(g)} = O_{(g)}$ , $\Delta \Pi = O_{44}$                                                                                         | han avygan atom                                                                                   |                               |  |  |
| ļ            | 2) Oxygen has high electron affinity                                                                                                | nan oxygen atom                                                                                   |                               |  |  |
|              | 3) O- ion will tend to resist the addition o                                                                                        | f another electron                                                                                |                               |  |  |
| 1            | 4) Oxygen is more electronegative                                                                                                   |                                                                                                   |                               |  |  |
| ¦11.         | Which among the following factors is the                                                                                            | e most important in makir                                                                         | ng flourine, the strongest    |  |  |
| ĺ            | oxidizing halogen                                                                                                                   |                                                                                                   |                               |  |  |
| i            | 1) Bond dissocoation energy 2) lor                                                                                                  | nization enthalpy                                                                                 |                               |  |  |
| 12           | 3) Hydration enthalpy 4) Ele                                                                                                        | ectron attinity                                                                                   | r Dut the two elements differ |  |  |
| 1 <b>2</b> . | berymum and auminium exhibit many p                                                                                                 | roperties which are simila                                                                        |                               |  |  |
|              | CLASS                                                                                                                               |                                                                                                   | 120                           |  |  |
| 17 -         | ULADD                                                                                                                               |                                                                                                   | 120                           |  |  |

|                  | in                                                                                                                            |                                                                          |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
|                  | 1) Exhibiting amphoteric nature in their oxides 2) Formating polymeric hydrides                                               |                                                                          |  |  |  |  |
|                  | 3) forming covalent halides 4) Exihibiting maximum covalent in compound                                                       |                                                                          |  |  |  |  |
| 13.              | In which of the following arrangements, the order is not correct according to the property                                    |                                                                          |  |  |  |  |
| l                | indicated against it                                                                                                          |                                                                          |  |  |  |  |
| ļ                | 1) Increasing size: Al <sup>3+</sup> <mg<sup>2+<na<sup>+<f<sup>- 2) Increasing IE,: B</f<sup></na<sup></mg<sup>               | <c<n< th=""></c<n<>                                                      |  |  |  |  |
| ļ                | 3) Increasing EA,: I <br<f<ci< th=""><th></th></br<f<ci<>                                                                     |                                                                          |  |  |  |  |
|                  | 4) Increasing metalic radius Li <na<k<rbie,: b<c<n<o<="" th=""></na<k<rbie,:>                                                 |                                                                          |  |  |  |  |
| 14.              | What products are expected from the disproportionation reaction of hypochlorous acid?                                         |                                                                          |  |  |  |  |
|                  | 1) HCl and HClO <sub>3</sub> 2) HCLO <sub>3</sub> and Cl <sub>2</sub> O 3) HClO <sub>2</sub> and HClO <sub>4</sub> 4          | ) HCI and Ci <sub>2</sub> O                                              |  |  |  |  |
| 15.              | Which of the following statements is true:                                                                                    |                                                                          |  |  |  |  |
| 1                | 1) HNO <sub>3</sub> is a stronger acid than HNO <sub>2</sub> 2) $H_3PO_3$ is a stronger acid than $H_2SO_3$                   |                                                                          |  |  |  |  |
| 1                | 3) In aqueous medium HF is a stronger acid than HCI                                                                           |                                                                          |  |  |  |  |
| <br>             | 4) $HCIO_4$ is a weaker acid than $HCIO_3$                                                                                    |                                                                          |  |  |  |  |
| ¦16.             | Lanthanoid conraction is caused due to                                                                                        |                                                                          |  |  |  |  |
| 1                | 1) The imperfect shielding on outer electrons by 4f- electrons from                                                           | the nuclear charge                                                       |  |  |  |  |
| 1                | 2) The appreciable shielding on outer electrons by 4f- electrons fro                                                          | om the nuclear charge                                                    |  |  |  |  |
| 1                | 3) The imperfect shielding on outer electrons by 5d- electrons from                                                           | n the nuclear charge                                                     |  |  |  |  |
| <br>  4 7        | 4) The some effective nuclear charge from Ce to Lu                                                                            | for for                                                                  |  |  |  |  |
| 17.              | 1) Not 2) Kt 2) Pbt 4 Lit                                                                                                     |                                                                          |  |  |  |  |
| 18               | Following statements regarding the periodic trends of chemical re                                                             | activity of the alkali metals                                            |  |  |  |  |
|                  | and the balogens are given. Which of these statements gives the                                                               | correct nicture                                                          |  |  |  |  |
| Ì                | and the halogens are given, which of these statements gives the correct picture                                               |                                                                          |  |  |  |  |
|                  | atomic number down the group                                                                                                  |                                                                          |  |  |  |  |
|                  | 2) The reactivity decreases in the alkali metals but increase in the balogens with incress in                                 |                                                                          |  |  |  |  |
|                  | atomic number down the group                                                                                                  |                                                                          |  |  |  |  |
|                  | 3) In both alkali metals and the halogens the chemical reactivity decrease with increase in                                   |                                                                          |  |  |  |  |
|                  | atomic number down the group                                                                                                  |                                                                          |  |  |  |  |
| ļ                | 4) Chemical reactivity increase with in atomic number down the gr                                                             | oup in both the alkali                                                   |  |  |  |  |
|                  | metals and halogens                                                                                                           |                                                                          |  |  |  |  |
| <sup> </sup> 19. | The incrasing order of the first ionozation enthalpies of the elemen                                                          | nts B,P, S,and F (lower                                                  |  |  |  |  |
| 1                | first) is                                                                                                                     |                                                                          |  |  |  |  |
| 1                | 1) F <s<p<b 2)="" 3)="" b<p<spf<="" p<s<b<f="" th=""><th>4) B<s<p<f< th=""></s<p<f<></th></s<p<b>                             | 4) B <s<p<f< th=""></s<p<f<>                                             |  |  |  |  |
| <b>20</b> .      | Which one of the following hydgrogen bonds is the strongest                                                                   |                                                                          |  |  |  |  |
|                  | 1) O-H-N 2)F-H-F 3) O-H-O                                                                                                     | 4) O-H-F                                                                 |  |  |  |  |
| '21.<br>         | Which one of the following sets of ion represents a collection if isc<br>A = A = A = A = A = A = A = A = A = A =              |                                                                          |  |  |  |  |
|                  | 1) $K^+, Cl^-, Ca^{2+}, Sc^{3+}$ 2) $Ba^{2+}, Sl^{2+}, K^+, Sl^{2-}$ 3) $N^{3+}, U^{2+}, F^-, S^{2+}$                         | 4) LI <sup>+</sup> , Na <sup>+</sup> , Mg <sup>2+</sup> Ca <sup>2+</sup> |  |  |  |  |
| ' <b>ZZ</b> .    | The charge/size ratio of a cation determine its polarizing power. W                                                           | nich one of the following                                                |  |  |  |  |
| i                | sequences represents the increasing order of the polarizing powe $K^+$ Co <sup>2+</sup> Mo <sup>2+</sup> and Ro <sup>2+</sup> | r or the cationic species,                                               |  |  |  |  |
| i                | $(X, Ca^{-}, My^{-})$ and $De^{-1}$                                                                                           |                                                                          |  |  |  |  |
| İ                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                          | x                                                                        |  |  |  |  |
| 23               | The first ionization potential of Na is 5.1 eV. The value of eletron of                                                       | ain enthalny of Na⁺ will be                                              |  |  |  |  |
|                  |                                                                                                                               | [JEE MAIN 2013]                                                          |  |  |  |  |
|                  | 1) -2.55eV 2) -5.1eV 3) -10.2eV                                                                                               | 4) +2.55eV                                                               |  |  |  |  |
| 24.              | The jonic radii in ( $A^\circ$ ) of $N^3$ . $O^2$ and F- are respectively                                                     | [JEE MAIN 2016]                                                          |  |  |  |  |
|                  | 1) 1.36.1.40 and D 1.71 2) 1.36.1.71 and 1.40                                                                                 |                                                                          |  |  |  |  |
|                  | 3) 1.71,1.40 and 1.36 4) 1.71, 1.36 and 1.40                                                                                  |                                                                          |  |  |  |  |
|                  | , , , , , , , , , , , , , , , , , , , ,                                                                                       |                                                                          |  |  |  |  |
|                  |                                                                                                                               |                                                                          |  |  |  |  |

| П.             | ADDITIONAL PRACTICE SHEET                                                                              |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| ¦1.            | Which metal does not exhibit the Malleability                                                          |  |  |  |  |
| _              | 1) Au 2) Fe 3) Hg 4) Cu                                                                                |  |  |  |  |
| ' <b>∠</b> .   | Vinich one of the following has the smallest atomic radius?                                            |  |  |  |  |
| 3              | The electronic configuration to Sodium is 2.8.1. Identify the position of element in the               |  |  |  |  |
|                | Periodic table                                                                                         |  |  |  |  |
|                | 1) III A group and Ist Period 2) I A group and 3rd period                                              |  |  |  |  |
|                | 3) Ist A group and 2nd period 4) III A group and 2nd period                                            |  |  |  |  |
| <b>4</b> .     | Vhich has maximum IE                                                                                   |  |  |  |  |
| <br> _         | 1) Mg 2) Mg <sup>+</sup> 3) Mg <sup>++</sup> 4) Equal                                                  |  |  |  |  |
| ' 5.<br>       | he ionisation potential of Nitrogen is                                                                 |  |  |  |  |
| İ              | () Same as that of Oxygen (2) Less than that of Oxygen (3) Grater than that of Oxygen (4) non of these |  |  |  |  |
| 6.             | Electronegativity and electron affinity of an element A are X and Y respectively. Hence                |  |  |  |  |
|                | onisation potential of A is                                                                            |  |  |  |  |
|                | r + v                                                                                                  |  |  |  |  |
| 1              | 1) $\frac{x+y}{2}$ 2) 2x-y 3) 2y-x 4) 2x +y                                                            |  |  |  |  |
| <br>  <b>7</b> | 2<br>Recently discovered element with atomic number is 115 is 115 is                                   |  |  |  |  |
| .              | ) uun 2) uub 3)uup 4)uus                                                                               |  |  |  |  |
| 8.             | Pick out the property which is not shown by transition elements                                        |  |  |  |  |
| ļ              | <ul><li>Show variable oxidaion state</li><li>2) Impart colour to flame</li></ul>                       |  |  |  |  |
| ļ              | 3. are paramegnatic in nature 4) Act as catalitic agents                                               |  |  |  |  |
| 9.             | A molecule H- X will be 50% Ionic if electro negitivity differrence of H and X is                      |  |  |  |  |
| <br>  40       | 1) 1.2 ev 2) 1.4 ev 3) 1.5 ev 4) 1.7 ev                                                                |  |  |  |  |
| 110.           | Which of the following has the electionic configuration[Ar] 3d°?                                       |  |  |  |  |
| 11.            | Match the following                                                                                    |  |  |  |  |
|                | Root word Number                                                                                       |  |  |  |  |
|                | A) bi 1. 9                                                                                             |  |  |  |  |
|                | 3) tri 2. 6                                                                                            |  |  |  |  |
| 1              | C) hex 3. 8                                                                                            |  |  |  |  |
| 1              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                   |  |  |  |  |
|                |                                                                                                        |  |  |  |  |
| l              | a) $5 \ 4 \ 2 \ 3 \ 1$ b) $5 \ 4 \ 3 \ 2 \ 1$                                                          |  |  |  |  |
|                | x) 5 4 2 1 3 a) 5 3 4 2 1                                                                              |  |  |  |  |
| 12.            | Which of the elements in the following periodic table is (are)?                                        |  |  |  |  |
|                |                                                                                                        |  |  |  |  |
|                | 3 F I                                                                                                  |  |  |  |  |
|                | K H G                                                                                                  |  |  |  |  |
| i              |                                                                                                        |  |  |  |  |
| -              |                                                                                                        |  |  |  |  |
|                |                                                                                                        |  |  |  |  |
|                |                                                                                                        |  |  |  |  |
|                | D                                                                                                      |  |  |  |  |
| <br>           | $2/A$ Element with the out configuration of $0^{-5^{-1}}$                                              |  |  |  |  |
|                |                                                                                                        |  |  |  |  |
| IX -           | LASS 1                                                                                                 |  |  |  |  |

|      |                               |                      | KEY                                             |               |                |                  |
|------|-------------------------------|----------------------|-------------------------------------------------|---------------|----------------|------------------|
|      | <b>LEARNER'STAS</b>           | <u>K</u> :           |                                                 |               |                |                  |
| ΪD   | BEGINNERS :                   |                      |                                                 |               |                |                  |
|      | 23) 1 24) 2<br>EXPLORERS:     | 2 25) 3              | 26)1 27)3                                       | 28) 4         | 29) 2 30) 3    | 31) 1            |
| İ    | 1)1,2 2)3                     | 3)2 4)2              | 5) a-2,b-4,o                                    | :-3,d-5 6)4   | 7)1 8)2        | 9) 1 10)4        |
|      | RESEARCHERS:                  | 13)3                 |                                                 |               |                |                  |
| I.   | 1.3 2.1 3.1                   | 4.2 5.1              | 6.4 7.4 8.1                                     | 9.3 10.3      | 11.3 12.2 13.2 | 14.1 15.1 16.1   |
| Ц П. | 17.3 18.1 19.4<br>1)3 2)1 3)2 | 20.2 21.1<br>4)3 5)3 | 22.3     23.2     24.       6)2     7)3     8)2 | 3<br>9)4 10)2 | 11)1 12) 1-B,  | 2-H,3-A,4-I,5-G. |
|      |                               | -                    |                                                 | 2             | -              |                  |
| İ    |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 |               | -0             |                  |
|      |                               |                      |                                                 | 4             | tio            |                  |
| į    |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 | our           |                |                  |
|      |                               |                      |                                                 | 02            |                |                  |
| į    |                               | . 1                  |                                                 | 1-6-          |                |                  |
| 1    |                               |                      | - 00K                                           | 1             |                |                  |
| Ì    |                               |                      |                                                 |               |                |                  |
|      |                               | <b>.</b>             |                                                 |               |                |                  |
|      |                               |                      |                                                 |               |                |                  |
| į    |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 |               |                |                  |
| İ    |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 |               |                |                  |
|      |                               |                      |                                                 |               |                |                  |
|      | - CLASS                       |                      |                                                 |               |                | 123              |